Farooq A, Zhou MM: Structure and regulation of MAPK phosphatases. Cell Signal. 2004, 16: 769-779. 10.1016/j.cellsig.2003.12.008
Article
CAS
PubMed
Google Scholar
Lang R, Hammer M, Mages J: DUSP meet immunology: dual specificity MAPK phosphatases in control of the inflammatory response. J Immunol. 2006, 177: 7497-7504.
Article
CAS
PubMed
Google Scholar
Liu Y, Shepherd EG, Nelin LD: MAPK phosphatases–regulating the immune response. Nat Rev Immunol. 2007, 7: 202-212. 10.1038/nri2035
Article
CAS
PubMed
Google Scholar
Jeffrey KL, Camps M, Rommel C, Mackay CR: Targeting dual-specificity phosphatases: manipulating MAP kinase signalling and immune responses. Nat Rev Drug Discov. 2007, 6: 391-403. 10.1038/nrd2289
Article
CAS
PubMed
Google Scholar
Bermudez O, Pages G, Gimond C: The dual-specificity MAP kinase phosphatases: critical roles in development and cancer. Am J Physiol Cell Physiol. 2010, 299: C189-C202. 10.1152/ajpcell.00347.2009
Article
CAS
PubMed
Google Scholar
Keyse SM: Dual-specificity MAP kinase phosphatases (MKPs) and cancer. Cancer Metastasis Rev. 2008, 27: 253-261. 10.1007/s10555-008-9123-1
Article
CAS
PubMed
Google Scholar
Haagenson KK, Wu GS: Mitogen activated protein kinase phosphatases and cancer. Cancer Biol Ther. 2010, 9: 337-340. 10.4161/cbt.9.5.11217
Article
PubMed Central
CAS
PubMed
Google Scholar
Kondoh K, Nishida E: Regulation of MAP kinases by MAP kinase phosphatases. Biochim Biophys Acta. 2007, 1773: 1227-1237. 10.1016/j.bbamcr.2006.12.002
Article
CAS
PubMed
Google Scholar
Camps M, Nichols A, Arkinstall S: Dual specificity phosphatases: a gene family for control of MAP kinase function. FASEB J. 2000, 14: 6-16.
CAS
PubMed
Google Scholar
Brondello JM, Brunet A, Pouyssegur J, McKenzie FR: The dual specificity mitogen-activated protein kinase phosphatase-1 and −2 are induced by the p42/p44MAPK cascade. J Biol Chem. 1997, 272: 1368-1376. 10.1074/jbc.272.2.1368
Article
CAS
PubMed
Google Scholar
Ryser S, Massiha A, Piuz I, Schlegel W: Stimulated initiation of mitogen-activated protein kinase phosphatase-1 (MKP-1) gene transcription involves the synergistic action of multiple cis-acting elements in the proximal promoter. Biochem J. 2004, 378: 473-484. 10.1042/BJ20031022
Article
PubMed Central
CAS
PubMed
Google Scholar
Wang J, Ford HR, Grishin AV: NF-κB-mediated expression of MAPK phosphatase-1 is an early step in desensitization to TLR ligands in enterocytes. Mucosal Immunol. 2010, 3: 523-534. 10.1038/mi.2010.35
Article
CAS
PubMed
Google Scholar
Shipp LE, Lee JV, Yu CY, Pufall M, Zhang P, Scott DK, Wang JC: Transcriptional regulation of human dual specificity protein phosphatase 1 (DUSP1) gene by glucocorticoids. PLoS One. 2010, 5: e13754. 10.1371/journal.pone.0013754
Article
PubMed Central
PubMed
Google Scholar
Wang H, Lu Y, Huang W, Papoutsakis ET, Fuhrken P, Eklund EA: HoxA10 activates transcription of the gene encoding mitogen-activated protein kinase phosphatase 2 (Mkp2) in myeloid cells. J Biol Chem. 2007, 282: 16164-16176. 10.1074/jbc.M610556200
Article
CAS
PubMed
Google Scholar
Ekerot M, Stavridis MP, Delavaine L, Mitchell MP, Staples C, Owens DM, Keenan ID, Dickinson RJ, Storey KG, Keyse SM: Negative-feedback regulation of FGF signalling by DUSP6/MKP-3 is driven by ERK1/2 and mediated by Ets factor binding to a conserved site within the DUSP6/MKP-3 gene promoter. Biochem J. 2008, 412: 287-298. 10.1042/BJ20071512
