
R E V I E W Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, 
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included 
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The 
Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available 
in this article, unless otherwise stated in a credit line to the data.

Deng et al. Cell & Bioscience           (2024) 14:51 
https://doi.org/10.1186/s13578-024-01227-3

and chronic pain, based on the causes and duration of the 
pain. Acute pain can be controlled and mostly resolves 
within a week [3]. However, inadequacies in postop-
erative acute pain management can hinder recovery and 
even lead to the development of chronic pain [4]. Epide-
miological survey shows that approximately 20% patients 
suffered transition from acute to chronic pain after sur-
gery [5]. It has been estimated that the prevalence of pain, 
especially chronic pain, can be as high as 40% worldwide 
[6, 7]. Pain has gradually become one of the world’s pub-
lic health problems [8]. The lack of effective pain treat-
ment and management can be attributed to the unclear 
nature of pain mechanism. Therefore, it is urgent to pro-
found understanding of the pain mechanisms in order to 
develop better treatment.

Programmed death ligand 1 (PD-L1) is a mem-
ber of the B7 family and the first functional ligand of 
programmed death receptor 1 (PD-1) [9]. PD-1 is an 

Introduction
According to the International Association for the Study 
of Pain (IASP), pain is defined as an unpleasant sensory 
and emotional experience associated with, or resembling 
that associated with, actual or potential tissue damage 
[1, 2]. Pain can be categorized into two types, acute pain 
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Abstract
Pain is a common symptom of many diseases with a high incidence rate. Clinically, drug treatment, as the main 
method to relieve pain at present, is often accompanied by different degrees of adverse reactions. Therefore, it is 
urgent to gain a profound understanding of the pain mechanisms in order to develop advantageous analgesic 
targets. The PD-L1/PD-1 pathway, an important inhibitory molecule in the immune system, has taken part in 
regulating neuroinflammation and immune response. Accumulating evidence indicates that the PD-L1/PD-1 
pathway is aberrantly activated in various pain models. And blocking PD-L1/PD-1 pathway will aggravate pain 
behaviors. This review aims to summarize the emerging evidence on the role of the PD-L1/PD-1 pathway in 
alleviating pain and provide an overview of the mechanisms involved in pain resolution, including the regulation of 
macrophages, microglia, T cells, as well as nociceptor neurons. However, its underlying mechanism still needs to be 
further elucidated in the future. In conclusion, despite more deep researches are needed, these pioneering studies 
indicate that PD-L1/PD-1 may be a potential neuroimmune target for pain relief.
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important immune checkpoint receptor and with an 
essential immunoregulatory function [10, 11]. Various 
studies demonstrate that PD-L1/PD-1 can significantly 
impact the regulation of immune response and tolerance 
process [12, 13]. For instance, targeted potentiation of 
PD-1 shows potential for suppressing autoreactive T cells 
and alleviate autoimmune diseases [14]. And, exosomal 
PD-L1 from the tumor can suppress T cell activation in 
the draining lymph node and promote tumor growth in 
an immune-dependent fashion [15]. Recently, the criti-
cal role of PD-L1/PD-1 pathway in neuroimmune, neu-
roinflammation, and synaptic transmission and plasticity 
is gradually being recognized. These crucial features are 
significantly disrupted in chronic pain, with mounting 
evidence suggesting that targeting the PD-L1/PD-1 path-
way may provide a promising approach to alleviate pain 
[16–18]. For instance, PD-L1/PD-1 pathway can effec-
tively alleviate neuropathic pain and delay the process 
of nerve injury by inhibiting the excitability of nocicep-
tive neurons and regulating neuroinflammation [16, 19]. 
Furthermore, PD-L1/PD-1 pathway can also inhibit the 
activation of microglia/macrophages and promote their 
polarization to M2 phenotype [20, 21]. Hence, control-
ling the PD-L1/PD-1 pathway’s effect on the immune sys-
tem may be potentially alleviate pain.

This review focuses on the potential analgesic effect of 
PD-L1/PD-1, with the rationality of regulating the neu-
roimmune interaction. It aims to summarize the role of 
PD-L1/PD-1 pathway in pain from the perspective of 
neuroimmune. The analgesic effect of PD-L1/PD-1 path-
way has significant implications for exploring pain patho-
genesis and developing clinical treatments for pain relief.

