Hoeijmakers JH: Genome maintenance mechanisms for preventing cancer. Nature. 2001, 411 (6835): 366-374. 10.1038/35077232
CAS
PubMed
Google Scholar
Borde V: The multiple roles of the Mre11 complex for meiotic recombination. Chromosome Res. 2007, 15 (5): 551-563. 10.1007/s10577-007-1147-9
CAS
PubMed
Google Scholar
Assenmacher N, Hopfner KP: MRE11/RAD50/NBS1: complex activities. Chromosoma. 2004, 113 (4): 157-166.
CAS
PubMed
Google Scholar
Sartori AA, Lukas C, Coates J, Mistrik M, Fu S, Bartek J, Baer R, Lukas J, Jackson SP: Human CtIP promotes DNA end resection. Nature. 2007, 450 (7169): 509-514. 10.1038/nature06337
PubMed Central
CAS
PubMed
Google Scholar
Sung P, Krejci L, Van Komen S, Sehorn MG: Rad51 recombinase and recombination mediators. J Biol Chem. 2003, 278 (44): 42729-42732. 10.1074/jbc.R300027200
CAS
PubMed
Google Scholar
Sung P, Klein H: Mechanism of homologous recombination: mediators and helicases take on regulatory functions. Nat Rev Mol Cell Biol. 2006, 7 (10): 739-750.
CAS
PubMed
Google Scholar
Liu Y, West SC: Happy Hollidays: 40th anniversary of the Holliday junction. Nat Rev Mol Cell Biol. 2004, 5 (11): 937-944. 10.1038/nrm1502
CAS
PubMed
Google Scholar
Liu Y, Masson JY, Shah R, O'Regan P, West SC: RAD51C is required for Holliday junction processing in mammalian cells. Science. 2004, 303 (5655): 243-246. 10.1126/science.1093037
CAS
PubMed
Google Scholar
Alberts B: Molecular biology of the cell.5th edition. New York: Garland Science; 2008.
Google Scholar
Heller RC, Marians KJ: Replisome assembly and the direct restart of stalled replication forks. Nat Rev Mol Cell Biol. 2006, 7 (12): 932-943. 10.1038/nrm2058
CAS
PubMed
Google Scholar
Hanada K, Budzowska M, Modesti M, Maas A, Wyman C, Essers J, Kanaar R: The structure-specific endonuclease Mus81-Eme1 promotes conversion of interstrand DNA crosslinks into double-strands breaks. EMBO J. 2006, 25 (20): 4921-4932. 10.1038/sj.emboj.7601344
PubMed Central
CAS
PubMed
Google Scholar
Hanada K, Budzowska M, Davies SL, van Drunen E, Onizawa H, Beverloo HB, Maas A, Essers J, Hickson ID, Kanaar R: The structure-specific endonuclease Mus81 contributes to replication restart by generating double-strand DNA breaks. Nat Struct Mol Biol. 2007, 14 (11): 1096-1104. 10.1038/nsmb1313
CAS
PubMed
Google Scholar
Wilson DM 3rd, Thompson LH: Molecular mechanisms of sister-chromatid exchange. Mutat Res. 2007, 616 (1–2): 11-23.
CAS
PubMed
Google Scholar
Petermann E, Orta ML, Issaeva N, Schultz N, Helleday T: Hydroxyurea-stalled replication forks become progressively inactivated and require two different RAD51-mediated pathways for restart and repair. Mol Cell. 2010, 37 (4): 492-502. 10.1016/j.molcel.2010.01.021
PubMed Central
CAS
PubMed
Google Scholar
Wyman C, Kanaar R: DNA double-strand break repair: all's well that ends well. Annu Rev Genet. 2006, 40: 363-383. 10.1146/annurev.genet.40.110405.090451
CAS
PubMed
Google Scholar
Elvers I, Johansson F, Groth P, Erixon K, Helleday T: UV stalled replication forks restart by re-priming in human fibroblasts. Nucleic Acids Res. 2011, 39 (16): 7049-7057. 10.1093/nar/gkr420
PubMed Central
CAS
PubMed
Google Scholar
Saintigny Y, Delacote F, Vares G, Petitot F, Lambert S, Averbeck D, Lopez BS: Characterization of homologous recombination induced by replication inhibition in mammalian cells. EMBO J. 2001, 20 (14): 3861-3870. 10.1093/emboj/20.14.3861
PubMed Central
CAS
PubMed
Google Scholar
Lundin C, Erixon K, Arnaudeau C, Schultz N, Jenssen D, Meuth M, Helleday T: Different roles for nonhomologous end joining and homologous recombination following replication arrest in mammalian cells. Mol Cell Biol. 2002, 22 (16): 5869-5878. 10.1128/MCB.22.16.5869-5878.2002
PubMed Central
CAS
PubMed
Google Scholar
Feng Z, Zhang J: A dual role of BRCA1 in two distinct homologous recombination mediated repair in response to replication arrest. Nucleic Acids Res. 2012, 40 (2): 726-738. 10.1093/nar/gkr748
PubMed Central
CAS
PubMed
Google Scholar
Johnson RD, Jasin M: Sister chromatid gene conversion is a prominent double-strand break repair pathway in mammalian cells. EMBO J. 2000, 19 (13): 3398-3407. 10.1093/emboj/19.13.3398
PubMed Central
CAS
PubMed
Google Scholar
Arnaudeau C, Lundin C, Helleday T: DNA double-strand breaks associated with replication forks are predominantly repaired by homologous recombination involving an exchange mechanism in mammalian cells. J Mol Biol. 2001, 307 (5): 1235-1245. 10.1006/jmbi.2001.4564
CAS
PubMed
Google Scholar
Saleh-Gohari N, Bryant HE, Schultz N, Parker KM, Cassel TN, Helleday T: Spontaneous homologous recombination is induced by collapsed replication forks that are caused by endogenous DNA single-strand breaks. Mol Cell Biol. 2005, 25 (16): 7158-7169. 10.1128/MCB.25.16.7158-7169.2005
PubMed Central
CAS
PubMed
Google Scholar
Shi W, Feng Z, Zhang J, Gonzalez-Suarez I, Vanderwaal RP, Wu X, Powell SN, Roti Roti JL, Gonzalo S, Zhang J: The Role of RPA2 Phosphorylation in Homologous Recombination in Response to Replication Arrest. Carcinogenesis. 2010, 31 (6): 994-1002. 10.1093/carcin/bgq035
PubMed Central
CAS
PubMed
Google Scholar
Wolff S, Bodycote J, Painter RB: Sister chromatid exchanges induced in Chinese hamster cells by UV irradiation of different stages of the cell cycle: the necessity for cells to pass through S. Mutat Res. 1974, 25 (1): 73-81. 10.1016/0027-5107(74)90220-6
CAS
PubMed
Google Scholar
Sonoda E, Sasaki MS, Morrison C, Yamaguchi-Iwai Y, Takata M, Takeda S: Sister chromatid exchanges are mediated by homologous recombination in vertebrate cells. Mol Cell Biol. 1999, 19 (7): 5166-5169.
