MacDonald WC, Trier JS, Everett NB: Cell proliferation and migration in the stomach, duodenum, and rectum of man: Radioautographic studies. Gastroenterology. 1964, 46: 405-417.
CAS
PubMed
Google Scholar
Toner PG, Carr KE, Wyburn GM: The Digestive System: An Ultrastructural Atlas and Review. London: Butterworth; 1971.
Google Scholar
Sancho E, Eduard Batlle E, Clevers H: Signaling pathways in intestinal development and cancer. Annu Rev Cell DevBiol. 2004, 20: 695-723. 10.1146/annurev.cellbio.20.010403.092805. 10.1146/annurev.cellbio.20.010403.092805
Article
CAS
Google Scholar
van der Flier LG, Clevers H: Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu Rev Physiol. 2009, 71: 241-260. 10.1146/annurev.physiol.010908.163145
Article
CAS
PubMed
Google Scholar
Harper J, Mould A, Andrews RM, Bikoff EK, Robertson EJ: The transcriptional repressor Blimp1/Prdm1 regulates postnatal reprogramming of intestinal enterocytes. Proc Natl Acad Sci USA. 2011, 108: 10585-10590. 10.1073/pnas.1105852108
Article
PubMed Central
CAS
PubMed
Google Scholar
Muncan V, Heijmans J, Krasinski SD, Buller NV, Wildenberg ME, Meisner S, Radonjic M, Stapleton KA, Lamers WH, Biemond I: Blimp1 regulates the transition of neonatal to adult intestinal epithelium. Nat Commun. 2011, 2: 452.
Article
PubMed Central
PubMed
CAS
Google Scholar
Crosnier C, Stamataki D, Lewis J: Organizing cell renewal in the intestine: stem cells, signals and combinatorial control. Nat Rev Genet. 2006, 7: 349-359. 10.1038/nrg1840
Article
CAS
PubMed
Google Scholar
Shi YB, Hasebe T, Fu L, Fujimoto K, Ishizuya-Oka A: The development of the adult intestinal stem cells: Insights from studies on thyroid hormone-dependent amphibian metamorphosis. Cell Biosci. 2011, 1: 30. 10.1186/2045-3701-1-30
Article
PubMed Central
CAS
PubMed
Google Scholar
Ishizuya-Oka A, Shi YB: Evolutionary insights into postembryonic development of adult intestinal stem cells. Cell Biosci. 2011, 1: 37. 10.1186/2045-3701-1-37
Article
PubMed Central
CAS
PubMed
Google Scholar
Friedrichsen S, Christ S, Heuer H, Schäfer MKH, Mansouri A, Bauer K, Visser TJ: Regulation of iodothyronine deiodinases in the Pax8−/− mouse model of congenital hypothyroidism. Endocrinology. 2003, 144: 777-784. 10.1210/en.2002-220715
Article
CAS
PubMed
Google Scholar
Tata JR: Gene expression during metamorphosis: an ideal model for post-embryonic development. Bioessays. 1993, 15: 239-248. 10.1002/bies.950150404
Article
CAS
PubMed
Google Scholar
Sun G, Shi Y-B: Thyroid hormone regulation of adult intestinal stem cell development: Mechanisms and evolutionary conservations. Int J Biol Sci. 2012, 8: 1217-1224.
Article
PubMed Central
PubMed
Google Scholar
Plateroti M, Gauthier K, Domon-Dell C, Freund JN, Samarut J, Chassande O: Functional interference between thyroid hormone receptor alpha (TRalpha) and natural truncated TRDeltaalpha isoforms in the control of intestine development. Mol Cell Biol. 2001, 21: 4761-4772. 10.1128/MCB.21.14.4761-4772.2001
Article
PubMed Central
CAS
PubMed
Google Scholar
Flamant F, Poguet AL, Plateroti M, Chassande O, Gauthier K, Streichenberger N, Mansouri A, Samarut J: Congenital hypothyroid Pax8(−/−) mutant mice can be rescued by inactivating the TRalpha gene. Mol Endocrinol. 2002, 16: 24-32. 10.1210/me.16.1.24
CAS
PubMed
Google Scholar
Kress E, Rezza A, Nadjar J, Samarut J, Plateroti M: The frizzled-related sFRP2 gene is a target of thyroid hormone receptor alpha1 and activates beta-catenin signaling in mouse intestine. J Biol Chem. 2009, 284: 1234-1241.
Article
CAS
PubMed
Google Scholar
Plateroti M, Chassande O, Fraichard A, Gauthier K, Freund JN, Samarut J, Kedinger M: Involvement of T3Ralpha- and beta-receptor subtypes in mediation of T3 functions during postnatal murine intestinal development. Gastroenterology. 1999, 116: 1367-1378. 10.1016/S0016-5085(99)70501-9
Article
CAS
PubMed
Google Scholar
Plateroti M, Kress E, Mori JI, Samarut J: Thyroid hormone receptor alpha1 directly controls transcription of the beta-catenin gene in intestinal epithelial cells. Mol Cell Biol. 2006, 26: 3204-3214. 10.1128/MCB.26.8.3204-3214.2006
Article
PubMed Central
CAS
PubMed
Google Scholar
Sirakov M, Skah S, Nadjar J, Plateroti M: Thyroid hormone’s action on progenitor/stem cell biology: New challenge for a classic hormone?. Biochim Biophys Acta. 2013, in press.