PD-L1/PD-1 overview
PD-1, as a member of the CD28 immunoglobulin super-
family and is a surface receptor protein with a single 
type I transmembrane domain [11, 22]. Its cytoplasmic 
domain harbors two phosphorylation sites, consisting 
of an immunoreceptor tyrosine-based inhibitory motif 
(ITIM) [22–24]. PD-1 is widely expressed on the sur-
face of B cells [25], monocytes, and activated T cells [26]. 
Research has shown that PD-1 interacts with two ligands, 
PD-L1 (CD274) and PD-L2 (CD273) [27]. As PD-L2 
expression is restricted to professional antigen-present-
ing cells (APCs) [22], research regarding the PD-L2/
PD-1 signal pathway remains limited. PD-L1 expression 
can be detected in non-hematopoietic healthy tissue cells 
including endothelial cells and epithelial cells, and hema-
topoietic cells including lymphocytes, natural killer cells, 
dendritic cells (DCs), and macrophages [28–31]. Recent 
studies revealed that there is a certain level of PD-L1 
and PD-1 expression in the neuroaxis of pain, including 
nerves, spinal cord [32], and dorsal root ganglion (DRG) 
[19, 33–37].

PD-L1/PD-1 pathway plays a pivotal role in various dis-
eases. PD-L1/PD-1 have the capability to hinder T cell 
proliferation and function, reduce cytokines production, 
induce T cell depletion, and reduce motor ability [38–40]. 
In the tumor microenvironment, activating the immune 
system could enhance the effectiveness of anti-PD-1 or 
PD-L1 treatments [41, 42]. The up-regulation of PD-1 
expression can play a negative regulation in the expres-
sion of IL-12 on monocytes/macrophages, thereby regu-
lating the function of immune cells [43]. PD-L1/PD-1 
signaling pathway in brain decreased the deposition of 
amyloid-β peptide (Aβ), suppressed neuroinflammation, 
and delayed the development of Alzheimer’s disease [44]. 
Furthermore, PD-L1/PD-1 pathway can also participate 
in regulating the pathophysiological processes of other 
diseases, such as colitis [45], brain injury [46], spinal cord 
injury, and acute and chronic pain [19], by regulating 
neuroimmune and neuroinflammation.

The role of PD-L1/PD-1 pathway in pain
Mounting evidence suggest that PD-L1/PD-1 pathway of 
DRG, sciatic nerve, and spinal cord dorsal horn (SDH) 
plays an important role in various pain models, includ-
ing acute pain [19, 47], inflammatory pain [34, 37], neu-
ropathic pain [16–18, 48–50], and cancer pain [19, 35, 
51].(Table  1) The increased expression of PD-L1/PD-1 
pathway in trigeminal ganglia neurons and DRG neurons 
impedes migraine-like pain and formalin-induced acute 
inflammatory pain [19, 47]. In addition, electroacupunc-
ture can exert analgesic effects by activating the PD-L1/
PD-1 pathway [34, 52]. In the model of chronic constric-
tive injury of sciatic nerve (CCI) and spared nerve injury 
(SNI), studies have suggested deficiency of PD-L1 signifi-
cantly increased pain hyperalgesia [18, 48, 49]. Similarly, 
the absence of PD-1 also aggravated mice’s hind-paw 
mechanical hypersensitivity [50]. Administration of 
exogenous PD-L1 apparently increases pain threshold 
in naïve mice and mice with bone cancer pain [19, 35]. 
Notably, the blockade of PD-1 with nivolumab induces 
allodynia during the early phases of bone cancer pain in 
mice [35]. In the same way, Wang et al. suggested that 
nivolumab initially increases pain thresholds but may 
offer long-term benefits in the attenuation of bone cancer 
pain [51]. This may be attributed to the transient pain-
inducing effect of nivolumab. According to the report, 
the increase of maternal peripheral PD-L1 level and 
pain thresholds during pregnancy follow the same trend 
[53]. Late-pregnant mice exhibit efficient resistance to 
pain. Simultaneously, using the pregnancy mouse model, 
Tan et al. found that high PD-L1 levels in late-pregnant 
mice will decrease following delivery, which indicates 
that PD-L1 mediates pregnancy-induced analgesia [54]. 
In the treatment of non-small cell lung cancer (NSCLC) 
patients with morphine, abnormal increase of morphine 
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Disease Model Expression Cellular localization Regulated cell subset Refer-
encesPD-L1 PD-1