Article
PubMed Central
CAS
PubMed
Google Scholar
Li M, Zhou JY, Ge Y, Matherly LH, Wu GS: The phosphatase MKP1 is a transcriptional target of p53 involved in cell cycle regulation. J Biol Chem. 2003, 278: 41059-41068. 10.1074/jbc.M307149200
Article
CAS
PubMed
Google Scholar
Yin Y, Liu YX, Jin YJ, Hall EJ, Barrett JC: PAC1 phosphatase is a transcription target of p53 in signalling apoptosis and growth suppression. Nature. 2003, 422: 527-531. 10.1038/nature01519
Article
CAS
PubMed
Google Scholar
Shen WH, Wang J, Wu J, Zhurkin VB, Yin Y: Mitogen-activated protein kinase phosphatase 2: a novel transcription target of p53 in apoptosis. Cancer Res. 2006, 66: 6033-6039. 10.1158/0008-5472.CAN-05-3878
Article
CAS
PubMed
Google Scholar
Ueda K, Arakawa H, Nakamura Y: Dual-specificity phosphatase 5 (DUSP5) as a direct transcriptional target of tumor suppressor p53. Oncogene. 2003, 22: 5586-5591. 10.1038/sj.onc.1206845
Article
CAS
PubMed
Google Scholar
Li J, Gorospe M, Hutter D, Barnes J, Keyse SM, Liu Y: Transcriptional induction of MKP-1 in response to stress is associated with histone H3 phosphorylation-acetylation. Mol Cell Biol. 2001, 21: 8213-8224. 10.1128/MCB.21.23.8213-8224.2001
Article
PubMed Central
CAS
PubMed
Google Scholar
Musikacharoen T, Yoshikai Y, Matsuguchi T: Histone acetylation and activation of cAMP-response element-binding protein regulate transcriptional activation of MKP-M in lipopolysaccharide-stimulated macrophages. J Biol Chem. 2003, 278: 9167-9175. 10.1074/jbc.M211829200
Article
CAS
PubMed
Google Scholar
Waha A, Felsberg J, Hartmann W, von dem Knesebeck A, Mikeska T, Joos S, Wolter M, Koch A, Yan PS, Endl E, et al: Epigenetic downregulation of mitogen-activated protein kinase phosphatase MKP-2 relieves its growth suppressive activity in glioma cells. Cancer Res. 2010, 70: 1689-1699. 10.1158/0008-5472.CAN-09-3218
Article
CAS
PubMed
Google Scholar
Li QJ, Chau J, Ebert PJ, Sylvester G, Min H, Liu G, Braich R, Manoharan M, Soutschek J, Skare P, et al: miR-181a is an intrinsic modulator of T cell sensitivity and selection. Cell. 2007, 129: 147-161. 10.1016/j.cell.2007.03.008
Article
CAS
PubMed
Google Scholar
Zhu QY, Liu Q, Chen JX, Lan K, Ge BX: MicroRNA-101 targets MAPK phosphatase-1 to regulate the activation of MAPKs in macrophages. J Immunol. 2010, 185: 7435-7442. 10.4049/jimmunol.1000798
Article
CAS
PubMed
Google Scholar
Zaidi SK, Dowdy CR, van Wijnen AJ, Lian JB, Raza A, Stein JL, Croce CM, Stein GS: Altered Runx1 subnuclear targeting enhances myeloid cell proliferation and blocks differentiation by activating a miR-24/MKP-7/MAPK network. Cancer Res. 2009, 69: 8249-8255. 10.1158/0008-5472.CAN-09-1567
Article
PubMed Central
CAS
PubMed
Google Scholar
Valente AJ, Yoshida T, Gardner JD, Somanna N, Delafontaine P, Chandrasekar B: Interleukin-17A stimulates cardiac fibroblast proliferation and migration via negative regulation of the dual-specificity phosphatase MKP-1/DUSP-1. Cell Signal. 2012, 24: 560-568. 10.1016/j.cellsig.2011.10.010
Article
PubMed Central
CAS
PubMed
Google Scholar