PubMed Central
CAS
PubMed
Google Scholar
Latt SA: Sister chromatid exchange formation. Annu Rev Genet. 1981, 15: 11-55. 10.1146/annurev.ge.15.120181.000303
CAS
PubMed
Google Scholar
Takata M, Sasaki MS, Tachiiri S, Fukushima T, Sonoda E, Schild D, Thompson LH, Takeda S: Chromosome instability and defective recombinational repair in knockout mutants of the five Rad51 paralogs. Mol Cell Biol. 2001, 21 (8): 2858-2866. 10.1128/MCB.21.8.2858-2866.2001
PubMed Central
CAS
PubMed
Google Scholar
Dronkert ML, Beverloo HB, Johnson RD, Hoeijmakers JH, Jasin M, Kanaar R: Mouse RAD54 affects DNA double-strand break repair and sister chromatid exchange. Mol Cell Biol. 2000, 20 (9): 3147-3156. 10.1128/MCB.20.9.3147-3156.2000
PubMed Central
CAS
PubMed
Google Scholar
Smiraldo PG, Gruver AM, Osborn JC, Pittman DL: Extensive chromosomal instability in Rad51d-deficient mouse cells. Cancer Res. 2005, 65 (6): 2089-2096. 10.1158/0008-5472.CAN-04-2079
CAS
PubMed
Google Scholar
Hinz JM, Tebbs RS, Wilson PF, Nham PB, Salazar EP, Nagasawa H, Urbin SS, Bedford JS, Thompson LH: Repression of mutagenesis by Rad51D-mediated homologous recombination. Nucleic Acids Res. 2006, 34 (5): 1358-1368. 10.1093/nar/gkl020
PubMed Central
CAS
PubMed
Google Scholar
Natarajan AT, Palitti F: DNA repair and chromosomal alterations. Mutat Res. 2008, 657 (1): 3-7. 10.1016/j.mrgentox.2008.08.017
CAS
PubMed
Google Scholar
Chaganti RS, Schonberg S, German J: A manyfold increase in sister chromatid exchanges in Bloom's syndrome lymphocytes. Proc Natl Acad Sci U S A. 1974, 71 (11): 4508-4512. 10.1073/pnas.71.11.4508
PubMed Central
CAS
PubMed
Google Scholar
Wu L, Davies SL, North PS, Goulaouic H, Riou JF, Turley H, Gatter KC, Hickson ID: The Bloom's syndrome gene product interacts with topoisomerase III. J Biol Chem. 2000, 275 (13): 9636-9644. 10.1074/jbc.275.13.9636
CAS
PubMed
Google Scholar
Johnson FB, Lombard DB, Neff NF, Mastrangelo MA, Dewolf W, Ellis NA, Marciniak RA, Yin Y, Jaenisch R, Guarente L: Association of the Bloom syndrome protein with topoisomerase IIIalpha in somatic and meiotic cells. Cancer Res. 2000, 60 (5): 1162-1167.