Inflammatory 
pain

CFA-induced(mice) spinal dorsal 
horn

neurons neurons /  [33]

DRG, spinal 
nerve axons, 
spinal axon 
terminals

neurons neurons microglia  [32]

CFA-induced(rat) DRG neurons neurons /  [34]
Formalin- 
induced(mice)

DRG
spinal cord

neurons neurons /  [19]

Neuropathic 
pain

CCI-induced(mice) sciatic 
nerves

macrophages / T cells and macrophages  [18]

Chemotherapeutic-
induced (mice)

DRG,
periph-
eral nervous 
tissue

macrophages primary sensory neurons /  [16]

DRG
spinal cord

neurons neurons, microglia,
astrocytes

macrophage,
T-cell

 [89]

SCI-induced(mice) spinal cord astrocytes
macrophages/microglia

macrophages/microglia macrophages/microglia  [81]

spinal cord neurons, macrophages/
microglia, astrocyte, endo-
thelial cell, oligodendroglia

/ macrophages and microglia  [17]

spinal cord microglia microglia microglia  [90]
spinal cord macrophages, microglia, 

B cells, neutrophils, and γб 
T cells

Tregs Tregs  [95]

SNI-induced (mice) tibial and 
peroneal 
nerve, DRG

/ / macrophages and T cells  [49]

DRG, spinal 
nerve axons, 
spinal axon 
terminals

neurons neurons Microglia  [32]

spinal cord microglia / microglia  [52]
retrovirus
infection-induced 
(mice)

lumbar 
spinal cord, 
DRG

/ / CD4+ and CD8+T cells 
Microglia macrophages

 [50]

postherpetic
neuralgia

Varicella-zoster virus 
-induced(patients)

peripheral 
blood
mononucle-
ar cells

CD4+ T cells, CD8+ T cells CD4+ T cells, CD8+ T cells CD4+ T cells, CD8+ T cells  [56, 
57]

Cancer pain Bone cancer(mice) tumor-bear-
ing BM

tumor cells macrophages and 
monocytes

/  [51]

DRG neurons neurons /  [35]
DRG
spinal cord

neurons neurons microglia  [32]

Melanoma(mice) DRG
spinal cord

neurons neurons /  [19]

Non-small
cell lung 
cancer(mice)

cancer tissue A549 and H1299 cells Tumor cells CTL, CD8+ T cells  [55]

/(patients) peripheral 
blood

T cells T cells T cells  [59]

Table 1  Overview of the expression and localization of PD-L1/PD-1 pathway in pain model
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3-glucoside (M3G), as an active metabolite of morphine, 
upregulated the expression of PD-L1 and ultimately pro-
moted tumor escape [55]. Moreover, Wang et al. demon-
strated that morphine produces antinociception via the 
mu opioid receptor (MOR) and PD-1 is activated and 
participates in regulating the function of MOR in DRG 
neurons [32]. In PD-1−/− mice, antinociception caused 
by morphine was significantly reduced [32]. These stud-
ies indicate the potential involvement of the PD-L1/PD-1 
pathway in mediating opioid analgesia.

In clinical, a study suggested that varicella-zoster virus 
(VZV) could productively modulate expression of immu-
noinhibitory proteins and blocking PD-L1 enhances 
virus specific CD8+ T cell effector function [56]. In VZV-
induced postherpetic neuralgia (PHN), the expression of 
PD-L1 and PD-1 in T cells were higher in patients with 
PHN than without PHN [57]. Different exercise patterns 
alleviated the arthritic pain of patients with osteoarthri-
tis, also accompanied by an increase in serum PD-1 levels 
[58]. Zhang et al. indicated that compared with normal 
people, the positive expression rate of sPD-1 and PD-1 
are significantly higher in patients with cancer pain [59]. 
The expression of PD-1 on T cell surfaces decreased 
and peripheral sPD-1 content increased with increas-
ing degree of cancer pain [59]. Similarly, Wang et al. 
also found that the overexpression of PD-L1 in NSCLC 
patients [60]. In addition, mounting studies have shown 
that PD-L1/PD-1 inhibitors may cause pain in cancer 
treatment [61]. For example, Majenka et al. have reported 
a series of acute low back pain due to administration of 
monoclonal antibodies directed against PD-1/PD-L1 for 
skin cancer treatment in patients [62]. And Melanoma 
and lung cancer patients may experience arthralgia fol-
lowing PD-1 inhibitor treatment [63–65].