Arimura Y, Yagi J: Comprehensive expression profiles of genes for protein tyrosine phosphatases in immune cells. Sci Signal. 2010, 3: rs1. 10.1126/scisignal.2000966
Article
PubMed
Google Scholar
Tanzola MB, Kersh GJ: The dual specificity phosphatase transcriptome of the murine thymus. Mol Immunol. 2006, 43: 754-762. 10.1016/j.molimm.2005.03.006
Article
CAS
PubMed
Google Scholar
Todd JL, Tanner KG, Denu JM: Extracellular regulated kinases (ERK) 1 and ERK2 are authentic substrates for the dual-specificity protein-tyrosine phosphatase VHR. A novel role in down-regulating the ERK pathway. J Biol Chem. 1999, 274: 13271-13280. 10.1074/jbc.274.19.13271
Article
CAS
PubMed
Google Scholar
Takeshita S, Toda M, Yamagishi H: Excision products of the T cell receptor gene support a progressive rearrangement model of the alpha/delta locus. EMBO J. 1989, 8: 3261-3270.
PubMed Central
CAS
PubMed
Google Scholar
Katagiri C, Masuda K, Urano T, Yamashita K, Araki Y, Kikuchi K, Shima H: Phosphorylation of Ser-446 determines stability of MKP-7. J Biol Chem. 2005, 280: 14716-14722. 10.1074/jbc.M500200200
Article
CAS
PubMed
Google Scholar
Brondello JM, Pouyssegur J, McKenzie FR: Reduced MAP kinase phosphatase-1 degradation after p42/p44MAPK-dependent phosphorylation. Science. 1999, 286: 2514-2517. 10.1126/science.286.5449.2514
Article
CAS
PubMed
Google Scholar
Chen P, Li J, Barnes J, Kokkonen GC, Lee JC, Liu Y: Restraint of proinflammatory cytokine biosynthesis by mitogen-activated protein kinase phosphatase-1 in lipopolysaccharide-stimulated macrophages. J Immunol. 2002, 169: 6408-6416.
Article
CAS
PubMed
Google Scholar
Marchetti S, Gimond C, Chambard JC, Touboul T, Roux D, Pouyssegur J, Pages G: Extracellular signal-regulated kinases phosphorylate mitogen-activated protein kinase phosphatase 3/DUSP6 at serines 159 and 197, two sites critical for its proteasomal degradation. Mol Cell Biol. 2005, 25: 854-864. 10.1128/MCB.25.2.854-864.2005
Article
PubMed Central
CAS
PubMed
Google Scholar
Kucharska A, Rushworth LK, Staples C, Morrice NA, Keyse SM: Regulation of the inducible nuclear dual-specificity phosphatase DUSP5 by ERK MAPK. Cell Signal. 2009, 21: 1794-1805. 10.1016/j.cellsig.2009.07.015
Article
CAS
PubMed
Google Scholar
Liu R, Zheng HQ, Zhou Z, Dong JT, Chen C: KLF5 promotes breast cell survival partially through fibroblast growth factor-binding protein 1-pERK-mediated dual specificity MKP-1 protein phosphorylation and stabilization. J Biol Chem. 2009, 284: 16791-16798. 10.1074/jbc.M808919200
Article
PubMed Central
CAS
PubMed
Google Scholar
Marti F, Krause A, Post NH, Lyddane C, Dupont B, Sadelain M, King PD: Negative-feedback regulation of CD28 costimulation by a novel mitogen-activated protein kinase phosphatase, MKP6. J Immunol. 2001, 166: 197-206.
Article
CAS
PubMed
Google Scholar
Jeong DG, Jung SK, Yoon TS, Woo EJ, Kim JH, Park BC, Ryu SE, Kim SJ: Crystal structure of the catalytic domain of human MKP-2 reveals a 24-mer assembly. Proteins. 2009, 76: 763-767. 10.1002/prot.22423
Article
CAS
PubMed
Google Scholar
Jeong DG, Cho YH, Yoon TS, Kim JH, Ryu SE, Kim SJ: Crystal structure of the catalytic domain of human DUSP5, a dual specificity MAP kinase protein phosphatase. Proteins. 2007, 66: 253-258.