CAS
PubMed
Google Scholar
Wu L, Hickson ID: RecQ helicases and topoisomerases: components of a conserved complex for the regulation of genetic recombination. Cell Mol Life Sci. 2001, 58 (7): 894-901. 10.1007/PL00000909
CAS
PubMed
Google Scholar
Wu L, Davies SL, Levitt NC, Hickson ID: Potential role for the BLM helicase in recombinational repair via a conserved interaction with RAD51. J Biol Chem. 2001, 276 (22): 19375-19381. 10.1074/jbc.M009471200
CAS
PubMed
Google Scholar
Karow JK, Constantinou A, Li JL, West SC, Hickson ID: The Bloom's syndrome gene product promotes branch migration of holliday junctions. Proc Natl Acad Sci U S A. 2000, 97 (12): 6504-6508. 10.1073/pnas.100448097
PubMed Central
CAS
PubMed
Google Scholar
Wu L, Hickson ID: The Bloom's syndrome helicase suppresses crossing over during homologous recombination. Nature. 2003, 426 (6968): 870-874. 10.1038/nature02253
CAS
PubMed
Google Scholar
Kikuchi K, Abdel-Aziz HI, Taniguchi Y, Yamazoe M, Takeda S, Hirota K: Bloom DNA helicase facilitates homologous recombination between diverged homologous sequences. J Biol Chem. 2009, 284 (39): 26360-26367. 10.1074/jbc.M109.029348
PubMed Central
CAS
PubMed
Google Scholar
Davies SL, North PS, Dart A, Lakin ND, Hickson ID: Phosphorylation of the Bloom's syndrome helicase and its role in recovery from S-phase arrest. Mol Cell Biol. 2004, 24 (3): 1279-1291. 10.1128/MCB.24.3.1279-1291.2004
PubMed Central
CAS
PubMed
Google Scholar
Alabert C, Bianco JN, Pasero P: Differential regulation of homologous recombination at DNA breaks and replication forks by the Mrc1 branch of the S-phase checkpoint. EMBO J. 2009, 28 (8): 1131-1141. 10.1038/emboj.2009.75
PubMed Central
CAS
PubMed
Google Scholar
Richards RI: Fragile and unstable chromosomes in cancer: causes and consequences. Trends in genetics: TIG. 2001, 17 (6): 339-345. 10.1016/S0168-9525(01)02303-4
CAS
PubMed
Google Scholar
Glover TW, Stein CK: Induction of sister chromatid exchanges at common fragile sites. Am J Hum Genet. 1987, 41 (5): 882-890.
PubMed Central
CAS
PubMed
Google Scholar
Hirsch B: Sister chromatid exchanges are preferentially induced at expressed and nonexpressed common fragile sites. Hum Genet. 1991, 87 (3): 302-306.
CAS
PubMed
Google Scholar
Casper AM, Nghiem P, Arlt MF, Glover TW: ATR regulates fragile site stability. Cell. 2002, 111 (6): 779-789. 10.1016/S0092-8674(02)01113-3
CAS
PubMed
Google Scholar
Casper AM, Durkin SG, Arlt MF, Glover TW: Chromosomal instability at common fragile sites in Seckel syndrome. Am J Hum Genet. 2004, 75 (4): 654-660. 10.1086/422701
PubMed Central
CAS
PubMed
Google Scholar
Narod SA, Foulkes WD: BRCA1 and BRCA2: 1994 and beyond. Nat Rev Cancer. 2004, 4 (9): 665-676.
CAS
PubMed
Google Scholar
Antoniou A, Pharoah PD, Narod S, Risch HA, Eyfjord JE, Hopper JL, Loman N, Olsson H, Johannsson O, Borg A, et al: Average risks of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case Series unselected for family history: a combined analysis of 22 studies. Am J Hum Genet. 2003, 72 (5): 1117-1130. 10.1086/375033
PubMed Central
CAS
PubMed
Google Scholar
Esteller M, Silva JM, Dominguez G, Bonilla F, Matias-Guiu X, Lerma E, Bussaglia E, Prat J, Harkes IC, Repasky EA , et al: Promoter hypermethylation and BRCA1 inactivation in sporadic breast and ovarian tumors. J Natl Cancer Inst. 2000, 92 (7): 564-569. 10.1093/jnci/92.7.564
CAS
PubMed
Google Scholar
Russell PA, Pharoah PD, De Foy K, Ramus SJ, Symmonds I, Wilson A, Scott I, Ponder BA, Gayther SA: Frequent loss of BRCA1 mRNA and protein expression in sporadic ovarian cancers. International journal of cancer Journal international du cancer. 2000, 87 (3): 317-321. 10.1002/1097-0215(20000801)87:3<317::AID-IJC2>3.0.CO;2-B
CAS
PubMed
Google Scholar
Thompson ME, Jensen RA, Obermiller PS, Page DL, Holt JT: Decreased expression of BRCA1 accelerates growth and is often present during sporadic breast cancer progression. Nat Genet. 1995, 9 (4): 444-450. 10.1038/ng0495-444
CAS
PubMed
Google Scholar
Wilson CA, Ramos L, Villasenor MR, Anders KH, Press MF, Clarke K, Karlan B, Chen JJ, Scully R, Livingston D, et al: Localization of human BRCA1 and its loss in high-grade, non-inherited breast carcinomas. Nat Genet. 1999, 21 (2): 236-240. 10.1038/6029
CAS
PubMed
Google Scholar
Deng CX, Brodie SG: Roles of BRCA1 and its interacting proteins. BioEssays: news and reviews in molecular, cellular and developmental biology. 2000, 22 (8): 728-737. 10.1002/1521-1878(200008)22:8<728::AID-BIES6>3.0.CO;2-B. 10.1002/1521-1878(200008)22:8<728::AID-BIES6>3.0.CO;2-B
CAS
Google Scholar