Google Scholar
Sirakov M, Plateroti M: The thyroid hormones and their nuclear receptors in the gut: from developmental biology to cancer. Biochim Biophys Acta. 1812, 2011: 938-946.
Google Scholar
Shi Y-B: Amphibian Metamorphosis: From morphology to molecular biology. New York: John Wiley & Sons, Inc.; 1999.
Google Scholar
Dodd MHI, Dodd JM: The biology of metamorphosis. Physiology of the amphibia. Edited by: Lofts B. 1976, 467-599. New York: Academic Press.
Chapter
Google Scholar
Gilbert LI, Tata JR, Atkinson BG: Metamorphosis: Post-embryonic reprogramming of gene expression in amphibian and insect cells. New York: Academic Press; 1996.
Google Scholar
Sachs LM, Damjanovski S, Jones PL, Li Q, Amano T, Ueda S, Shi YB, Ishizuya-Oka A: Dual functions of thyroid hormone receptors during Xenopus development. Comp Biochem Physiol B Biochem Mol Biol. 2000, 126: 199-211. 10.1016/S0305-0491(00)00198-X
Article
CAS
PubMed
Google Scholar
Shi Y-B: Molecular biology of amphibian metamorphosis: A new approach to an old problem. Trends Endocrinol Metab. 1994, 5: 14-20. 10.1016/1043-2760(94)90116-3
Article
CAS
PubMed
Google Scholar
McAvoy JW, Dixon KE: Cell proliferation and renewal in the small intestinal epithelium of metamorphosing and adult Xenopus laevis. J Exp Zool. 1977, 202: 129-138. 10.1002/jez.1402020115. 10.1002/jez.1402020115
Article
Google Scholar
Ishizuya-Oka A, Ueda S: Apoptosis and cell proliferation in the Xenopus small intestine during metamorphosis. Cell Tissue Res. 1996, 286: 467-476. 10.1007/s004410050716
Article
CAS
PubMed
Google Scholar
Shi Y-B, Ishizuya-Oka A: Biphasic intestinal development in amphibians: Embryogensis and remodeling during metamorphosis. Current Topics in Develop Biol. 1996, 32: 205-235.
Article
CAS
Google Scholar
Ishizuya-Oka A, Shimozawa A: Development of the connective tissue in the digestive tract of the larval and metamorphosing Xenopus laevis. Anat Anz. 1987, 164: 81-93.
CAS
PubMed
Google Scholar
Vukicevic S, Kleinman HK, Luyten FP, Roberts AB, Roche NS, Reddi AH: Identification of multiple active growth factors in basement membrane Matrigel suggests caution in interpretation of cellular activity related to extracellular matrix components. Exp Cell Res. 1992, 202: 1-8. 10.1016/0014-4827(92)90397-Q
Article
CAS
PubMed
Google Scholar
Schmidt JW, Piepenhagen PA, Nelson WJ: Modulation of epithelial morphogenesis and cell fate by cell-to-cell signals and regulated cell adhesion. Seminars in Cell Biol. 1993, 4: 161-173.
Article
CAS
Google Scholar
Brown KE, Yamada KM: The role of integrins during vertebrate development. Seminars in Develop Biol. 1995, 6: 69-77. 10.1016/S1044-5781(06)80016-2. 10.1016/S1044-5781(06)80016-2
Article
CAS
Google Scholar
Werb Z, Sympson CJ, Alexander CM, Thomasset N, Lund LR, MacAuley A, Ashkenas J, Bissell MJ: Extracellular matrix remodeling and the regulation of epithelial- stromal interactions during differentiation and involution. Kidney Int Suppl. 1996, 54: S68-74.
PubMed Central
CAS
PubMed
Google Scholar
Shi Y-B, Li Q, Damjanovski S, Amano T, Ishizuya-Oka A: Regulation of apoptosis during development: Input from the extracellular matrix. Intern J of Mol Medicine. 1998, 2: 273-282.
CAS
Google Scholar
Murata E, Merker HJ: Morphologic changes of the basal lamina in the small intestine of Xenopus laevis during metamorphosis. Acta Anat. 1991, 140: 60-69. 10.1159/000147038
Article
CAS
PubMed
Google Scholar
Ishizuya-Oka A, Shimozawa A: Ultrastructural changes in the intestinal connective tissue of Xenopus laevis during metamorphosis. J Morphol. 1987, 193: 13-22. 10.1002/jmor.1051930103
Article
CAS
PubMed
Google Scholar
Ishizuya-Oka A, Shimozawa A: Programmed cell death and heterolysis of larval epithelial cells by macrophage-like cells in the anuran small intestine in vivo and in vitro. J Morphol. 1992, 213: 185-195. 10.1002/jmor.1052130205
Article
CAS
PubMed
Google Scholar
Su Y, Shi Y, Stolow M, Shi Y-B: Thyroid hormone induces apoptosis in primary cell cultures of tadpole intestine: cell type specificity and effects of extracellular matrix. J Cell Biol. 1997, 139: 1533-1543. 10.1083/jcb.139.6.1533
Article
PubMed Central
CAS
PubMed
Google Scholar
Su Y, Shi Y, Shi Y-B: Cyclosporin a but not FK506 inhibits thyroid hormone-induced apoptosis in xenopus tadpole intestinal epithelium. FASEB J. 1997, 11: 559-565.