Article
CAS
PubMed
Google Scholar
Farooq A, Plotnikova O, Chaturvedi G, Yan S, Zeng L, Zhang Q, Zhou MM: Solution structure of the MAPK phosphatase PAC-1 catalytic domain. Insights into substrate-induced enzymatic activation of MKP. Structure. 2003, 11: 155-164. 10.1016/S0969-2126(02)00943-7
Article
CAS
PubMed
Google Scholar
Stewart AE, Dowd S, Keyse SM, McDonald NQ: Crystal structure of the MAPK phosphatase Pyst1 catalytic domain and implications for regulated activation. Nat Struct Biol. 1999, 6: 174-181. 10.1038/5861
Article
CAS
PubMed
Google Scholar
Zhang Q, Muller M, Chen CH, Zeng L, Farooq A, Zhou MM: New insights into the catalytic activation of the MAPK phosphatase PAC-1 induced by its substrate MAPK ERK2 binding. J Mol Biol. 2005, 354: 777-788. 10.1016/j.jmb.2005.10.006
Article
CAS
PubMed
Google Scholar
Fjeld CC, Rice AE, Kim Y, Gee KR, Denu JM: Mechanistic basis for catalytic activation of mitogen-activated protein kinase phosphatase 3 by extracellular signal-regulated kinase. J Biol Chem. 2000, 275: 6749-6757. 10.1074/jbc.275.10.6749
Article
CAS
PubMed
Google Scholar
Nichols A, Camps M, Gillieron C, Chabert C, Brunet A, Wilsbacher J, Cobb M, Pouyssegur J, Shaw JP, Arkinstall S: Substrate recognition domains within extracellular signal-regulated kinase mediate binding and catalytic activation of mitogen-activated protein kinase phosphatase-3. J Biol Chem. 2000, 275: 24613-24621. 10.1074/jbc.M001515200
Article
CAS
PubMed
Google Scholar
Camps M, Nichols A, Gillieron C, Antonsson B, Muda M, Chabert C, Boschert U, Arkinstall S: Catalytic activation of the phosphatase MKP-3 by ERK2 mitogen-activated protein kinase. Science. 1998, 280: 1262-1265. 10.1126/science.280.5367.1262
Article
CAS
PubMed
Google Scholar
Chen P, Hutter D, Yang X, Gorospe M, Davis RJ, Liu Y: Discordance between the binding affinity of mitogen-activated protein kinase subfamily members for MAP kinase phosphatase-2 and their ability to activate the phosphatase catalytically. J Biol Chem. 2001, 276: 29440-29449. 10.1074/jbc.M103463200
Article
CAS
PubMed
Google Scholar
Cao W, Bao C, Padalko E, Lowenstein CJ: Acetylation of mitogen-activated protein kinase phosphatase-1 inhibits Toll-like receptor signaling. J Exp Med. 2008, 205: 1491-1503. 10.1084/jem.20071728
Article
PubMed Central
CAS
PubMed
Google Scholar
Kim KH, An DR, Song J, Yoon JY, Kim HS, Yoon HJ, Im HN, Kim J, Kim DJ, Lee SJ, et al: Mycobacterium tuberculosis Eis protein initiates suppression of host immune responses by acetylation of DUSP16/MKP-7. Proc Natl Acad Sci USA. 2012, 109: 7729-7734. 10.1073/pnas.1120251109
Article
PubMed Central
CAS
PubMed
Google Scholar
Bermudez O, Marchetti S, Pages G, Gimond C: Post-translational regulation of the ERK phosphatase DUSP6/MKP3 by the mTOR pathway. Oncogene. 2008, 27: 3685-3691. 10.1038/sj.onc.1211040