In conclusion, PD-L1/PD-1 pathway is capable of 
inhibiting both physiological and pathological pain. Sub-
sequently, we will elaborate on the mechanism of pain 
relief through the PD-L1/PD-1 pathway in detail.

The mechanisms of PD-L1/PD-1 pathway in pain 
relief
PD-L1/PD-1 pathway and macrophage
There is abundant evidence that macrophages are capa-
ble of accumulating at the nerve injury site and secrete 

various inflammatory mediators, thus sensitizing noci-
ceptive neurons [66–69]. Macrophages, functioning as 
key regulators of peripheral pain, exert control over the 
inflammatory response and pain signaling through their 
interactions with neurons [70]. Thus, it is conceivable 
that macrophages, being pivotal immune cells, could 
be considered as potential targets for PD-L1/PD-1. The 
underlying mechanisms are as follows.

PD-L1/PD-1 pathway inhibits macrophage proliferation 
and infiltration
A study has demonstrated that in the CCI model, PD-L1 
expression on macrophages increased significantly, and 
the absence of PD-L1 leads to an upregulation of mac-
rophage expression [18]. In SNI mice model, Karl et al. 
found that PD-L1 can induce infiltration of macrophages 
into the injured peroneal and tibial nerve. And compared 
with wild-type mice, PD-L1 knockout mice exhibited 
a higher increase in the number of macrophages in the 
peripheral injured nerves [49]. In addition, the up-reg-
ulation of PD-L1 induced by spinal cord injury (SCI) is 
accompanied by the accumulation of activated macro-
phages in peripheral organs [71]. Taken together, PD-L1/
PD-1 can exert an analgesic effect by affecting the prolif-
eration and infiltration of macrophages, although its pre-
cise mechanisms require further investigation.

PD-L1/PD-1 pathway regulates macrophage polarization
Macrophage polarization stands out as a pivotal event 
contributing the progression of chronic pain [72–74]. 
Macrophages polarize into classically activated/inflam-
matory (M1) and alternatively activated/regenerative 
(M2) macrophages under certain conditions [75]. A num-
ber of pro-inflammatory cytokines (TNF- α, IL-6, CCL2/
MCP1) released from M1 macrophages, have been shown 
to cause neuronal sensitization by stimulating their spe-
cific receptors [76]. On the other hand, M2 macrophages 
secrete anti-inflammatory cytokines (IL-10, TGF- β, 
and IL-4), which in turn suppresses pain responses [69, 
77–80]. Yao et al. suggested that after SCI, the levels of 
PD-L1/PD-1 in macrophages of injured spinal cord were 
significantly increased. Similarly, in paclitaxel induced 
neuropathic pain, macrophages from the DRG were the 
main immune cells expressing PD-L1, and anti PD-L1 

Disease Model Expression Cellular localization Regulated cell subset Refer-
encesPD-L1 PD-1

others Migraine-like 
pain(mice)

trigeminal 
ganglia

TG neurons TG neurons /  [47]

Capsaicin-evoked
(mice and patients)

DRG neurons neurons /  [36]

Pregnancy-Induced
Pain(mice)

spinal cord / / /  [54]

Note: CCI: chronic constrictive injury; SNI: spared nerve injury; CFA: complete Freund’s adjuvant; SCI: spinal cord injury; CTL: cytotoxic T lymphocytes.