CAS
PubMed
Google Scholar
Ishizuya-Oka A, Shimozawa A: Connective tissue is involved in adult epithelial development of the small intestine during anuran metamorphosis in vitro. Roux’s Arch Dev Biol. 1992, 201: 322-329. 10.1007/BF00592113
Article
Google Scholar
Ishizuya-Oka A, Shimozawa A: Inductive action of epithelium on differentiation of intestinal connective tissue of Xenopus laevis tadpoles during metamorphosis in vitro. Cell Tissue Res. 1994, 277: 427-436. 10.1007/BF00300215
Article
CAS
PubMed
Google Scholar
Ishizuya-Oka A, Ueda S, Damjanovski S, Li Q, Liang VC, Shi Y-B: Anteroposterior gradient of epithelial transformation during amphibian intestinal remodeling: immunohistochemical detection of intestinal fatty acid-binding protein. Dev Biol. 1997, 192: 149-161. 10.1006/dbio.1997.8749
Article
CAS
PubMed
Google Scholar
Lazar MA: Thyroid hormone receptors: multiple forms, multiple possibilities. Endocr Rev. 1993, 14: 184-193.
CAS
PubMed
Google Scholar
Yen PM: Physiological and molecular basis of thyroid hormone action. Physiol Rev. 2001, 81: 1097-1142.
CAS
PubMed
Google Scholar
Tsai MJ, O’Malley BW: Molecular mechanisms of action of steroid/thyroid receptor superfamily members. Ann Rev Biochem. 1994, 63: 451-486. 10.1146/annurev.bi.63.070194.002315
Article
CAS
PubMed
Google Scholar
Laudet V, Gronemeyer H: The nuclear receptor FactsBook. San Diego: Academic Press; 2002.
Google Scholar
Schreiber AM, Das B, Huang H, Marsh-Armstrong N, Brown DD: Diverse developmental programs of Xenopus laevis metamorphosis are inhibited by a dominant negative thyroid hormone receptor. PNAS. 2001, 98: 10739-10744. 10.1073/pnas.191361698
Article
PubMed Central
CAS
PubMed
Google Scholar
Brown DD, Cai L: Amphibian metamorphosis. Dev Biol. 2007, 306: 20-33. 10.1016/j.ydbio.2007.03.021
Article
PubMed Central
CAS
PubMed
Google Scholar
Buchholz DR, Hsia VS-C, Fu L, Shi Y-B: A dominant negative thyroid hormone receptor blocks amphibian metamorphosis by retaining corepressors at target genes. Mol Cell Biol. 2003, 23: 6750-6758. 10.1128/MCB.23.19.6750-6758.2003
Article
PubMed Central
CAS
PubMed
Google Scholar
Buchholz DR, Tomita A, Fu L, Paul BD, Shi Y-B: Transgenic analysis reveals that thyroid hormone receptor is sufficient to mediate the thyroid hormone signal in frog metamorphosis. Mol Cell Biol. 2004, 24: 9026-9037. 10.1128/MCB.24.20.9026-9037.2004
Article
PubMed Central
CAS
PubMed
Google Scholar
Buchholz DR, Paul BD, Fu L, Shi YB: Molecular and developmental analyses of thyroid hormone receptor function in Xenopus laevis, the African clawed frog. Gen Comp Endocrinol. 2006, 145: 1-19. 10.1016/j.ygcen.2005.07.009
Article
CAS
PubMed
Google Scholar
Shi Y-B: Dual functions of thyroid hormone receptors in vertebrate development: the roles of histone-modifying cofactor complexes. Thyroid. 2009, 19: 987-999. 10.1089/thy.2009.0041
Article
PubMed Central
CAS
PubMed
Google Scholar
Nakajima K, Yaoita Y: Dual mechanisms governing muscle cell death in tadpole tail during amphibian metamorphosis. Dev Dyn. 2003, 227: 246-255. 10.1002/dvdy.10300
Article
CAS
PubMed
Google Scholar
Denver RJ, Hu F, Scanlan TS, Furlow JD: Thyroid hormone receptor subtype specificity for hormone-dependent neurogenesis in Xenopus laevis. Dev Biol. 2009, 326: 155-168. 10.1016/j.ydbio.2008.11.005
Article
CAS
PubMed
Google Scholar
Bagamasbad P, Howdeshell KL, Sachs LM, Demeneix BA, Denver RJ: A role for basic transcription element-binding protein 1 (BTEB1) in the autoinduction of thyroid hormone receptor beta. J Biol Chem. 2008, 283: 2275-2285.