Gudmundsdottir K, Ashworth A: The roles of BRCA1 and BRCA2 and associated proteins in the maintenance of genomic stability. Oncogene. 2006, 25 (43): 5864-5874. 10.1038/sj.onc.1209874
CAS
PubMed
Google Scholar
Moynahan ME, Jasin M: Mitotic homologous recombination maintains genomic stability and suppresses tumorigenesis. Nat Rev Mol Cell Biol. 2010, 11 (3): 196-207. 10.1038/nrm2851
PubMed Central
CAS
PubMed
Google Scholar
Helleday T: Homologous recombination in cancer development, treatment and development of drug resistance. Carcinogenesis. 2010, 31 (6): 955-960. 10.1093/carcin/bgq064
CAS
PubMed
Google Scholar
Scully R, Chen J, Plug A, Xiao Y, Weaver D, Feunteun J, Ashley T, Livingston DM: Association of BRCA1 with Rad51 in mitotic and meiotic cells. Cell. 1997, 88 (2): 265-275. 10.1016/S0092-8674(00)81847-4
CAS
PubMed
Google Scholar
Jin Y, Xu XL, Yang MC, Wei F, Ayi TC, Bowcock AM, Baer R: Cell cycle-dependent colocalization of BARD1 and BRCA1 proteins in discrete nuclear domains. Proc Natl Acad Sci U S A. 1997, 94 (22): 12075-12080. 10.1073/pnas.94.22.12075
PubMed Central
CAS
PubMed
Google Scholar
Scully R, Chen J, Ochs RL, Keegan K, Hoekstra M, Feunteun J, Livingston DM: Dynamic changes of BRCA1 subnuclear location and phosphorylation state are initiated by DNA damage. Cell. 1997, 90 (3): 425-435. 10.1016/S0092-8674(00)80503-6
CAS
PubMed
Google Scholar
Chen J, Silver DP, Walpita D, Cantor SB, Gazdar AF, Tomlinson G, Couch FJ, Weber BL, Ashley T, Livingston DM, et al: Stable interaction between the products of the BRCA1 and BRCA2 tumor suppressor genes in mitotic and meiotic cells. Mol Cell. 1998, 2 (3): 317-328. 10.1016/S1097-2765(00)80276-2
CAS
PubMed
Google Scholar
Shen SX, Weaver Z, Xu X, Li C, Weinstein M, Chen L, Guan XY, Ried T, Deng CX: A targeted disruption of the murine Brca1 gene causes gamma-irradiation hypersensitivity and genetic instability. Oncogene. 1998, 17 (24): 3115-3124. 10.1038/sj.onc.1202243
CAS
PubMed
Google Scholar
Xu X, Weaver Z, Linke SP, Li C, Gotay J, Wang XW, Harris CC, Ried T, Deng CX: Centrosome amplification and a defective G2-M cell cycle checkpoint induce genetic instability in BRCA1 exon 11 isoform-deficient cells. Mol Cell. 1999, 3 (3): 389-395. 10.1016/S1097-2765(00)80466-9
CAS
PubMed
Google Scholar
Moynahan ME, Chiu JW, Koller BH, Jasin M: Brca1 controls homology-directed DNA repair. Mol Cell. 1999, 4 (4): 511-518. 10.1016/S1097-2765(00)80202-6
CAS
PubMed
Google Scholar
Moynahan ME, Cui TY, Jasin M: Homology-directed dna repair, mitomycin-c resistance, and chromosome stability is restored with correction of a Brca1 mutation. Cancer Res. 2001, 61 (12): 4842-4850.
CAS
PubMed
Google Scholar
Zhang J, Ma Z, Treszezamsky A, Powell SN: MDC1 interacts with Rad51 and facilitates homologous recombination. Nat Struct Mol Biol. 2005, 12 (10): 902-909. 10.1038/nsmb991
CAS
PubMed
Google Scholar
Longerich S, Orelli BJ, Martin RW, Bishop DK, Storb U: Brca1 in immunoglobulin gene conversion and somatic hypermutation. DNA Repair. 2008, 7 (2): 253-266. 10.1016/j.dnarep.2007.10.002
PubMed Central
CAS
PubMed
Google Scholar
Pathania S, Nguyen J, Hill SJ, Scully R, Adelmant GO, Marto JA, Feunteun J, Livingston DM: BRCA1 is required for postreplication repair after UV-induced DNA damage. Mol Cell. 2011, 44 (2): 235-251. 10.1016/j.molcel.2011.09.002
PubMed Central
CAS
PubMed
Google Scholar
Kato H: Induction of sister chromatid exchanges by UV light and its inhibition by caffeine. Exp Cell Res. 1973, 82 (2): 383-390. 10.1016/0014-4827(73)90356-X
CAS
PubMed
Google Scholar
Eppink B, Tafel AA, Hanada K, van Drunen E, Hickson ID, Essers J, Kanaar R: The response of mammalian cells to UV-light reveals Rad54-dependent and independent pathways of homologous recombination. DNA Repair. 2011, 10 (11): 1095-1105. 10.1016/j.dnarep.2011.08.006
CAS
PubMed
Google Scholar
Saleh-Gohari N, Helleday T: Strand invasion involving short tract gene conversion is specifically suppressed in BRCA2-deficient hamster cells. Oncogene. 2004, 23 (56): 9136-9141. 10.1038/sj.onc.1208178
CAS
PubMed
Google Scholar
Kasparek TR, Humphrey TC: DNA double-strand break repair pathways, chromosomal rearrangements and cancer. Semin Cell Dev Biol. 2011, 22 (8): 886-897. 10.1016/j.semcdb.2011.10.007
CAS
PubMed
Google Scholar
Petermann E, Helleday T: Pathways of mammalian replication fork restart. Nat Rev Mol Cell Biol. 2010, 11 (10): 683-687. 10.1038/nrm2974
CAS
PubMed
Google Scholar
Roy R, Chun J, Powell SN: BRCA1 and BRCA2: different roles in a common pathway of genome protection. Nat Rev Cancer. 2012, 12 (1): 68-78.