Table 1  (continued) 
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treatment increased the mechanical pain threshold and 
chronic neuropathy development by upregulating the 
expression of inflammatory factors TNF, IL-6 and Cx3cr1 
in peripheral nerve tissue [16]. In PD-L1 knockout mice 
subjected to CCI, the sustained inflammatory response 
and severe mechanical hyperalgesia may be attributed 
to the diminished inhibition of the pro-inflammatory 
factors TNF- α and MCP-1 derived from macrophages 
[18, 48]. These suggested that PD-L1 inhibition may pro-
mote macrophage polarization towards M1 type, thereby 
increasing the secretion of pro-inflammatory mediators 
to trigger hyperalgesia. Deficiency of PD-1 promoted 
the polarization of macrophages to the M1 phenotype 
via enhancing the expression of p-STAT1 and down-
regulating the expression of p-STAT6 and augmented 
the proinflammatory cytokine TNF- α, IL-12, and IFN- 
γ secretion, thereby delaying the repair process of nerve 
injury after SCI [81]. Kong et al. also found that increased 
PD-L1 expression after SCI can inhibit the neuroinflam-
mation response, promote motor function and sensory 
recovery, and alleviate neuropathic pain by inhibiting the 
MAPK signaling pathway and attenuating M1-like mac-
rophage activation and promoting M2-like polarization 
[17]. Therefore, PD-L1/PD-1 has a vital role in the regu-
lation of macrophage polarization. In future research, a 
comprehensive exploration of its regulatory mechanisms 
may pave the way for the development of innovative ther-
apeutic approaches for managing pain.

PD-L1/PD-1 pathway and microglia
Microglial cells are resident macrophages of the central 
nervous system, responsible for immune cells, clear cell 
debris, regulate synaptic plasticity, etc [82]. In the past 
decade, there has been more and more excellent research 
that focused on the role of microglia in pain [83–86]. 
Microglia are progressively gaining recognition as key 
regulators of various types of pain. Central pain sensitiza-
tion is closely related to the activation of microglia [87, 
88]. Increasing research has demonstrated that PD-L1/
PD-1 pathway plays a regulatory role in microglia in pain 
and the potential mechanisms are elucidated below.

PD-L1/PD-1 pathway inhibits microglia proliferation and 
activation
The study found that in the model of peripheral neu-
ropathy caused by AIDS virus infection, deficiency of 
PD-1 accelerated the onset of mechanical allodynia and 
was associated with a significantly up-regulated num-
ber of microglia infiltrating the spinal cord and activa-
tion of resident microglia. Activated microglia elevated 
levels of iNOS and 3-nitrotyrosine in both small (IB4+) 
and large (NF200+) DRG sensory neurons and contribute 
to nerve damage and neuropathic pain [50]. It indicates 
that PD-L1/PD-1 reduces neuronal damage and alleviates 

peripheral neuropathy by mediating the activation of spi-
nal microglia [50]. PD-1 has the capacity to inhibit the 
proliferation of microglia in SDH [32]. Similarly, Livni 
et al. showed that combined chemotherapy and anti-
PD-1 treatment on peripheral neuropathy can induce the 
increase and activation of microglial cells in the dorsal 
horn of the spinal cord. Activated microglia contribute to 
the inhibition of sensory axon growth and the develop-
ment of peripheral neuropathic pain [89]. In conclusion, 
PD-L1/PD-1 regulates neuroinflammation by inhibit-
ing the proliferation and activation of microglia, thereby 
delaying the development of pain.

PD-L1/PD-1 pathway regulates microglia polarization
The polarization of microglia is also essential for the 
development of pain. PD-L1/PD-1 pathway can regu-
late the state of microglia, promote the ratio of M1/M2 
microglia reduced, improve motor dysfunction, and 
relieve pain after SCI [17, 81]. Deficiency of PD-1 will 
induce the polarization of microglia to the M1 phenotype 
via the activation of STAT1 and nuclear factor-kappa B 
and enhance the phagocytosis of microglia in the M1 
and M2 phenotype, which is contrary to the regulation 
of PD-1 on phagocytosis of phagocytes [81]. The mech-
anism behind this difference still requires further eluci-
dation. A recent study has shown that the up-regulation 
of PD-1 in the spinal dorsal horn of SCI rats drives the 
polarization of microglia to M2 phenotype by promoting 
AMPK signaling, participates in regulating the inhibition 
of neuroinflammation by dexmedetomidine, and acceler-
ates the regeneration and repair of nerve tissue [90]. In 
addition, Wu et al. suggested that EA may promote the 
polarization of activated M1 microglia to M2 microglia 
through the PD-L1/PD-1 pathway inhibited the MAPK 
signaling pathway, to reduce inflammation and alleviate 
neuropathic pain induced by SNI [52]. In conclusion, as 
the main effector cells, microglia play an important role 
in the pathophysiological process of pain. PD-L1/PD-1 
regulating microglia polarization is also a potential path-
way to relieve pain.