Article
CAS
PubMed
Google Scholar
Mandl M, Slack DN, Keyse SM: Specific inactivation and nuclear anchoring of extracellular signal-regulated kinase 2 by the inducible dual-specificity protein phosphatase DUSP5. Mol Cell Biol. 2005, 25: 1830-1845. 10.1128/MCB.25.5.1830-1845.2005
Article
PubMed Central
CAS
PubMed
Google Scholar
Masuda K, Shima H, Watanabe M, Kikuchi K: MKP-7, a novel mitogen-activated protein kinase phosphatase, functions as a shuttle protein. J Biol Chem. 2001, 276: 39002-39011. 10.1074/jbc.M104600200
Article
CAS
PubMed
Google Scholar
Karlsson M, Mathers J, Dickinson RJ, Mandl M, Keyse SM: Both nuclear-cytoplasmic shuttling of the dual specificity phosphatase MKP-3 and its ability to anchor MAP kinase in the cytoplasm are mediated by a conserved nuclear export signal. J Biol Chem. 2004, 279: 41882-41891. 10.1074/jbc.M406720200
Article
CAS
PubMed
Google Scholar
Bettini ML, Kersh GJ: MAP kinase phosphatase activity sets the threshold for thymocyte positive selection. Proc Natl Acad Sci USA. 2007, 104: 16257-16262. 10.1073/pnas.0705321104
Article
PubMed Central
CAS
PubMed
Google Scholar
Tanoue T, Adachi M, Moriguchi T, Nishida E: A conserved docking motif in MAP kinases common to substrates, activators and regulators. Nat Cell Biol. 2000, 2: 110-116. 10.1038/35000065
Article
CAS
PubMed
Google Scholar
Zhao Q, Wang X, Nelin LD, Yao Y, Matta R, Manson ME, Baliga RS, Meng X, Smith CV, Bauer JA, et al: MAP kinase phosphatase 1 controls innate immune responses and suppresses endotoxic shock. J Exp Med. 2006, 203: 131-140. 10.1084/jem.20051794
Article
PubMed Central
CAS
PubMed
Google Scholar
Jeffrey KL, Brummer T, Rolph MS, Liu SM, Callejas NA, Grumont RJ, Gillieron C, Mackay F, Grey S, Camps M, et al: Positive regulation of immune cell function and inflammatory responses by phosphatase PAC-1. Nat Immunol. 2006, 7: 274-283. 10.1038/ni1310
Article
CAS
PubMed
Google Scholar
Ramesh S, Qi XJ, Wildey GM, Robinson J, Molkentin J, Letterio J, Howe PH: TGF β-mediated BIM expression and apoptosis are regulated through SMAD3-dependent expression of the MAPK phosphatase MKP2. EMBO Rep. 2008, 9: 990-997. 10.1038/embor.2008.158
Article
PubMed Central
CAS
PubMed
Google Scholar
Al-Mutairi MS, Cadalbert LC, McGachy HA, Shweash M, Schroeder J, Kurnik M, Sloss CM, Bryant CE, Alexander J, Plevin R: MAP kinase phosphatase-2 plays a critical role in response to infection by Leishmania mexicana. PLoS Pathog. 2010, 6: e1001192. 10.1371/journal.ppat.1001192
Article
PubMed Central
PubMed
Google Scholar
Huang CY, Lin YC, Hsiao WY, Liao FH, Huang PY, Tan TH: DUSP4 deficiency enhances CD25 expression and CD4+ T-cell proliferation without impeding T-cell development. Eur J Immunol. 2011, 42: 476-488.