Article
CAS
PubMed
Google Scholar
Schreiber AM, Mukhi S, Brown DD: Cell-cell interactions during remodeling of the intestine at metamorphosis in Xenopus laevis. Dev Biol. 2009, 331: 89-98. 10.1016/j.ydbio.2009.04.033
Article
PubMed Central
CAS
PubMed
Google Scholar
McKenna NJ, O’Malley BW: Combinatorial control of gene expression by nuclear receptors and coregulators. Cell. 2002, 108: 465-474. 10.1016/S0092-8674(02)00641-4
Article
CAS
PubMed
Google Scholar
Horlein AJ, Naar AM, Heinzel T, Torchia J, Gloss B, Kurokawa R, Ryan A, Kamei Y, Soderstrom M, Glass CK: Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature. 1995, 377: 397-404. 10.1038/377397a0
Article
CAS
PubMed
Google Scholar
Chen JD, Evans RM: A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature. 1995, 377: 454-457. 10.1038/377454a0
Article
CAS
PubMed
Google Scholar
Burke LJ, Baniahmad A: Co-repressors 2000. FASEB J. 2000, 14: 1876-1888. 10.1096/fj.99-0943rev
Article
CAS
PubMed
Google Scholar
Jones PL, Shi Y-B: N-CoR-HDAC corepressor complexes: Roles in transcriptional regulation by nuclear hormone receptors. Current Topics in Microbiology and Immunology: Protein Complexes that Modify Chromatin. Volume 274. Edited by: Workman JL. 2003, 237-268. Berlin: Springer-Verlag.
Chapter
Google Scholar
Glass CK, Rosenfeld MG: The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev. 2000, 14: 121-141.
CAS
PubMed
Google Scholar
Ito M, Roeder RG: The TRAP/SMCC/Mediator complex and thyroid hormone receptor function. Trends Endocrinol Metab. 2001, 12: 127-134. 10.1016/S1043-2760(00)00355-6
Article
CAS
PubMed
Google Scholar
Zhang J, Lazar MA: The mechanism of action of thyroid hormones. Annu Rev Physiol. 2000, 62: 439-466. 10.1146/annurev.physiol.62.1.439
Article
CAS
PubMed
Google Scholar
Huang Z-Q, Li J, Sachs LM, Cole PA, Wong J: A role for cofactor–cofactor and cofactor–histone interactions in targeting p300, SWI/SNF and Mediator for transcription. EMBO J. 2003, 22: 2146-2155. 10.1093/emboj/cdg219
Article
PubMed Central
CAS
PubMed
Google Scholar
McKenna NJ, O’Malley BW: Nuclear receptors, coregulators, ligands, and selective receptor modulators: making sense of the patchwork quilt. Ann N Y Acad Sci. 2001, 949: 3-5.
Article
CAS
PubMed
Google Scholar
Rachez C, Freedman LP: Mediator complexes and transcription. Curr Opin Cell Biol. 2001, 13: 274-280. 10.1016/S0955-0674(00)00209-X
Article
CAS
PubMed
Google Scholar
Chen H, Lin RJ, Schiltz RL, Chakravarti D, Nash A, Nagy L, Privalsky ML, Nakatani Y, Evans RM: Nuclear receptor coactivator ACTR is a novel histone acetyltransferase and forms a multimeric activation complex with P/CAF and CBP/p300. Cell. 1997, 90: 569-580. 10.1016/S0092-8674(00)80516-4
Article
CAS
PubMed
Google Scholar
Demarest SJ, Martinez-Yamout M, Chung J, Chen H, Xu W, Dyson HJ, Evans RM, Wright PE: Mutual synergistic folding in recruitment of CBP/p300 by p160 nuclear receptor coactivators. Nature. 2002, 415: 549-553. 10.1038/415549a
Article
CAS
PubMed
Google Scholar
Onate SA, Tsai SY, Tsai MJ, O’Malley BW: Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science. 1995, 270: 1354-1357. 10.1126/science.270.5240.1354
Article
CAS
PubMed
Google Scholar
Meng X, Yang YF, Cao X, Govindan MV, Shuen M, Hollenberg AN, Mymryk JS, Walfish PG: Cellular context of coregulator and adaptor proteins regulates human adenovirus 5 early region 1A-dependent gene activation by the thyroid hormone receptor. Mol Endocrinol. 2003, 17: 1095-1105. 10.1210/me.2002-0294
Article
CAS
PubMed
Google Scholar
Wahlstrom GM, Vennstrom B, Bolin MB: The adenovirus E1A protein is a potent coactivator for thyroid hormone receptors. Mol Endocrinol. 1999, 13: 1119-1129. 10.1210/me.13.7.1119
Article
CAS
PubMed
Google Scholar
Sato Y, Ding A, Heimeier RA, Yousef AF, Mymryk JS, Walfish PG, Shi Y-B: The adenoviral E1A protein displaces corepressors and relieves gene repression by unliganded thyroid hormone receptors in vivo. Cell Res. 2009, 19: 783-792. 10.1038/cr.2009.55
Article
PubMed Central
CAS
PubMed
Google Scholar
Perissi V, Jepsen K, Glass CK, Rosenfeld MG: Deconstructing repression: evolving models of co-repressor action. Nat Rev Genet. 2010, 11: 109-123.
