Wu MY, Hill CS: Tgf-β superfamily signaling in embryonic development and homeostasis. Dev Cell. 2009, 16: 329-343. 10.1016/j.devcel.2009.02.012
Article
CAS
PubMed
Google Scholar
Massagué J, Blain SW, Lo RS: TGFβ signaling in growth control, cancer, and heritable disorders. Cell. 2000, 103: 295-309. 10.1016/S0092-8674(00)00121-5
Article
PubMed
Google Scholar
Raftery LA, Sutherland DJ: TGF-β family signal transduction in Drosophila development: from Mad to Smads. Dev Biol. 1999, 210: 251-268. 10.1006/dbio.1999.9282
Article
CAS
PubMed
Google Scholar
Liu F, Hata A, Baker J, Doody J, Cárcamo J, Harland R, Massagué J: A human Mad protein acting as a BMP-regulated transcriptional activator. Nature. 1996, 381: 620-623. 10.1038/381620a0
Article
CAS
PubMed
Google Scholar
Baker J, Harland RM: A novel mesoderm inducer, mMadr-2, functions in the activin signal transduction pathway. Genes Dev. 1996, 10: 1880-1889. 10.1101/gad.10.15.1880
Article
CAS
PubMed
Google Scholar
Macias-Silva M, Abdollah S, Hoodless PA, Pirone R, Attisano L, Wrana JL: MADR2 is a substrate of the TGFß receptor and phosphorylation is required for nuclear accumulation and signaling. Cell. 1996, 87: 1215-1224. 10.1016/S0092-8674(00)81817-6
Article
CAS
PubMed
Google Scholar
Souchelnytskyi S, Tamaki K, Engstrom U, Wernstedt C, ten Dijke P, Heldin CH: Phosphorylation of Ser465 and Ser467 in the C terminus of Smad2 mediates interaction with Smad4 and is required for transforming growth factor-β signaling. J Biol Chem. 1997, 272: 28107-28115. 10.1074/jbc.272.44.28107
Article
CAS
PubMed
Google Scholar
Terry LJ, Shows EB, Wente SR: Crossing the nuclear envelope: hierarchical regulation of nucleocytoplasmic transport. Science. 2007, 318: 1412-1416. 10.1126/science.1142204
Article
CAS
PubMed
Google Scholar
Stewart M: Molecular mechanism of the nuclear protein import cycle. Nat Rev Mol Cell Biol. 2007, 8: 195-208. 10.1038/nrm2114
Article
CAS
PubMed
Google Scholar
Mosammaparast N, Pemberton LF: Karyopherins: from nuclear-transport mediators to nuclear-function regulators. Trends Cell Biol. 2004, 14: 547-556. 10.1016/j.tcb.2004.09.004
Article
CAS
PubMed
Google Scholar
Gorlich D, Pante N, Kutay U, Aebi U, Bischoff FR: Identification of different roles for RanGDP and RanGTP in nuclear protein import. Embo J. 1996, 15: 5584-5594.