Article
PubMed Central
PubMed
Google Scholar
Li C, Scott DA, Hatch E, Tian X, Mansour SL: Dusp6 (Mkp3) is a negative feedback regulator of FGF-stimulated ERK signaling during mouse development. Development. 2007, 134: 167-176. 10.1242/dev.02701
Article
PubMed Central
CAS
PubMed
Google Scholar
Maillet M, Purcell NH, Sargent MA, York AJ, Bueno OF, Molkentin JD: DUSP6 (MKP3) null mice show enhanced ERK1/2 phosphorylation at baseline and increased myocyte proliferation in the heart affecting disease susceptibility. J Biol Chem. 2008, 283: 31246-31255. 10.1074/jbc.M806085200
Article
PubMed Central
CAS
PubMed
Google Scholar
Christie GR, Williams DJ, Macisaac F, Dickinson RJ, Rosewell I, Keyse SM: The dual-specificity protein phosphatase DUSP9/MKP-4 is essential for placental function but is not required for normal embryonic development. Mol Cell Biol. 2005, 25: 8323-8333. 10.1128/MCB.25.18.8323-8333.2005
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhang Y, Blattman JN, Kennedy NJ, Duong J, Nguyen T, Wang Y, Davis RJ, Greenberg PD, Flavell RA, Dong C: Regulation of innate and adaptive immune responses by MAP kinase phosphatase 5. Nature. 2004, 430: 793-797. 10.1038/nature02764
Article
CAS
PubMed
Google Scholar
Salojin K, Oravecz T: Regulation of innate immunity by MAPK dual-specificity phosphatases: knockout models reveal new tricks of old genes. J Leukoc Biol. 2007, 81: 860-869. 10.1189/jlb.1006639
Article
CAS
PubMed
Google Scholar
Yu H, Sun Y, Haycraft C, Palanisamy V, Kirkwood KL: MKP-1 regulates cytokine mRNA stability through selectively modulation subcellular translocation of AUF1. Cytokine. 2011, 56: 245-255. 10.1016/j.cyto.2011.06.006
Article
PubMed Central
CAS
PubMed
Google Scholar
Abraham SM, Lawrence T, Kleiman A, Warden P, Medghalchi M, Tuckermann J, Saklatvala J, Clark AR: Antiinflammatory effects of dexamethasone are partly dependent on induction of dual specificity phosphatase 1. J Exp Med. 2006, 203: 1883-1889. 10.1084/jem.20060336
Article
PubMed Central
CAS
PubMed
Google Scholar
Maneechotesuwan K, Yao X, Ito K, Jazrawi E, Usmani OS, Adcock IM, Barnes PJ: Suppression of GATA-3 nuclear import and phosphorylation: a novel mechanism of corticosteroid action in allergic disease. PLoS Med. 2009, 6: e1000076. 10.1371/journal.pmed.1000076
Article
PubMed Central
PubMed
Google Scholar
Maier JV, Brema S, Tuckermann J, Herzer U, Klein M, Stassen M, Moorthy A, Cato AC: Dual specificity phosphatase 1 knockout mice show enhanced susceptibility to anaphylaxis but are sensitive to glucocorticoids. Mol Endocrinol. 2007, 21: 2663-2671. 10.1210/me.2007-0067
Article
CAS
PubMed
Google Scholar
Lasa M, Abraham SM, Boucheron C, Saklatvala J, Clark AR: Dexamethasone causes sustained expression of mitogen-activated protein kinase (MAPK) phosphatase 1 and phosphatase-mediated inhibition of MAPK p38. Mol Cell Biol. 2002, 22: 7802-7811. 10.1128/MCB.22.22.7802-7811.2002
Article
PubMed Central
CAS
PubMed
Google Scholar
McCoy CE, Carpenter S, Palsson-McDermott EM, Gearing LJ, O’Neill LA: Glucocorticoids inhibit IRF3 phosphorylation in response to Toll-like receptor-3 and −4 by targeting TBK1 activation. J Biol Chem. 2008, 283: 14277-14285. 10.1074/jbc.M709731200
Article
CAS
PubMed
Google Scholar
Cornell TT, Rodenhouse P, Cai Q, Sun L, Shanley TP: Mitogen-activated protein kinase phosphatase 2 regulates the inflammatory response in sepsis. Infect Immun. 2010, 78: 2868-2876. 10.1128/IAI.00018-10
Article
PubMed Central
CAS
PubMed
Google Scholar
Wang X, Meng X, Kuhlman JR, Nelin LD, Nicol KK, English BK, Liu Y: Knockout of Mkp-1 enhances the host inflammatory responses to gram-positive bacteria. J Immunol. 2007, 178: 5312-5320.