CAS
Google Scholar
Liu Y, West SC: Distinct functions of BRCA1 and BRCA2 in double-strand break repair. Breast cancer research: BCR. 2002, 4 (1): 9-13. 10.1186/bcr417
PubMed Central
CAS
PubMed
Google Scholar
Schild D, Wiese C: Overexpression of RAD51 suppresses recombination defects: a possible mechanism to reverse genomic instability. Nucleic Acids Res. 2010, 38 (4): 1061-1070. 10.1093/nar/gkp1063
PubMed Central
CAS
PubMed
Google Scholar
Feng Z, Scott SP, Bussen W, Sharma GG, Guo G, Pandita TK, Powell SN: Rad52 inactivation is synthetically lethal with BRCA2 deficiency. Proc Natl Acad Sci U S A. 2011, 108 (2): 686-691. 10.1073/pnas.1010959107
PubMed Central
CAS
PubMed
Google Scholar
Martin RW, Orelli BJ, Yamazoe M, Minn AJ, Takeda S, Bishop DK: RAD51 up-regulation bypasses BRCA1 function and is a common feature of BRCA1-deficient breast tumors. Cancer Res. 2007, 67 (20): 9658-9665. 10.1158/0008-5472.CAN-07-0290
CAS
PubMed
Google Scholar
Yun MH, Hiom K: CtIP-BRCA1 modulates the choice of DNA double-strand-break repair pathway throughout the cell cycle. Nature. 2009, 459 (7245): 460-463. 10.1038/nature07955
PubMed Central
CAS
PubMed
Google Scholar
Yu X, Chen J: DNA damage-induced cell cycle checkpoint control requires CtIP, a phosphorylation-dependent binding partner of BRCA1 C-terminal domains. Mol Cell Biol. 2004, 24 (21): 9478-9486. 10.1128/MCB.24.21.9478-9486.2004
PubMed Central
CAS
PubMed
Google Scholar
Greenberg RA, Sobhian B, Pathania S, Cantor SB, Nakatani Y, Livingston DM: Multifactorial contributions to an acute DNA damage response by BRCA1/BARD1-containing complexes. Genes Dev. 2006, 20 (1): 34-46. 10.1101/gad.1381306
PubMed Central
CAS
PubMed
Google Scholar
Michel B, Boubakri H, Baharoglu Z, LeMasson M, Lestini R: Recombination proteins and rescue of arrested replication forks. DNA Repair. 2007, 6 (7): 967-980. 10.1016/j.dnarep.2007.02.016
CAS
PubMed
Google Scholar
Byun TS, Pacek M, Yee MC, Walter JC, Cimprich KA: Functional uncoupling of MCM helicase and DNA polymerase activities activates the ATR-dependent checkpoint. Genes Dev. 2005, 19 (9): 1040-1052. 10.1101/gad.1301205
PubMed Central
CAS
PubMed
Google Scholar
Cortez D: Unwind and slow down: checkpoint activation by helicase and polymerase uncoupling. Genes Dev. 2005, 19 (9): 1007-1012. 10.1101/gad.1316905
PubMed Central
CAS
PubMed
Google Scholar
Bunting SF, Callen E, Wong N, Chen HT, Polato F, Gunn A, Bothmer A, Feldhahn N, Fernandez-Capetillo O, Cao L, et al: 53BP1 inhibits homologous recombination in Brca1-deficient cells by blocking resection of DNA breaks. Cell. 2010, 141 (2): 243-254. 10.1016/j.cell.2010.03.012
PubMed Central
CAS
PubMed
Google Scholar
Cao L, Xu X, Bunting SF, Liu J, Wang RH, Cao LL, Wu JJ, Peng TN, Chen J, Nussenzweig A, et al: A selective requirement for 53BP1 in the biological response to genomic instability induced by Brca1 deficiency. Mol Cell. 2009, 35 (4): 534-541. 10.1016/j.molcel.2009.06.037
PubMed Central
CAS
PubMed
Google Scholar
Bouwman P, Aly A, Escandell JM, Pieterse M, Bartkova J, van der Gulden H, Hiddingh S, Thanasoula M, Kulkarni A, Yang Q, et al: 53BP1 loss rescues BRCA1 deficiency and is associated with triple-negative and BRCA-mutated breast cancers. Nat Struct Mol Biol. 2010, 17 (6): 688-695. 10.1038/nsmb.1831
PubMed Central
CAS
PubMed
Google Scholar
Hu Y, Scully R, Sobhian B, Xie A, Shestakova E, Livingston DM: RAP80-directed tuning of BRCA1 homologous recombination function at ionizing radiation-induced nuclear foci. Genes Dev. 2011, 25 (7): 685-700. 10.1101/gad.2011011
PubMed Central
CAS
PubMed
Google Scholar
Chapman JR, Sossick AJ, Boulton SJ, Jackson SP: BRCA1-associated exclusion of 53BP1 from DNA damage sites underlies temporal control of DNA repair. J Cell Sci. 2012, 125 (Pt 15): 3529-3534.
PubMed Central
CAS
PubMed
Google Scholar
Hashizume R, Fukuda M, Maeda I, Nishikawa H, Oyake D, Yabuki Y, Ogata H, Ohta T: The RING heterodimer BRCA1-BARD1 is a ubiquitin ligase inactivated by a breast cancer-derived mutation. J Biol Chem. 2001, 276 (18): 14537-14540. 10.1074/jbc.C000881200
CAS
PubMed
Google Scholar
Brzovic PS, Keeffe JR, Nishikawa H, Miyamoto K, Fox D 3rd, Fukuda M, Ohta T, Klevit R: Binding and recognition in the assembly of an active BRCA1/BARD1 ubiquitin-ligase complex. Proc Natl Acad Sci U S A. 2003, 100 (10): 5646-5651. 10.1073/pnas.0836054100
PubMed Central
CAS
PubMed
Google Scholar
Ruffner H, Joazeiro CA, Hemmati D, Hunter T, Verma IM: Cancer-predisposing mutations within the RING domain of BRCA1: loss of ubiquitin protein ligase activity and protection from radiation hypersensitivity. Proc Natl Acad Sci U S A. 2001, 98 (9): 5134-5139. 10.1073/pnas.081068398
PubMed Central
CAS
PubMed
Google Scholar
Couch FJ, Weber BL: Mutations and polymorphisms in the familial early-onset breast cancer (BRCA1) gene, Breast Cancer Information Core. Hum Mutat. 1996, 8 (1): 8-18. 10.1002/humu.1380080102
CAS
PubMed
Google Scholar
Shattuck-Eidens D, McClure M, Simard J, Labrie F, Narod S, Couch F, Hoskins K, Weber B, Castilla L, Erdos M, et al: A collaborative survey of 80 mutations in the BRCA1 breast and ovarian cancer susceptibility gene. Implications for presymptomatic testing and screening. JAMA: the journal of the American Medical Association. 1995, 273 (7): 535-541.