PubMed Central
CAS
PubMed
Google Scholar
Izaurralde E, Kutay U, von Kobbe C, Mattaj IW, Gorlich D: The asymmetric distribution of the constituents of the Ran system is essential for transport into and out of the nucleus. Embo J. 1997, 16: 6535-6547. 10.1093/emboj/16.21.6535
Article
PubMed Central
CAS
PubMed
Google Scholar
Gorlich D, Dabrowski M, Bischoff FR, Kutay U, Bork P, Hartmann E, Prehn S, Izaurralde E: A novel class of RanGTP binding proteins. J Cell Biol. 1997, 138: 65-80. 10.1083/jcb.138.1.65
Article
PubMed Central
CAS
PubMed
Google Scholar
Gorlich D, Prehn S, Laskey RA, Hartmann E: Isolation of a protein that is essential for the first step of nuclear protein import. Cell. 1994, 79: 767-778. 10.1016/0092-8674(94)90067-1
Article
CAS
PubMed
Google Scholar
Wen W, Meinkoth JL, Tsien RY, Taylor SS: Identification of a signal for rapid export of proteins from the nucleus. Cell. 1995, 82: 463-473. 10.1016/0092-8674(95)90435-2
Article
CAS
PubMed
Google Scholar
D'Angelo MA, Hetzer MW: Structure, dynamics and function of nuclear pore complexes. Trends Cell Biol. 2008, 18: 456-466. 10.1016/j.tcb.2008.07.009
Article
PubMed Central
PubMed
Google Scholar
Alber F, Dokudovskaya S, Veenhoff LM, Zhang W, Kipper J, Devos D, Suprapto A, Karni-Schmidt O, Williams R, Chait BT: The molecular architecture of the nuclear pore complex. Nature. 2007, 450: 695-701. 10.1038/nature06405
Article
CAS
PubMed
Google Scholar
Alber F, Dokudovskaya S, Veenhoff LM, Zhang W, Kipper J, Devos D, Suprapto A, Karni-Schmidt O, Williams R, Chait BT: Determining the architectures of macromolecular assemblies. Nature. 2007, 450: 683-694. 10.1038/nature06404
Article
CAS
PubMed
Google Scholar
Schwartz TU: Modularity within the architecture of the nuclear pore complex. Current opinion in structural biology. 2005, 15: 221-226. 10.1016/j.sbi.2005.03.003
Article
CAS
PubMed
Google Scholar
Patel SS, Belmont BJ, Sante JM, Rexach MF: Natively unfolded nucleoporins gate protein diffusion across the nuclear pore complex. Cell. 2007, 129: 83-96. 10.1016/j.cell.2007.01.044
Article
CAS
PubMed
Google Scholar
Siniossoglou S, Wimmer C, Rieger M, Doye V, Tekotte H, Weise C, Emig S, Segref A, Hurt EC: A novel complex of nucleoporins, which includes Sec13p and a Sec13p homolog, is essential for normal nuclear pores. Cell. 1996, 84: 265-275. 10.1016/S0092-8674(00)80981-2
Article
CAS
PubMed
Google Scholar
Harel A, Orjalo AV, Vincent T, Lachish-Zalait A, Vasu S, Shah S, Zimmerman E, Elbaum M, Forbes DJ: Removal of a single pore subcomplex results in vertebrate nuclei devoid of nuclear pores. Mol Cell. 2003, 11: 853-864. 10.1016/S1097-2765(03)00116-3
Article
CAS
PubMed
Google Scholar
Walther TC, Alves A, Pickersgill H, Loiodice I, Hetzer M, Galy V, Hulsmann BB, Kocher T, Wilm M, Allen T: The conserved Nup107-160 complex is critical for nuclear pore complex assembly. Cell. 2003, 113: 195-206. 10.1016/S0092-8674(03)00235-6
Article
CAS
PubMed
Google Scholar
Hawryluk-Gara LA, Platani M, Santarella R, Wozniak RW, Mattaj IW: Nup53 is required for nuclear envelope and nuclear pore complex assembly. Mol Biol Cell. 2008, 19: 1753-1762. 10.1091/mbc.E07-08-0820
Article
PubMed Central
CAS
PubMed
Google Scholar
Hawryluk-Gara LA, Shibuya EK, Wozniak RW: Vertebrate Nup53 interacts with the nuclear lamina and is required for the assembly of a Nup93-containing complex. Mol Biol Cell. 2005, 16: 2382-2394. 10.1091/mbc.E04-10-0857
