Skip to main content
Fig. 1 | Cell & Bioscience

Fig. 1

From: Essential roles of mitochondrial and heme function in lung cancer bioenergetics and tumorigenesis

Fig. 1

The essential bioenergetic metabolic processes. Cells generate cellular energy ATP via glycolysis and TCA cycle coupled with OXPHOS. Although cancer cells utilize a high amount of glucose, as Warburg originally observed, recent experimental data have shown that glucose is oxidized in lung tumors of NSCLC patients [4]. Additionally, cells are able to use a variety of bioenergetic substrates, including glucose, amino acids, acetate, fatty acids, glutamine, and ketone bodies to support cell growth. The numbers of ATP, GTP, NADH, FADH2 generated when one molecule of glucose is consumed following glycolysis, TCA cycle, and oxidative phosphorylation are also shown. Synthesis or utilization of ATP/ADP are shown in red, while NAD+/NADH are shown in blue, and GTP/GDP are shown in pink. G6P glucose-6-phosphate, F6P fructose-6-phosphate, GADP glyceraldehydes-3-phosphate, OAA oxaloacetate, 3PG 3-phosphoglycerate, PEP phosphoenolpyruvate, αKG α-ketoglutarate, OXPHOS oxidative phosphorylation, GAPDH glyceraldehydes 3-phosphate dehydrogenase, PA phosphatidic acid, TAG triacylglycerol, PL phospholipid

Back to article page