Article
CAS
PubMed
Google Scholar
O’Malley BW, Malovannaya A, Qin J: Minireview: nuclear receptor and coregulator proteomics–2012 and beyond. Mol Endocrinol. 2012, 26: 1646-1650. 10.1210/me.2012-1114
Article
PubMed Central
PubMed
CAS
Google Scholar
Bulynko YA, O’Malley BW: Nuclear receptor coactivators: structural and functional biochemistry. Biochemistry. 2011, 50: 313-328. 10.1021/bi101762x
Article
PubMed Central
CAS
PubMed
Google Scholar
McKenna NJ, Cooney AJ, DeMayo FJ, Downes M, Glass CK, Lanz RB, Lazar MA, Mangelsdorf DJ, Moore DD, Qin J: Minireview: Evolution of NURSA, the Nuclear Receptor Signaling Atlas. Mol Endocrinol. 2009, 23: 740-746. 10.1210/me.2009-0135
Article
PubMed Central
CAS
PubMed
Google Scholar
Shi YB, Matsuura K, Fujimoto K, Wen L, Fu L: Thyroid hormone receptor actions on transcription in amphibia: The roles of histone modification and chromatin disruption. Cell Biosci. 2012, 2: 42. 10.1186/2045-3701-2-42
Article
PubMed Central
CAS
PubMed
Google Scholar
Tomita A, Buchholz DR, Shi Y-B: Recruitment of N-CoR/SMRT-TBLR1 corepressor complex by unliganded thyroid hormone receptor for gene repression during frog development. Mol Cell Biol. 2004, 24: 3337-3346. 10.1128/MCB.24.8.3337-3346.2004
Article
PubMed Central
CAS
PubMed
Google Scholar
Sachs LM, Jones PL, Havis E, Rouse N, Demeneix BA, Shi Y-B: N-CoR recruitment by unliganded thyroid hormone receptor in gene repression during Xenopus laevis development. Mol Cell Biol. 2002, 22: 8527-8538. 10.1128/MCB.22.24.8527-8538.2002
Article
PubMed Central
CAS
PubMed
Google Scholar
Sato Y, Buchholz DR, Paul BD, Shi Y-B: A role of unliganded thyroid hormone receptor in postembryonic development in Xenopus laevis. Mech Dev. 2007, 124: 476-488. 10.1016/j.mod.2007.03.006
Article
PubMed Central
CAS
PubMed
Google Scholar
Matsuda H, Paul BD, Choi CY, Hasebe T, Shi Y-B: Novel functions of protein arginine methyltransferase 1 in thyroid hormone receptor-mediated transcription and in the regulation of metamorphic rate in Xenopus laevis. Mol Cell Biol. 2009, 29: 745-757. 10.1128/MCB.00827-08
Article
PubMed Central
CAS
PubMed
Google Scholar
Paul BD, Buchholz DR, Fu L, Shi Y-B: Tissue- and gene-specific recruitment of steroid receptor coactivator-3 by thyroid hormone receptor during development. J Biol Chem. 2005, 280: 27165-27172. 10.1074/jbc.M503999200
Article
CAS
PubMed
Google Scholar
Paul BD, Fu L, Buchholz DR, Shi Y-B: Coactivator recruitment is essential for liganded thyroid hormone receptor to initiate amphibian metamorphosis. Mol Cell Biol. 2005, 25: 5712-5724. 10.1128/MCB.25.13.5712-5724.2005
Article
PubMed Central
CAS
PubMed
Google Scholar
Paul BD, Buchholz DR, Fu L, Shi Y-B: SRC-p300 coactivator complex is required for thyroid hormone induced amphibian metamorphosis. J Biol Chem. 2007, 282: 7472-7481.
Article
CAS
PubMed
Google Scholar
Havis E, Sachs LM, Demeneix BA: Metamorphic T3-response genes have specific co-regulator requirements. EMBO Rep. 2003, 4: 883-888. 10.1038/sj.embor.embor908
Article
PubMed Central
CAS
PubMed
Google Scholar
Paul BD, Shi Y-B: Distinct expression profiles of transcriptional coactivators for thyroid hormone receptors during Xenopus laevis metamorphosis. Cell Res. 2003, 13: 459-464. 10.1038/sj.cr.7290188
Article
CAS
PubMed
Google Scholar
Shi Y-B, Brown DD: The earliest changes in gene expression in tadpole intestine induced by thyroid hormone. J Biol Chem. 1993, 268: 20312-20317.
CAS
PubMed
Google Scholar
Buchholz DR, Heimeier RA, Das B, Washington T, Shi Y-B: Pairing morphology with gene expression in thyroid hormone-induced intestinal remodeling and identification of a core set of TH-induced genes across tadpole tissues. Dev Biol. 2007, 303: 576-590. 10.1016/j.ydbio.2006.11.037
Article
CAS
PubMed
Google Scholar
Heimeier RA, Das B, Buchholz DR, Shi YB: The xenoestrogen bisphenol A inhibits postembryonic vertebrate development by antagonizing gene regulation by thyroid hormone. Endocrinology. 2009, 150: 2964-2973. 10.1210/en.2008-1503
Article
PubMed Central
CAS
PubMed
Google Scholar
Heimeier RA, Das B, Buchholz DR, Fiorentino M, Shi YB: Studies on Xenopus laevis intestine reveal biological pathways underlying vertebrate gut adaptation from embryo to adult. Genome Biol. 2010, 11: R55. 10.1186/gb-2010-11-5-r55
Article
PubMed Central
PubMed
CAS
Google Scholar
Amano T, Yoshizato K: Isolation of genes involved in intestinal remodeling during anuran metamorphosis. Wound Repair Regen. 1998, 6: 302-313.