CAS
PubMed
Google Scholar
Ransburgh DJ, Chiba N, Ishioka C, Toland AE, Parvin JD: Identification of breast tumor mutations in BRCA1 that abolish its function in homologous DNA recombination. Cancer Res. 2010, 70 (3): 988-995. 10.1158/0008-5472.CAN-09-2850
PubMed Central
CAS
PubMed
Google Scholar
Reid LJ, Shakya R, Modi AP, Lokshin M, Cheng JT, Jasin M, Baer R, Ludwig T: E3 ligase activity of BRCA1 is not essential for mammalian cell viability or homology-directed repair of double-strand DNA breaks. Proc Natl Acad Sci U S A. 2008, 105 (52): 20876-20881. 10.1073/pnas.0811203106
PubMed Central
CAS
PubMed
Google Scholar
Pierce AJ, Hu P, Han M, Ellis N, Jasin M: Ku DNA end-binding protein modulates homologous repair of double-strand breaks in mammalian cells. Genes Dev. 2001, 15 (24): 3237-3242. 10.1101/gad.946401
PubMed Central
CAS
PubMed
Google Scholar
Zhuang J, Zhang J, Willers H, Wang H, Chung JH, van Gent DC, Hallahan DE, Powell SN, Xia F: Checkpoint kinase 2-mediated phosphorylation of BRCA1 regulates the fidelity of nonhomologous end-joining. Cancer Res. 2006, 66 (3): 1401-1408. 10.1158/0008-5472.CAN-05-3278
CAS
PubMed
Google Scholar
Wang HC, Chou WC, Shieh SY, Shen CY: Ataxia telangiectasia mutated and checkpoint kinase 2 regulate BRCA1 to promote the fidelity of DNA end-joining. Cancer Res. 2006, 66 (3): 1391-1400. 10.1158/0008-5472.CAN-05-3270
CAS
PubMed
Google Scholar
Zhang J, Willers H, Feng Z, Ghosh JC, Kim S, Weaver DT, Chung JH, Powell SN, Xia F: Chk2 phosphorylation of BRCA1 regulates DNA double-strand break repair. Mol Cell Biol. 2004, 24 (2): 708-718. 10.1128/MCB.24.2.708-718.2004
PubMed Central
CAS
PubMed
Google Scholar
Thompson EG, Fares H, Dixon K: BRCA1 requirement for the fidelity of plasmid DNA double-strand break repair in cultured breast epithelial cells. Environ Mol Mutagen. 2012, 53 (1): 32-43. 10.1002/em.21674
CAS
PubMed
Google Scholar
Turner BC, Ottey M, Zimonjic DB, Potoczek M, Hauck WW, Pequignot E, Keck-Waggoner CL, Sevignani C, Aldaz CM, McCue PA, et al: The fragile histidine triad/common chromosome fragile site 3B locus and repair-deficient cancers. Cancer Res. 2002, 62 (14): 4054-4060.
CAS
PubMed
Google Scholar
Bunting SF, Callen E, Kozak ML, Kim JM, Wong N, Lopez-Contreras AJ, Ludwig T, Baer R, Faryabi RB, Malhowski A, et al: BRCA1 functions independently of homologous recombination in DNA interstrand crosslink repair. Mol Cell. 2012, 46 (2): 125-135. 10.1016/j.molcel.2012.02.015
PubMed Central
CAS
PubMed
Google Scholar
Kastan MB, Bartek J: Cell-cycle checkpoints and cancer. Nature. 2004, 432 (7015): 316-323. 10.1038/nature03097
CAS
PubMed
Google Scholar
Cressman VL, Backlund DC, Avrutskaya AV, Leadon SA, Godfrey V, Koller BH: Growth retardation, DNA repair defects, and lack of spermatogenesis in BRCA1-deficient mice. Mol Cell Biol. 1999, 19 (10): 7061-7075.