PD-L1/PD-1 pathway and T cells
T cells are derived from bone marrow lymphocytes and 
mainly participate in humoral immune response [91]. T 
cells also play a key role in pain development. Different 
T cell subsets can secrete different cytokines and play a 
“double-sword” role. For example, exogenous adminis-
tration of CD8+T cells can aggravate neuropathic pain, 
while regulatory T cells (Tregs) significantly alleviate 
neuropathic pain [92]. There is plenty of evidence that 
PD-L1/PD-1 axis is a critical element in regulating T cell 
functions in different disease models [93, 94]. Conse-
quently, T cells may represent another essential target to 
induce the analgesic effects of PD-L1/PD-1 pathway.



Page 6 of 11Deng et al. Cell & Bioscience           (2024) 14:51 

PD-L1/PD-1 modulates the function of T cells
On the one hand, it was reported that the overexpression 
of PD-1 was implicated in the maintenance of the anti-
inflammatory function carried out by Tregs infiltrating 
the spinal cord in the subacute phase of SCI. The knock-
out of PD-1 in Tregs decreased the production of IL-10, 
TGF-β, and Foxp3, and impaired the neuroprotective 
effects mediated by Tregs, resulting in the attenuation 
of the inhibitory activity of Tregs on pro-inflammatory 
macrophages/microglia [95]. Therefore, PD-1 plays an 
essential role in maintaining the inhibitory function of 
Tregs.

On the other hand, using the same mouse model, Diana 
M et al. showed that the upregulation of PD-L1/PD-1 was 
associated with the functional impairment of CD8+T 
cells, which could block the immune-inflammatory cas-
cade and limit the spread of inflammation at the injured 
site [71]. Blocking PD-1 leads to an increase in the pro-
duction of TNF-α by CD8+T cells, thereby restoring the 
proinflammatory function of CD8+ T cells and accelerat-
ing inflammatory response [96]. Besides, there is increas-
ing evidence that PD-1 can be reversed the dysfunction 
of exhausted T cells in patients with neuropathic pain. 
The upregulation of PD-L1/PD-1 expression in nocicep-
tive neurons can curtail the survival of CD8+T cells, and 
PD-L1/PD-1 impairs the immune response of CD8 + T 
cells [97, 98]. Likewise, Jones et al. suggested that block-
ing PD-L1 enhances virus-specific CD8+ T cell effector 
function, further substantiating the inhibitory role of the 
PD-L1/PD-1 pathway on the pro-inflammatory function 
of CD8+ T cells [56].

PD-L1/PD-1 affects the proliferation of T cells
The study revealed a significant increase in the expression 
of PD-L1 on CD4+T cells and CD8+T cells in patients 
with postherpetic neuralgia (PHN), accompanied by a 
corresponding rise in the number of T cells [57]. Analo-
gously, in sciatic nerves of PD-L1-deficient mice after 
CCI, there was an increase in T cell infiltration, which 
was associated with hyperalgesia in neuropathic pain 
[18]. Using enzyme-linked immunosorbent assay (ELISA) 
and flow cytometry, Zhang et al. found that the content 
of PD-L1 and PD-1 in peripheral blood of patients with 
cancer pain increased, and the ratio of PD-1+ T cells 
notably enhanced [59]. Furthermore, in tumor tissue of 
patients with non-small cell lung cancer (NSCLC) receiv-
ing opioid analgesia, M3G specifically bound to TLR4 
and upregulated PD-L1 expression via the PI3K signaling 
pathway, the overexpression of PD-L1 negatively regu-
lated the number and activation of cytotoxic T lympho-
cytes (CTL), which indicated that the upregulation of 
PD-L1/PD-1 affects the amount and function of human 
CTL, participating in the opioid analgesia mechanism of 
cancer pain patients [55].