Article
CAS
PubMed
Google Scholar
Matsuura K, Fujimoto K, Fu L, Shi Y-B: Liganded thyroid hormone receptor induces nucleosome removal and histone modifications to activate transcription during larval intestinal cell death and adult stem cell development. Endocrinology. 2012, 153: 961-972. 10.1210/en.2011-1736
Article
PubMed Central
CAS
PubMed
Google Scholar
Matsuura K, Fujimoto K, Das B, Fu L, Lu CD, Shi YB: Histone H3K79 methyltransferase Dot1L is directly activated by thyroid hormone receptor during Xenopus metamorphosis. Cell Biosci. 2012, 2: 25. 10.1186/2045-3701-2-25
Article
PubMed Central
CAS
PubMed
Google Scholar
Fujimoto K, Matsuura K, Das B: Fu L. Shi YB: Direct Activation of Xenopus Iodotyrosine Deiodinase by Thyroid Hormone Receptor in the Remodeling Intestine during Amphibian Metamorphosis. Endocrinology; 2012
Google Scholar
Wang X, Matsuda H, Shi Y-B: Developmental regulation and function of thyroid hormone receptors and 9-cis retinoic acid receptors during Xenopus tropicalis metamorphosis. Endocrinology. 2008, 149: 5610-5618. 10.1210/en.2008-0751
Article
PubMed Central
CAS
PubMed
Google Scholar
Das B, Heimeier RA, Buchholz DR, Shi YB: Identification of direct thyroid hormone response genes reveals the earliest gene regulation programs during frog metamorphosis. J Biol Chem. 2009, 284: 34167-34178. 10.1074/jbc.M109.066084
Article
PubMed Central
CAS
PubMed
Google Scholar
Bilesimo P, Jolivet P, Alfama G, Buisine N, Le Mevel S, Havis E, Demeneix BA, Sachs LM: Specific histone lysine 4 methylation patterns define TR-binding capacity and differentiate direct T3 responses. Mol Endocrinol. 2011, 25: 225-237. 10.1210/me.2010-0269
Article
CAS
PubMed
Google Scholar
Sterling J, Fu L, Matsuura K, Shi Y-B: Cytological and morphological analyses reveal distinct features of intestinal development during Xenopus tropicalis metamorphosis. PLoS One. 2012, 7: 47401-47410. 10.1371/journal.pone.0047401. e47407. 10.1371/journal.pone.0047401
Article
CAS
Google Scholar
Kress E, Samarut J, Plateroti M: Thyroid hormones and the control of cell proliferation or cell differentiation: paradox or duality?. Mol Cell Endocrinol. 2009, 313: 36-49. 10.1016/j.mce.2009.08.028
Article
CAS
PubMed
Google Scholar
Hasebe T, Buchholz DR, Shi YB, Ishizuya-Oka A: Epithelial-connective tissue interactions induced by thyroid hormone receptor are essential for adult stem cell development in the Xenopus laevis intestine. Stem Cells. 2011, 29: 154-161. 10.1002/stem.560
Article
PubMed Central
CAS
PubMed
Google Scholar
Barrett JA, Rawloings ND, Woessner JF: Handbook of proteolytic enzymes. NY: Academic Press; 1998.
Google Scholar
Alexander CM, Werb Z: Extracellular matrix degradation. Cell Biology of Extracellular Matrix. Edited by: Hay ED. 1991, 255-302. New York: Plenum Press, 2.
Chapter
Google Scholar
Birkedal-Hansen H, Moore WGI, Bodden MK, Windsor LT, Birkedal-Hansen B, DeCarlo A, Engler JA: Matrix metalloproteinases: a review. Crit Rev Oral Biol Med. 1993, 4: 197-250.
CAS
PubMed
Google Scholar
McCawley LJ, Matrisian LM: Matrix metalloproteinases: they’re not just for matrix anymore!. Curr Opin Cell Biol. 2001, 13: 534-540. 10.1016/S0955-0674(00)00248-9
Article
CAS
PubMed
Google Scholar
Parks WC, Mecham RP: Matrix metalloproteinases. New York: Academic Press; 1998.