Article
PubMed Central
CAS
PubMed
Google Scholar
Radu A, Blobel G, Moore MS: Identification of a protein complex that is required for nuclear protein import and mediates docking of import substrate to distinct nucleoporins. Proc Natl Acad Sci USA. 1995, 92: 1769-1773. 10.1073/pnas.92.5.1769
Article
PubMed Central
CAS
PubMed
Google Scholar
Pemberton LF, Paschal BM: Mechanisms of receptor-mediated nuclear import and nuclear export. Traffic. 2005, 6: 187-198. 10.1111/j.1600-0854.2005.00270.x
Article
CAS
PubMed
Google Scholar
Xu L, Kang Y, Col S, Massagué J: Smad2 nucleocytoplasmic shuttling by nucleoporins CAN/Nup214 and Nup153 feeds TGFβ signaling complexes in the cytoplasm and nucleus. Mol Cell. 2002, 10: 271-282. 10.1016/S1097-2765(02)00586-5
Article
CAS
PubMed
Google Scholar
Inman GJ, Nicolas FJ, Hill CS: Nucleocytoplasmic shuttling of Smads 2, 3, and 4 permits sensing of TGF-β receptor activity. Mol Cell. 2002, 10: 283-294. 10.1016/S1097-2765(02)00585-3
Article
CAS
PubMed
Google Scholar
Xu L, Alarcon C, Col S, Massagué J: Distinct domain utilization by Smad3 and Smad4 for nucleoporin interaction and nuclear import. J Biol Chem. 2003, 278: 42569-42577. 10.1074/jbc.M307601200
Article
CAS
PubMed
Google Scholar
Schmierer B, Hill CS: Kinetic Analysis of Smad Nucleocytoplasmic Shuttling Reveals a Mechanism for Transforming Growth Factor {β}-Dependent Nuclear Accumulation of Smads. Mol Cell Biol. 2005, 25: 9845-9858. 10.1128/MCB.25.22.9845-9858.2005
Article
PubMed Central
CAS
PubMed
Google Scholar
Xu L, Chen YG, Massagué J: The nuclear import function of Smad2 is masked by SARA and unmasked by TGFb-dependent phosphorylation. Nat Cell Biol. 2000, 2: 559-562. 10.1038/35019649
Article
CAS
PubMed
Google Scholar
Xu L, Yao X, Chen X, Lu P, Zhang B, Ip YT: Msk is required for nuclear import of TGF-{β}/BMP-activated Smads. J Cell Biol. 2007, 178: 981-994. 10.1083/jcb.200703106
Article
PubMed Central
CAS
PubMed
Google Scholar
Yao X, Chen X, Cottonham C, Xu L: Preferential utilization of Imp7/8 in nuclear import of Smads. J Biol Chem. 2008, 283: 22867-22874. 10.1074/jbc.M801320200
Article
PubMed Central
CAS
PubMed
Google Scholar
Chen X, Xu L: Specific nucleoporin requirement for Smad nuclear translocation. Mol Cell Biol. 2010.
Google Scholar
Chuderland D, Konson A, Seger R: Identification and characterization of a general nuclear translocation signal in signaling proteins. Mol Cell. 2008, 31: 850-861. 10.1016/j.molcel.2008.08.007
Article
CAS
PubMed
Google Scholar
Lorenzen JA, Baker SE, Denhez F, Melnick MB, Brower DL, Perkins LA: Nuclear import of activated D-ERK by DIM-7, an importin family member encoded by the gene moleskin. Development. 2001, 128: 1403-1414.
CAS
PubMed
Google Scholar
Dean KA, von Ahsen O, Gorlich D, Fried HM: Signal recognition particle protein 19 is imported into the nucleus by importin 8 (RanBP8) and transportin. J Cell Sci. 2001, 114: 3479-3485.
CAS
PubMed
Google Scholar
Freedman ND, Yamamoto KR: Importin 7 and importin alpha/importin β are nuclear import receptors for the glucocorticoid receptor. Mol Biol Cell. 2004, 15: 2276-2286. 10.1091/mbc.E03-11-0839
Article
PubMed Central
CAS
PubMed
Google Scholar
Strawn LA, Shen T, Shulga N, Goldfarb DS, Wente SR: Minimal nuclear pore complexes define FG repeat domains essential for transport. Nat Cell Biol. 2004, 6: 197-206.