All in all, in several pain models, PD-L1/PD-1 modu-
lates the function and proliferation of T cells to alleviate 
pain. However, the precise mechanism by which PD-L1/
PD-1 regulates T cells warrants further investigation. 
PD-L1/PD-1 mediated immune response of T cells may 
be expected to become one of a promising pathway for 
clinical treatment of pain.

PD-L1/PD-1 pathway and nociceptor sensory neuron
Nociceptors, as specialized primary sensory neurons, 
play a pivotal role in orchestrating responses to noxious 
stimuli in the surrounding tissues, consequently mediat-
ing the sensation of pain [76]. The tissue innervated by 
nociceptor terminals highly expressed molecular sensors, 
including transient receptor potential channels (TRPs) 
and voltage-gated sodium channels (Nav) [68, 99]. Mul-
tiple studies have indicated that changes in excitability of 
neurons on nociceptors is critical for the development of 
pain [68]. PD-L1/PD-1 pathway has emerged as a poten-
tial mechanism for alleviating pain by regulating the 
excitability of nociceptive sensory neurons.

Liu et al. showed that PD-L1/PD-1 regulates MOR sig-
naling and enhances the role of morphine in antinocicep-
tion by suppressing calcium currents in DRG neurons, 
inhibiting excitatory synaptic transmission, and inducing 
outward currents in spinal cord neurons [32]. Exogenous 
administration of PD-L1 can induce analgesic effects by 
reducing the excitability of DRG nociceptive neurons. 
This effect is mediated through the PD-1/SHP pathway, 
resulting in the subsequent inhibition of sodium channels 
and activation of TREK2 K + channels [19]. In the bone 
cancer pain model, the upregulation of PD-L1 promotes 
the secretion of CCL2, which selectively activates C-fiber 
nociceptive neurons in DRG and drives the pathogenesis 
of bone cancer pain [51]. Furthermore, a study suggested 
that PD-L1 induced the phosphorylation of SHP-1 via 
PD-1 and dose-dependently suppressed TRPV1 currents 
in DRG neurons, participating in the inhibition of hyper-
algesia [35]. Additionally, Meerschaert et al. also showed 
that PD-L1/PD-1 on nociceptive neurons can alleviate 
capsaicin-induced the spontaneous pain behavior by 
inhibiting TRPV1-mediated calcium signaling and block-
ing transmission of nociceptive receptors [36].

GABAergic signaling in the spinal dorsal horn is also 
critical element of pain relief. Emerging evidence indi-
cated that PD-1 can regulate the GABAergic signal in 
neurons of spinal dorsal horn through SHP-1 activa-
tion, ERK phosphorylation and inhibit the excitability 
of neurons [33]. In wild-type mice, intrathecal injection 
of GABA receptor agonist could reverse CFA-induced 
inflammatory pain, but this phenomenon was not 
observed in PD-1 deficient mice [33]. This observation 
underscores the role of PD-L1/PD-1 in regulating the 
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function of excitatory neurons and its involvement in the 
pain control process by modulating GABAergic signaling.

Collectively, PD-L1 can regulate the excitability of 
spinal dorsal horn or DRG neurons through PD-1, thus 
offering promise in the inhibition of inflammatory, neu-
ropathic, and cancer-related pain. As a neuromodulator, 
PD-L1/PD-1 has a specific effect on nociceptive neurons, 
which may be of great significance for the development 
of new analgesic drugs in clinic.

Conclusions
This review mainly from the perspective of PD-L1/PD-1 
regulating immune cells and nociceptor neurons elabo-
rates the mechanism of PD-L1/PD-1 alleviating pain. 
Additionally, it delves into the downstream signaling 
pathways implicated in the pathophysiological develop-
ment of pathological pain (see Fig. 1). First of all, PD-L1/
PD-1 activation subsequently regulates the proliferation 
and activation of macrophages, microglia, and T cells, 
promotes the polarization of macrophages/microglia, 
and ultimately alleviates the inflammatory responses 
and pain. Secondly, PD-L1/PD-1 activation contributes 
to the amelioration of pathological pain by downregu-
lating the expression of pro-inflammatory cytokines and 