Google Scholar
Nagase H: Cell surface activation of progelatinase A (proMMP-2) and cell migration. Cell Res. 1998, 8: 179-186. 10.1038/cr.1998.18
Article
CAS
PubMed
Google Scholar
Pei D: Leukolysin/MMP25/MT6-MMP: a novel matrix metalloproteinase specifically expressed in the leukocyte lineage. Cell Res. 1999, 9: 291-303. 10.1038/sj.cr.7290028
Article
CAS
PubMed
Google Scholar
Fu L, Das B, Mathew S, Shi YB: Genome-wide identification of Xenopus matrix metalloproteinases: conservation and unique duplications in amphibians. BMC Genomics. 2009, 10: 81. 10.1186/1471-2164-10-81
Article
PubMed Central
PubMed
CAS
Google Scholar
Uria JA, Werb Z: Matrix metalloproteinases and their expression in mammary gland. Cell Res. 1998, 8: 187-194. 10.1038/cr.1998.19
Article
CAS
PubMed
Google Scholar
Overall CM: Molecular determinants of metalloproteinase substrate specificity. Mol Biotechnol. 2002, 22: 51-86. 10.1385/MB:22:1:051
Article
CAS
PubMed
Google Scholar
Mathew S, Fu L, Hasebe T, Ishizuya-Oka A, Shi YB: Tissue-dependent induction of apoptosis by matrix metalloproteinase stromelysin-3 during amphibian metamorphosis. Birth Defects Res C Embryo Today. 2010, 90: 55-66. 10.1002/bdrc.20170
Article
PubMed Central
CAS
PubMed
Google Scholar
Gross J, Lapiere CM: Collagenolytic activity in amphibian tissues: A tissue culture assay. Proc Natl Acad Sci USA. 1962, 48: 1014-1022. 10.1073/pnas.48.6.1014
Article
PubMed Central
CAS
PubMed
Google Scholar
Hasebe T, Hartman R, Matsuda H, Shi YB: Spatial and temporal expression profiles suggest the involvement of gelatinase A and membrane type 1 matrix metalloproteinase in amphibian metamorphosis. Cell Tissue Res. 2006, 324: 105-116. 10.1007/s00441-005-0099-7
Article
CAS
PubMed
Google Scholar
Patterton D, Hayes WP, Shi YB: Transcriptional activation of the matrix metalloproteinase gene stromelysin-3 coincides with thyroid hormone-induced cell death during frog metamorphosis. Dev Biol. 1995, 167: 252-262. 10.1006/dbio.1995.1021
Article
CAS
PubMed
Google Scholar
Stolow MA, Bauzon DD, Li J, Sedgwick T, Liang VC, Sang QA, Shi YB: Identification and characterization of a novel collagenase in Xenopus laevis: possible roles during frog development. Mol Biol Cell. 1996, 7: 1471-1483.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wang Z, Brown DD: Thyroid hormone-induced gene expression program for amphibian tail resorption. J Biol Chem. 1993, 268: 16270-16278.
CAS
PubMed
Google Scholar
Damjanovski S, Ishizuya-Oka A, Shi YB: Spatial and temporal regulation of collagenases-3, -4, and stromelysin - 3 implicates distinct functions in apoptosis and tissue remodeling during frog metamorphosis. Cell Res. 1999, 9: 91-105. 10.1038/sj.cr.7290009
Article
CAS
PubMed
Google Scholar
Fu L, Tomita A, Wang H, Buchholz DR, Shi Y-B: Transcriptional regulation of the Xenopus laevis stromelysin-3 gene by thyroid hormone is mediated by a DNA element in the first intron. J Biol Chem. 2006, 281: 16870-16878. 10.1074/jbc.M603041200
Article
CAS
PubMed
Google Scholar
Ishizuya-Oka A, Ueda S, Shi Y-B: Transient expression of stromelysin-3 mRNA in the amphibian small intestine during metamorphosis. Cell Tissue Res. 1996, 283: 325-329. 10.1007/s004410050542
Article
CAS
PubMed
Google Scholar
Ishizuya-Oka A, Li Q, Amano T, Damjanovski S, Ueda S, Shi Y-B: Requirement for matrix metalloproteinase stromelysin-3 in cell migration and apoptosis during tissue remodeling in Xenopus laevis. J Cell Biol. 2000, 150: 1177-1188. 10.1083/jcb.150.5.1177
Article
PubMed Central
CAS
PubMed
Google Scholar
Fu L, Buchholz D, Shi YB: Novel double promoter approach for identification of transgenic animals: A tool for in vivo analysis of gene function and development of gene-based therapies. Mol Reprod Dev. 2002, 62: 470-476. 10.1002/mrd.10137
Article
CAS
PubMed
Google Scholar
Fu L, Ishizuya-Oka A, Buchholz DR, Amano T, Matsuda H, Shi YB: A causative role of stromelysin-3 in extracellular matrix remodeling and epithelial apoptosis during intestinal metamorphosis in Xenopus laevis. J Biol Chem. 2005, 280: 27856-27865. 10.1074/jbc.M413275200
Article
CAS
PubMed
Google Scholar
Murphy G, Segain J-P, O’Shea M, Cockett M, Ioannou C, Lefebvre O, Chambon P, Basset P: The 28-kDa N-terminal domain of mouse stromelysin-3- has the general properties of a weak metalloproteinase. J Biol Chem. 1993, 268: 15435-15441.
CAS
PubMed
Google Scholar
Pei D, Majmudar G, Weiss SJ: Hydrolytic inactivation of a breast carcinoma cell-derived serpin by human stromelysin-3. J Biol Chem. 1994, 269: 25849-25855.