Article
CAS
PubMed
Google Scholar
Terry LJ, Wente SR: Nuclear mRNA export requires specific FG nucleoporins for translocation through the nuclear pore complex. J Cell Biol. 2007, 178: 1121-1132. 10.1083/jcb.200704174
Article
PubMed Central
CAS
PubMed
Google Scholar
Enninga J, Levay A, Fontoura BM: Sec13 shuttles between the nucleus and the cytoplasm and stably interacts with Nup96 at the nuclear pore complex. Mol Cell Biol. 2003, 23: 7271-7284. 10.1128/MCB.23.20.7271-7284.2003
Article
PubMed Central
CAS
PubMed
Google Scholar
Capelson M, Liang Y, Schulte R, Mair W, Wagner U, Hetzer MW: Chromatin-bound nuclear pore components regulate gene expression in higher eukaryotes. Cell. 2010, 140: 372-383. 10.1016/j.cell.2009.12.054
Article
PubMed Central
CAS
PubMed
Google Scholar
Kalverda B, Pickersgill H, Shloma VV, Fornerod M: Nucleoporins directly stimulate expression of developmental and cell-cycle genes inside the nucleoplasm. Cell. 2010, 140: 360-371. 10.1016/j.cell.2010.01.011
Article
CAS
PubMed
Google Scholar
Pierreux CE, Nicolas FJ, Hill CS: Transforming growth factor β-independent shuttling of Smad4 between the cytoplasm and nucleus. Mol Cell Biol. 2000, 20: 9041-9054. 10.1128/MCB.20.23.9041-9054.2000
Article
PubMed Central
CAS
PubMed
Google Scholar
Watanabe M, Masuyama N, Fukuda M, Nishida E: Regulation of intracellular dynamics of Smad4 by its leucine-rich nuclear export signal. EMBO Rep. 2000, 1: 176-182. 10.1093/embo-reports/kvd029
Article
PubMed Central
CAS
PubMed
Google Scholar
Chen HB, Rud JG, Lin K, Xu L: Nuclear targeting of transforming growth factor-β-activated Smad complexes. J Biol Chem. 2005, 280: 21329-21336. 10.1074/jbc.M500362200
Article
CAS
PubMed
Google Scholar
Kurisaki A, Kurisaki K, Kowanetz M, Sugino H, Yoneda Y, Heldin CH, Moustakas A: The mechanism of nuclear export of Smad3 involves exportin 4 and Ran. Mol Cell Biol. 2006, 26: 1318-1332. 10.1128/MCB.26.4.1318-1332.2006
Article
PubMed Central
CAS
PubMed
Google Scholar
Dai F, Lin X, Chang C, Feng XH: Nuclear export of Smad2 and Smad3 by RanBP3 facilitates termination of TGF-β signaling. Dev Cell. 2009, 16: 345-357. 10.1016/j.devcel.2009.01.022
Article
PubMed Central
CAS
PubMed
Google Scholar
Lipowsky G, Bischoff FR, Schwarzmaier P, Kraft R, Kostka S, Hartmann E, Kutay U, Gorlich D: Exportin 4: a mediator of a novel nuclear export pathway in higher eukaryotes. Embo J. 2000, 19: 4362-4371. 10.1093/emboj/19.16.4362
Article
PubMed Central
CAS
PubMed
Google Scholar
Hendriksen J, Fagotto F, van der Velde H, van Schie M, Noordermeer J, Fornerod M: RanBP3 enhances nuclear export of active (β)-catenin independently of CRM1. J Cell Biol. 2005, 171: 785-797. 10.1083/jcb.200502141
Article
PubMed Central
CAS
PubMed
Google Scholar
Lindsay ME, Holaska JM, Welch K, Paschal BM, Macara IG: Ran-binding protein 3 is a cofactor for Crm1-mediated nuclear protein export. J Cell Biol. 2001, 153: 1391-1402. 10.1083/jcb.153.7.1391
Article
PubMed Central
CAS
PubMed
Google Scholar
Batut J, Howell M, Hill CS: Kinesin-mediated transport of smad2 is required for signaling in response to tgf-Beta ligands. Dev Cell. 2007, 12: 261-274. 10.1016/j.devcel.2007.01.010
Article
CAS
PubMed
Google Scholar
Jin Q, Gao G, Mulder KM: Requirement of a dynein light chain in TGFβ/Smad3 signaling. Journal of cellular physiology. 2009, 221: 707-715. 10.1002/jcp.21910
Article
PubMed Central
CAS
PubMed
Google Scholar