upregulating the expression of anti-inflammatory cyto-
kines. In addition, PD-L1/PD-1 activation can also inhibit 
the ion channels of nociceptor sensory neurons and regu-
late the excitability of neurons. The efficacy of the PD-L1/
PD-1 pathway in pain relief has been corroborated in 
diverse pain models, including the improvement effect 
of PD-L1/PD-1 activation on inflammatory pain, neuro-
pathic pain, and cancer pain, indicating that activation 
of PD-L1/PD-1 may have broad applicability for treating 
pain. In a word, PD-L1/PD-1 is considered a potential 
analgesia target.

Besides, current studies indicate research on the role 
of PD-L1/PD-1 pathway in pain mainly focused on the 
peripheral nerve, DRG, and spinal cord levels. Neverthe-
less, the pathological processes involved in chronic pain 
also encompass various brain regions. PD-L1/PD-1 was 
also widely expressed in many brain regions, including 
hippocampal, cortical, hypothalamic, etc [31, 33, 100, 
101]. PD-L1/PD-1 pathway has been gradually identified 
as being of primary importance to involve in various cen-
tral nervous system diseases, such as stroke [46], tumors 
[102], and dementia [103]. Accumulating evidence sug-
gested that PD-L1/PD-1 can regulate neuronal excitabil-
ity, synaptic transmission, and plasticity, participating 

Fig. 1  The mechanism overview of the PD-L1/PD-1 pathway in pain. The PD-L1/PD-1 pathway in pain relief through modulating macrophage/microglia 
cells, T cells, cytokines and neuronal
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in processes such as learning, memory, anesthesia, and 
analgesia [30, 31, 104]. PD-L1/PD-1 may be as an impor-
tant neuronal checkpoint. Despite these advancements, 
there is still a lack of research on the PD-L1/PD-1 path-
way in brain regions involved in pain management, such 
as the anterior cingulate cortex and amygdala. Therefore, 
the role of the PD-L1/PD-1 pathway in different regions 
of the brain in chronic pain needs further exploration.

In clinical, PD-L1/PD-1 inhibitors function as immune 
checkpoint blockers, disrupting pathways associated with 
adaptive immune suppression [105], mainly targeting 
tumor immunotherapy. PD-L1/PD-1 checkpoint inhibi-
tors are gradually becoming one of the main therapeutic 
agents for treating various cancer types including lung 
cancer [106, 107], gastrointestinal cancer [108, 109], 
melanoma [110, 111], among others. Studies indicate 
that a significant increase PD-L1 levels and PD-1 positiv-
ity in cancer patients, with a corresponding association 
with pain level [59, 60]. Due to a hyperactivated immune 
system [61], tumor anti-PD-L1/PD-1 immunotherapy 
can induce pain in cancer patients, including abdominal 
pain, arthralgia, acute low back pain, headache and so on 
[62–65, 112, 113]. In addition, research has shown that 
the use of opioids analgesics can have negative effects 
on cancer patients treated with PD-L1/PD-1 inhibi-
tors [114, 115]. Over all, immunotherapy targeting the 
PD-L1/PD-1 pathway has a dual character, prescription 
opioids should be used with caution for tumor patients 
treated with PD-L1/PD-1 inhibitor and we should further 
study to optimize immunotherapy targeting the PD-L1/
PD-1 pathway or develop combination therapies with 
PD-L1/PD-1 blockade to improve treatment efficiency 
and reduce side effects. In recent years, Zhao et al. dem-
onstrated that small molecule analgesic peptide H-20, 
similar to PD-L1, can target PD-1 to alleviate acute and 
chronic pain with fewer side effects in several mouse 
models, which indicated that the development of anal-
gesic drug can based on PD-L1/PD-1 axis as a candidate 
target [37]. However, further clinical research is needed 
to validate the role of PD-L1/PD-1 in pain.

In conclusion, PD-L1/PD-1 axis can be applied to pain 
relief as an important immune checkpoint. In future 
research, exploring the neuroimmune interaction of 
PD-L1/PD-1 pathway is conducive to the study of pain 
mechanism, providing a target for the follow-up treat-
ment of pain, and developing new analgesic drugs.
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