CAS
PubMed
Google Scholar
Manes S, Mira E, Barbacid MD, Cipres A, FernandezResa P, Buesa JM, Merida I, Aracil M, Marquez G, Martinez C: Identification of insulin-like growth factor-binding protein-1 as a potential physiological substrate for human stromelysin-3. J Biol Chem. 1997, 272: 25706-25712. 10.1074/jbc.272.41.25706
Article
CAS
PubMed
Google Scholar
Amano T, Kwak O, Fu L, Marshak A, Shi Y-B: The matrix metalloproteinase stromelysin-3 cleaves laminin receptor at two distinct sites between the transmembrane domain and laminin binding sequence within the extracellular domain. Cell Res. 2005, 15: 150-159. 10.1038/sj.cr.7290280
Article
CAS
PubMed
Google Scholar
Amano T, Fu L, Marshak A, Kwak O, Shi YB: Spatio-temporal regulation and cleavage by matrix metalloproteinase stromelysin-3 implicate a role for laminin receptor in intestinal remodeling during Xenopus laevis metamorphosis. Dev Dyn. 2005, 234: 190-200. 10.1002/dvdy.20511
Article
CAS
PubMed
Google Scholar
Mathew S, Fu L, Fiorentino M, Matsuda H, Das B, Shi Y-B: Differential regulation of cell type specific apoptosis by stromelysin-3: A potential mechanism via the cleavage of the laminin receptor during tail resorption in Xenopus laevis. J Biol Chem. 2009, 284: 18545-18556. 10.1074/jbc.M109.017723
Article
PubMed Central
CAS
PubMed
Google Scholar
Ramalho-Santos M, Melton DA, McMahon AP: Hedgehog signals regulate multiple aspects of gastrointestinal development. Development. 2000, 127: 2763-2772.
CAS
PubMed
Google Scholar
Kim TH, Kim BM, Mao J, Rowan S, Shivdasani RA: Endodermal Hedgehog signals modulate Notch pathway activity in the developing digestive tract mesenchyme. Development. 2011, 138: 3225-3233. 10.1242/dev.066233
Article
PubMed Central
CAS
PubMed
Google Scholar
Stolow MA, Shi YB: Xenopus sonic hedgehog as a potential morphogen during embryogenesis and thyroid hormone-dependent metamorphosis. Nucleic Acids Res. 1995, 23: 2555-2562. 10.1093/nar/23.13.2555
Article
PubMed Central
CAS
PubMed
Google Scholar
Ishizuya-Oka A, Ueda S, Inokuchi T, Amano T, Damjanovski S, Stolow M, Shi Y-B: Thyroid hormone-induced expression of Sonic hedgehog correlates with adult epithelial development during remodeling of the Xenopus stomach and intestine. Differentiation. 2001, 69: 27-37. 10.1046/j.1432-0436.2001.690103.x
Article
CAS
PubMed
Google Scholar
Hasebe T, Kajita M, Fu L, Shi YB, Ishizuya-Oka A: Thyroid hormone-induced sonic hedgehog signal up-regulates its own pathway in a paracrine manner in the Xenopus laevis intestine during metamorphosis. Dev Dyn. 2012, 241: 403-414. 10.1002/dvdy.23723
Article
PubMed Central
CAS
PubMed
Google Scholar
Ishizuya-Oka A, Ueda S, Amano T, Shimizu K, Suzuki K, Ueno N, Yoshizato K: Thyroid-hormone-dependent and fibroblast-specific expression of BMP-4 correlates with adult epithelial development during amphibian intestinal remodeling. Cell Tissue Res. 2001, 303: 187-195. 10.1007/s004410000291
Article
CAS
PubMed
Google Scholar
Ishizuya-Oka A, Hasebe T, Shimizu K, Suzuki K, Ueda S: Shh/BMP-4 signaling pathway is essential for intestinal epithelial development during Xenopus larval-to-adult remodeling. Dev Dyn. 2006, 235: 3240-3249. 10.1002/dvdy.20969
Article
CAS
PubMed
Google Scholar
Perrimon N: Hedgehog and beyond. Cell. 1995, 80: 517-520.
CAS
PubMed
Google Scholar
Roberts DJ, Johnson RL, Burke AC, Nelson CE, Morgan BA, Tabin C: Sonic hedgehog is an endodermal signal inducing Bmp-4 and Hox genes during induction and regionalization of the chick hindgut. Development. 1995, 121: 3163-3174.
CAS
PubMed
Google Scholar
Ingham PW: Transducing Hedgehog: the story so far. EMBO J. 1998, 17: 3505-3511. 10.1093/emboj/17.13.3505
Article
PubMed Central
CAS
PubMed
Google Scholar
Young JJ, Cherone JM, Doyon Y, Ankoudinova I, Faraji FM, Lee AH, Ngo C, Guschin DY, Paschon DE, Miller JC: Efficient targeted gene disruption in the soma and germ line of the frog Xenopus tropicalis using engineered zinc-finger nucleases. Proc Natl Acad Sci USA. 2011, 108: 7052-7057. 10.1073/pnas.1102030108
Article
PubMed Central
CAS
PubMed
Google Scholar
Lei Y, Guo X, Liu Y, Cao Y, Deng Y, Chen X, Cheng CH, Dawid IB, Chen Y, Zhao H: Efficient targeted gene disruption in Xenopus embryos using engineered transcription activator-like effector nucleases (TALENs). Proc Natl Acad Sci USA. 2012, 109: 17484-17489. 10.1073/pnas.1215421109
Article
PubMed Central
CAS
PubMed
Google Scholar