PubMed Central
CAS
PubMed
Google Scholar
Xu X, Qiao W, Linke SP, Cao L, Li WM, Furth PA, Harris CC, Deng CX: Genetic interactions between tumor suppressors Brca1 and p53 in apoptosis, cell cycle and tumorigenesis. Nat Genet. 2001, 28 (3): 266-271. 10.1038/90108
CAS
PubMed
Google Scholar
Ramus SJ, Bobrow LG, Pharoah PD, Finnigan DS, Fishman A, Altaras M, Harrington PA, Gayther SA, Ponder BA, Friedman LS: Increased frequency of TP53 mutations in BRCA1 and BRCA2 ovarian tumours. Genes Chromosomes Cancer. 1999, 25 (2): 91-96. 10.1002/(SICI)1098-2264(199906)25:2<91::AID-GCC3>3.0.CO;2-5
CAS
PubMed
Google Scholar
Liu X, Holstege H, van der Gulden H, Treur-Mulder M, Zevenhoven J, Velds A, Kerkhoven RM, van Vliet MH, Wessels LF, Peterse JL, et al: Somatic loss of BRCA1 and p53 in mice induces mammary tumors with features of human BRCA1-mutated basal-like breast cancer. Proc Natl Acad Sci U S A. 2007, 104 (29): 12111-12116. 10.1073/pnas.0702969104
PubMed Central
CAS
PubMed
Google Scholar
Hakem R, de la Pompa JL, Elia A, Potter J, Mak TW: Partial rescue of Brca1 (5–6) early embryonic lethality by p53 or p21 null mutation. Nat Genet. 1997, 16 (3): 298-302. 10.1038/ng0797-298
CAS
PubMed
Google Scholar
Holstege H, Joosse SA, van Oostrom CT, Nederlof PM, de Vries A, Jonkers J: High incidence of protein-truncating TP53 mutations in BRCA1-related breast cancer. Cancer Res. 2009, 69 (8): 3625-3633. 10.1158/0008-5472.CAN-08-3426
CAS
PubMed
Google Scholar
Cao L, Kim S, Xiao C, Wang RH, Coumoul X, Wang X, Li WM, Xu XL, De Soto JA, Takai H, et al: ATM-Chk2-p53 activation prevents tumorigenesis at an expense of organ homeostasis upon Brca1 deficiency. EMBO J. 2006, 25 (10): 2167-2177. 10.1038/sj.emboj.7601115
PubMed Central
CAS
PubMed
Google Scholar
Tommiska J, Bartkova J, Heinonen M, Hautala L, Kilpivaara O, Eerola H, Aittomaki K, Hofstetter B, Lukas J, von Smitten K, et al: The DNA damage signalling kinase ATM is aberrantly reduced or lost in BRCA1/BRCA2-deficient and ER/PR/ERBB2-triple-negative breast cancer. Oncogene. 2008, 27 (17): 2501-2506. 10.1038/sj.onc.1210885
CAS
PubMed
Google Scholar
Meijers-Heijboer H, van den Ouweland A, Klijn J, Wasielewski M, de Snoo A, Oldenburg R, Hollestelle A, Houben M, Crepin E, van Veghel-Plandsoen M, et al: Low-penetrance susceptibility to breast cancer due to CHEK2(*)1100delC in noncarriers of BRCA1 or BRCA2 mutations. Nat Genet. 2002, 31 (1): 55-59. 10.1038/ng879
CAS
PubMed
Google Scholar
Lee JS, Collins KM, Brown AL, Lee CH, Chung JH: hCds1-mediated phosphorylation of BRCA1 regulates the DNA damage response. Nature. 2000, 404 (6774): 201-204. 10.1038/35004614
CAS
PubMed
Google Scholar
Kim SS, Cao L, Li C, Xu X, Huber LJ, Chodosh LA, Deng CX: Uterus hyperplasia and increased carcinogen-induced tumorigenesis in mice carrying a targeted mutation of the Chk2 phosphorylation site in Brca1. Mol Cell Biol. 2004, 24 (21): 9498-9507. 10.1128/MCB.24.21.9498-9507.2004
PubMed Central
CAS
PubMed
Google Scholar
Abraham RT: Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev. 2001, 15 (17): 2177-2196. 10.1101/gad.914401
CAS
PubMed
Google Scholar
Chen J: Ataxia telangiectasia-related protein is involved in the phosphorylation of BRCA1 following deoxyribonucleic acid damage. Cancer Res. 2000, 60 (18): 5037-5039.
CAS
PubMed
Google Scholar
Gatei M, Zhou BB, Hobson K, Scott S, Young D, Khanna KK: Ataxia telangiectasia mutated (ATM) kinase and ATM and Rad3 related kinase mediate phosphorylation of Brca1 at distinct and overlapping sites, In vivo assessment using phospho-specific antibodies. J Biol Chem. 2001, 276 (20): 17276-17280. 10.1074/jbc.M011681200
CAS
PubMed
Google Scholar
Tibbetts RS, Cortez D, Brumbaugh KM, Scully R, Livingston D, Elledge SJ, Abraham RT: Functional interactions between BRCA1 and the checkpoint kinase ATR during genotoxic stress. Genes Dev. 2000, 14 (23): 2989-3002. 10.1101/gad.851000
PubMed Central
CAS
PubMed
Google Scholar
Kote-Jarai Z, Williams RD, Cattini N, Copeland M, Giddings I, Wooster R, TePoele RH, Workman P, Gusterson B, Peacock J, et al: Gene expression profiling after radiation-induced DNA damage is strongly predictive of BRCA1 mutation carrier status. Clinical cancer research: an official journal of the American Association for Cancer Research. 2004, 10 (3): 958-963. 10.1158/1078-0432.CCR-1067-3. 10.1158/1078-0432.CCR-1067-3
CAS
Google Scholar
Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, Richardson TB, Santarosa M, Dillon KJ, Hickson I, Knights C, et al: Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature. 2005, 434 (7035): 917-921. 10.1038/nature03445