Article
CAS
PubMed
Google Scholar
Frazier WJ, Wang X, Wancket LM, Li XA, Meng X, Nelin LD, Cato AC, Liu Y: Increased inflammation, impaired bacterial clearance, and metabolic disruption after gram-negative sepsis in Mkp-1-deficient mice. J Immunol. 2009, 183: 7411-7419. 10.4049/jimmunol.0804343
Article
PubMed Central
CAS
PubMed
Google Scholar
Rodriguez N, Dietrich H, Mossbrugger I, Weintz G, Scheller J, Hammer M, Quintanilla-Martinez L, Rose-John S, Miethke T, Lang R: Increased inflammation and impaired resistance to Chlamydophila pneumoniae infection in Dusp1−/− mice: critical role of IL-6. J Leukoc Biol. 2010, 88: 579-587. 10.1189/jlb.0210083
Article
CAS
PubMed
Google Scholar
Hammer M, Echtenachter B, Weighardt H, Jozefowski K, Rose-John S, Mannel DN, Holzmann B, Lang R: Increased inflammation and lethality of Dusp1−/− mice in polymicrobial peritonitis models. Immunology. 2010, 131: 395-404. 10.1111/j.1365-2567.2010.03313.x
Article
PubMed Central
CAS
PubMed
Google Scholar
Qian F, Deng J, Cheng N, Welch EJ, Zhang Y, Malik AB, Flavell RA, Dong C, Ye RD: A non-redundant role for MKP5 in limiting ROS production and preventing LPS-induced vascular injury. EMBO J. 2009, 28: 2896-2907. 10.1038/emboj.2009.234
Article
PubMed Central
CAS
PubMed
Google Scholar
Qian F, Deng J, Gantner BN, Flavell RA, Dong C, Christman JW, Ye RD: Map kinase phosphatase 5 protects against sepsis-induced acute lung injury. Am J Physiol Lung Cell Mol Physiol. 2012, 302: L866-L874. 10.1152/ajplung.00277.2011
Article
PubMed Central
CAS
PubMed
Google Scholar
Kovanen PE, Bernard J, Al-Shami A, Liu C, Bollenbacher-Reilley J, Young L, Pise-Masison C, Spolski R, Leonard WJ: T-cell development and function are modulated by dual specificity phosphatase DUSP5. J Biol Chem. 2008, 283: 17362-17369. 10.1074/jbc.M709887200
Article
PubMed Central
CAS
PubMed
Google Scholar
Shen YH, Godlewski J, Zhu J, Sathyanarayana P, Leaner V, Birrer MJ, Rana A, Tzivion G: Cross-talk between JNK/SAPK and ERK/MAPK pathways: sustained activation of JNK blocks ERK activation by mitogenic factors. J Biol Chem. 2003, 278: 26715-26721. 10.1074/jbc.M303264200
Article
CAS
PubMed
Google Scholar
Finch AR, Caunt CJ, Perrett RM, Tsaneva-Atanasova K, McArdle CA: Dual specificity phosphatases 10 and 16 are positive regulators of EGF-stimulated ERK activity: indirect regulation of ERK signals by JNK/p38 selective MAPK phosphatases. Cell Signal. 2012, 24: 1002-1011. 10.1016/j.cellsig.2011.12.021
Article
PubMed Central
CAS
PubMed
Google Scholar
Sekine Y, Tsuji S, Ikeda O, Sato N, Aoki N, Aoyama K, Sugiyama K, Matsuda T: Regulation of STAT3-mediated signaling by LMW-DSP2. Oncogene. 2006, 25: 5801-5806. 10.1038/sj.onc.1209578
Article
CAS
PubMed
Google Scholar
Kinney CM, Chandrasekharan UM, Yang L, Shen J, Kinter M, McDermott MS, DiCorleto PE: Histone H3 as a novel substrate for MAP kinase phosphatase-1. Am J Physiol Cell Physiol. 2009, 296: C242-C249.