Xu L: Regulation of Smad activities. Biochim Biophys Acta. 2006, 1759: 503-513.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kretzschmar M, Doody J, Massagué J: Opposing BMP and EGF signalling pathways converge on the TGF® family mediator Smad1. Nature. 1997, 389: 618-622. 10.1038/39348
Article
CAS
PubMed
Google Scholar
Sapkota G, Alarcon C, Spagnoli FM, Brivanlou AH, Massague J: Balancing BMP signaling through integrated inputs into the Smad1 linker. Mol Cell. 2007, 25: 441-454. 10.1016/j.molcel.2007.01.006
Article
CAS
PubMed
Google Scholar
Zeng YA, Rahnama M, Wang S, Sosu-Sedzorme W, Verheyen EM: Drosophila Nemo antagonizes BMP signaling by phosphorylation of Mad and inhibition of its nuclear accumulation. Development. 2007, 134: 2061-2071. 10.1242/dev.02853
Article
CAS
PubMed
Google Scholar
Dupont S, Mamidi A, Cordenonsi M, Montagner M, Zacchigna L, Adorno M, Martello G, Stinchfield MJ, Soligo S, Morsut L: FAM/USP9x, a deubiquitinating enzyme essential for TGFβ signaling, controls Smad4 monoubiquitination. Cell. 2009, 136: 123-135. 10.1016/j.cell.2008.10.051
Article
CAS
PubMed
Google Scholar
Miles WO, Jaffray E, Campbell SG, Takeda S, Bayston LJ, Basu SP, Li M, Raftery LA, Ashe MP, Hay RT, Ashe HL: Medea SUMOylation restricts the signaling range of the Dpp morphogen in the Drosophila embryo. Genes Dev. 2008, 22: 2578-2590. 10.1101/gad.494808
Article
PubMed Central
CAS
PubMed
Google Scholar
James BP, Bunch TA, Krishnamoorthy S, Perkins LA, Brower DL: Nuclear localization of the ERK MAP kinase mediated by Drosophila alphaPS2βPS integrin and importin-7. Mol Biol Cell. 2007, 18: 4190-4199. 10.1091/mbc.E06-07-0659
Article
PubMed Central
CAS
PubMed
Google Scholar
Yoon SO, Shin S, Liu Y, Ballif BA, Woo MS, Gygi SP, Blenis J: Ran-binding protein 3 phosphorylation links the Ras and PI3-kinase pathways to nucleocytoplasmic transport. Mol Cell. 2008, 29: 362-375. 10.1016/j.molcel.2007.12.024
Article
PubMed Central
CAS
PubMed
Google Scholar
Hoodless PA, Tsukazaki T, Nishimatsu S, Attisano L, Wrana JL, Thomsen GH: Dominant-negative Smad2 mutants inhibit activin/Vg1 signaling and disrupt axis formation in Xenopus. Dev Biol. 1999, 207: 364-379. 10.1006/dbio.1998.9168
Article
CAS
PubMed
Google Scholar
Kang Y, Chen CR, Massagué J: A Self-Enabling TGFβ Response Coupled to Stress Signaling. Smad Engages Stress Response Factor ATF3 for Id1 Repression in Epithelial Cells. Mol Cell. 2003, 11: 915-926. 10.1016/S1097-2765(03)00109-6
Article
CAS
PubMed
Google Scholar
Varelas X, Sakuma R, Samavarchi-Tehrani P, Peerani R, Rao BM, Dembowy J, Yaffe MB, Zandstra PW, Wrana JL: TAZ controls Smad nucleocytoplasmic shuttling and regulates human embryonic stem-cell self-renewal. Nat Cell Biol. 2008, 10: 837-848. 10.1038/ncb1748
Article
CAS
PubMed
Google Scholar
Zhao B, Li L, Lei Q, Guan KL: The Hippo-YAP pathway in organ size control and tumorigenesis: an updated version. Genes Dev. 2010, 24: 862-874. 10.1101/gad.1909210
Article
PubMed Central
CAS
PubMed
Google Scholar
Pan D: Hippo signaling in organ size control. Genes Dev. 2007, 21: 886-897. 10.1101/gad.1536007
Article
CAS
PubMed
Google Scholar
Varelas X, Samavarchi-Tehrani P, Narimatsu M, Weiss A, Cockburn K, Larsen BG, Rossant J, Wrana JL: The Crumbs complex couples cell density sensing to Hippo-dependent control of the TGF-β-SMAD pathway. Dev Cell. 2010, 19: 831-844. 10.1016/j.devcel.2010.11.012
Article
CAS
PubMed
Google Scholar