CAS
PubMed
Google Scholar
Bryant HE, Schultz N, Thomas HD, Parker KM, Flower D, Lopez E, Kyle S, Meuth M, Curtin NJ, Helleday T: Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature. 2005, 434 (7035): 913-917. 10.1038/nature03443
CAS
PubMed
Google Scholar
McCabe N, Lord CJ, Tutt AN, Martin NM, Smith GC, Ashworth A: BRCA2-deficient CAPAN-1 cells are extremely sensitive to the inhibition of Poly (ADP-Ribose) polymerase: an issue of potency. Cancer Biol Ther. 2005, 4 (9): 934-936. 10.4161/cbt.4.9.2141
CAS
PubMed
Google Scholar
Shaheen M, Allen C, Nickoloff JA, Hromas R: Synthetic lethality: exploiting the addiction of cancer to DNA repair. Blood. 2011, 117 (23): 6074-6082. 10.1182/blood-2011-01-313734
CAS
PubMed
Google Scholar
Weil MK, Chen AP: PARP inhibitor treatment in ovarian and breast cancer. Curr Probl Cancer. 2011, 35 (1): 7-50. 10.1016/j.currproblcancer.2010.12.002
PubMed Central
PubMed
Google Scholar
Strom CE, Johansson F, Uhlen M, Szigyarto CA, Erixon K, Helleday T: Poly (ADP-ribose) polymerase (PARP) is not involved in base excision repair but PARP inhibition traps a single-strand intermediate. Nucleic Acids Res. 2011, 39 (8): 3166-3175. 10.1093/nar/gkq1241
PubMed Central
PubMed
Google Scholar
Helleday T, Bryant HE, Schultz N: Poly(ADP-ribose) polymerase (PARP-1) in homologous recombination and as a target for cancer therapy. Cell Cycle. 2005, 4 (9): 1176-1178. 10.4161/cc.4.9.2031
CAS
PubMed
Google Scholar
Schultz N, Lopez E, Saleh-Gohari N, Helleday T: Poly(ADP-ribose) polymerase (PARP-1) has a controlling role in homologous recombination. Nucleic Acids Res. 2003, 31 (17): 4959-4964. 10.1093/nar/gkg703
PubMed Central
CAS
PubMed
Google Scholar
de Murcia JM, Niedergang C, Trucco C, Ricoul M, Dutrillaux B, Mark M, Oliver FJ, Masson M, Dierich A, LeMeur M, et al: Requirement of poly(ADP-ribose) polymerase in recovery from DNA damage in mice and in cells. Proc Natl Acad Sci U S A. 1997, 94 (14): 7303-7307. 10.1073/pnas.94.14.7303
PubMed Central
CAS
PubMed
Google Scholar
Simbulan-Rosenthal CM, Haddad BR, Rosenthal DS, Weaver Z, Coleman A, Luo R, Young HM, Wang ZQ, Ried T, Smulson ME: Chromosomal aberrations in PARP(−/−) mice: genome stabilization in immortalized cells by reintroduction of poly(ADP-ribose) polymerase cDNA. Proc Natl Acad Sci U S A. 1999, 96 (23): 13191-13196. 10.1073/pnas.96.23.13191
PubMed Central
CAS
PubMed
Google Scholar
Bryant HE, Petermann E, Schultz N, Jemth AS, Loseva O, Issaeva N, Johansson F, Fernandez S, McGlynn P, Helleday T: PARP is activated at stalled forks to mediate Mre11-dependent replication restart and recombination. EMBO J. 2009, 28 (17): 2601-2615. 10.1038/emboj.2009.206
PubMed Central
CAS
PubMed
Google Scholar
Guha M: PARP inhibitors stumble in breast cancer. Nat Biotechnol. 2011, 29 (5): 373-374. 10.1038/nbt0511-373
CAS
PubMed
Google Scholar
Sakai W, Swisher EM, Karlan BY, Agarwal MK, Higgins J, Friedman C, Villegas E, Jacquemont C, Farrugia DJ, Couch FJ, et al: Secondary mutations as a mechanism of cisplatin resistance in BRCA2-mutated cancers. Nature. 2008, 451 (7182): 1116-1120. 10.1038/nature06633
PubMed Central
CAS
PubMed
Google Scholar
Dhillon KK, Swisher EM, Taniguchi T: Secondary mutations of BRCA1/2 and drug resistance. Cancer Sci. 2011, 102 (4): 663-669. 10.1111/j.1349-7006.2010.01840.x
PubMed Central
CAS
PubMed
Google Scholar
Rottenberg S, Jaspers JE, Kersbergen A, van der Burg E, Nygren AO, Zander SA, Derksen PW, de Bruin M, Zevenhoven J, Lau A, et al: High sensitivity of BRCA1-deficient mammary tumors to the PARP inhibitor AZD2281 alone and in combination with platinum drugs. Proc Natl Acad Sci U S A. 2008, 105 (44): 17079-17084. 10.1073/pnas.0806092105
PubMed Central
CAS
PubMed
Google Scholar
Issaeva N, Thomas HD, Djureinovic T, Jaspers JE, Stoimenov I, Kyle S, Pedley N, Gottipati P, Zur R, Sleeth K, et al: 6-thioguanine selectively kills BRCA2-defective tumors and overcomes PARP inhibitor resistance. Cancer Res. 2010, 70 (15): 6268-6276. 10.1158/0008-5472.CAN-09-3416
PubMed Central
CAS
PubMed
Google Scholar
De Soto JA, Deng CX: PARP-1 inhibitors: are they the long-sought genetically specific drugs for BRCA1/2-associated breast cancers?. Int J Med Sci. 2006, 3 (4): 117-123.
PubMed Central
CAS
PubMed
Google Scholar
Fong PC, Boss DS, Yap TA, Tutt A, Wu P, Mergui-Roelvink M, Mortimer P, Swaisland H, Lau A, O'Connor MJ, et al: Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Eng J Med. 2009, 361 (2): 123-134. 10.1056/NEJMoa0900212. 10.1056/NEJMoa0900212
CAS
Google Scholar