Article
PubMed Central
CAS
PubMed
Google Scholar
Li JP, Fu YN, Chen YR, Tan TH: JNK pathway-associated phosphatase dephosphorylates focal adhesion kinase and suppresses cell migration. J Biol Chem. 2010, 285: 5472-5478. 10.1074/jbc.M109.060186
Article
PubMed Central
CAS
PubMed
Google Scholar
Venema RC, Venema VJ, Eaton DC, Marrero MB: Angiotensin II-induced tyrosine phosphorylation of signal transducers and activators of transcription 1 is regulated by Janus-activated kinase 2 and Fyn kinases and mitogen-activated protein kinase phosphatase 1. J Biol Chem. 1998, 273: 30795-30800. 10.1074/jbc.273.46.30795
Article
CAS
PubMed
Google Scholar
Liu D, Scafidi J, Prada AE, Zahedi K, Davis AE: Nuclear phosphatases and the proteasome in suppression of STAT1 activity in hepatocytes. Biochem Biophys Res Commun. 2002, 299: 574-580. 10.1016/S0006-291X(02)02694-3
Article
CAS
PubMed
Google Scholar
Ichikawa T, Zhang J, Chen K, Liu Y, Schopfer FJ, Baker PR, Freeman BA, Chen YE, Cui T: Nitroalkenes suppress lipopolysaccharide-induced signal transducer and activator of transcription signaling in macrophages: a critical role of mitogen-activated protein kinase phosphatase 1. Endocrinology. 2008, 149: 4086-4094. 10.1210/en.2007-1639
Article
PubMed Central
CAS
PubMed
Google Scholar
Wang JY, Lin CH, Yang CH, Tan TH, Chen YR: Biochemical and biological characterization of a neuroendocrine-associated phosphatase. J Neurochem. 2006, 98: 89-101. 10.1111/j.1471-4159.2006.03852.x
Article
CAS
PubMed
Google Scholar
Slack DN, Seternes OM, Gabrielsen M, Keyse SM: Distinct binding determinants for ERK2/p38alpha and JNK map kinases mediate catalytic activation and substrate selectivity of map kinase phosphatase-1. J Biol Chem. 2001, 276: 16491-16500. 10.1074/jbc.M010966200
Article
CAS
PubMed
Google Scholar
Wang X, Zhao Q, Matta R, Meng X, Liu X, Liu CG, Nelin LD, Liu Y: Inducible nitric-oxide synthase expression is regulated by mitogen-activated protein kinase phosphatase-1. J Biol Chem. 2009, 284: 27123-27134. 10.1074/jbc.M109.051235
Article
PubMed Central
CAS
PubMed
Google Scholar
Bakan A, Lazo JS, Wipf P, Brummond KM, Bahar I: Toward a molecular understanding of the interaction of dual specificity phosphatases with substrates: insights from structure-based modeling and high throughput screening. Curr Med Chem. 2008, 15: 2536-2544. 10.2174/092986708785909003
Article
PubMed Central
CAS
PubMed
Google Scholar
Nunes-Xavier C, Roma-Mateo C, Rios P, Tarrega C, Cejudo-Marin R, Tabernero L, Pulido R: Dual-specificity MAP kinase phosphatases as targets of cancer treatment. Anticancer Agents Med Chem. 2011, 11: 109-132.
Article
CAS
PubMed
Google Scholar
Boutros T, Chevet E, Metrakos P: Mitogen-activated protein (MAP) kinase/MAP kinase phosphatase regulation: roles in cell growth, death, and cancer. Pharmacol Rev. 2008, 60: 261-310. 10.1124/pr.107.00106
Article
CAS
PubMed
Google Scholar
Chen YR, Shrivastava A, Tan TH: Down-regulation of the c-Jun N-terminal kinase (JNK) phosphatase M3/6 and activation of JNK by hydrogen peroxide and pyrrolidine dithiocarbamate. Oncogene. 2001, 20: 367-374. 10.1038/sj.onc.1204105
Article
CAS
PubMed
Google Scholar
Chen AJ, Zhou G, Juan T, Colicos SM, Cannon JP, Cabriera-Hansen M, Meyer CF, Jurecic R, Copeland NG, Gilbert DJ, et al: The dual specificity JKAP specifically activates the c-Jun N-terminal kinase pathway. J Biol Chem. 2002, 277: 36592-36601. 10.1074/jbc.M200453200
Article
CAS
PubMed
Google Scholar