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Abstract 

Autophagy is a cellular self-degradation process that plays a crucial role in maintaining metabolic functions in cells 
and organisms. Dysfunctional autophagy has been linked to various diseases, including cancer. In cancer, dys-
regulated autophagy is closely associated with the development of cancer and drug resistance, and it can have 
both oncogenic and oncostatic effects. Research evidence supports the connection between m6A modification 
and human diseases, particularly cancer. Abnormalities in m6A modification are involved in the initiation and progres-
sion of cancer by regulating the expression of oncogenes and oncostatic genes. There is an interaction between m6A 
modification and autophagy, both of which play significant roles in cancer. However, the molecular mechanisms 
underlying this relationship are still unclear. m6A modification can either directly inhibit autophagy or promote its 
initiation, but the complex relationship between m6A modification, autophagy, and cancer remains poorly under-
stood. Therefore, this paper aims to review the dual role of m6A and autophagy in cancer, explore the impact of m6A 
modification on autophagy regulation, and discuss the crucial role of the m6A modification-autophagy axis in cancer 
progression and treatment resistance.
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Introduction
Cancer is one of the leading causes of death worldwide, 
ranking second only to cardiovascular disease. In some 
developed countries, cancer deaths have surpassed car-
diovascular disease deaths. As cardiovascular disease 
rates decline in many countries, cancer is expected to 
become a leading cause of death [1]. Globally, there were 

19.3 million new cancer cases and nearly 10 million can-
cer deaths in 2020, as reported by GLOBOCAN, the 2020 
oncology database [2]. Furthermore, with the growing 
population and aging demographics, the incidence of 
cancer is projected to increase significantly. The occur-
rence of cancer places a substantial burden on both indi-
vidual health and national finances. In the United States 
alone, the total cost of cancer screening and treatment in 
2020 is estimated to reach $17.3 billion, marking a 39% 
increase from 2010 [3].

Research on cancer has made considerable progress 
over the years. However, the development of cancer is 
complex, and the molecular mechanisms involved are 
still unclear, making prevention and treatment challeng-
ing. Early surgical treatment is often the preferred choice, 
but many patients are already in advanced stages with 
distant metastases at the time of diagnosis. In advanced 
stages, chemotherapy is employed to prolong survival 
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and enhance quality of life. Unfortunately, cancer patients 
frequently develop resistance to treatment, which ulti-
mately becomes a major cause of death and the greatest 
treatment challenge [4, 5]. Consequently, it is imperative 
to urgently address the early diagnosis and prevention of 
cancer, as well as treatment resistance. Successfully tack-
ling this issue necessitates a comprehensive understand-
ing of the molecular mechanisms involved.

The study of autophagy has made significant progress 
in addressing this challenging issue. Autophagy, initially 
observed through the use of electron microscopy in the 
1950s, has been found to be closely linked to various 
human diseases, including cancer [6, 7]. The associa-
tion between autophagy and cancer was first reported by 
Liang et al. in 1999, demonstrating that Beclin-1 induces 
autophagy and inhibits tumorigenesis [8]. However, the 
precise role of autophagy in cancer remains a subject 
of debate. While numerous studies have suggested that 
autophagy has a suppressive effect on cancer, an equal 
number of researchers have argued that autophagy pro-
motes cancer development and resistance to treatment. 
Currently, it is believed that the role of autophagy in can-
cer is dual and paradoxical, as it is influenced by the spe-
cific type, stage, and genetic characteristics of the cancer 
cells [9].

The initiation of autophagy requires the involvement 
of various Autophagy-related proteins (ATGs) and regu-
latory proteins. For normal cells, protein synthesis and 
activation occur in a controlled manner, with regula-
tion at the genetic or epigenetic level. This suggests that 
autophagy is genetically and epigenetically regulated. 
Genetic mechanisms are usually irreversible, while epi-
genetic mechanisms are mostly reversible [10]. Epige-
netic inheritance refers to heritable changes that alter 
expression without changing the gene sequence or chro-
mosome structure. Examples of epigenetic inheritance 
include DNA methylation, histone modification, expres-
sion of noncoding RNAs and RNA modification. Several 
studies have demonstrated the important role of epige-
netic inheritance in autophagy [11–13]. Recent reports 
have shown that aberrant RNA modifications lead to 
dysregulation of autophagy and impact tumorigenesis. 
Among the various RNA modifications in eukaryotic 
cells, N6-methyladenosine (m6A) is the most abundant. 
This modification is closely associated with cancer and 
the regulation of autophagy. However, its specific role 
in the regulation of cancer autophagy remains unknown 
[14]. This knowledge gap motivated us to investigate 
the intrinsic association between m6A modification and 
autophagy regulation in cancer. In this review, we discuss 
the normal physiological functions and mechanisms of 
autophagy and m6A modification, as well as their roles 
in cancer. Additionally, we explored the role of m6A 

modification-mediated autophagy regulation in cancer 
progression and drug resistance and its potential as a 
therapeutic target.

Overview of autophagy and m6A modification
Autophagy, also known as type II programmed cell 
death, is a self-digestive process in which cells use lys-
osomes to degrade damaged, denatured, or senescent 
macromolecules and organelles under the influence of 
external environmental factors. It encompasses three 
forms: macroautophagy, microautophagy, and molecular 
chaperone-mediated autophagy [15–19]. Understand-
ing the molecular mechanisms of autophagy formation 
will contribute to improved research design and the 
development of new therapeutic agents in the future [6, 
20]. The autophagy process can be divided into several 
stages: initiation, nucleation, extension, maturation, deg-
radation, and recycling (Fig.  1) [21, 22]. Under normal 
physiological conditions, cells maintain a low level of 
basal autophagy. However, when there are cellular nutri-
tion and energy deficiencies, accumulation of harmful 
proteins, or stress, the activity of the mammalian target 
of rapamycin protein complex 1 (mTORC1) is inhib-
ited. This inhibition allows the activation of Unc-51-like 
kinase (ULK1), which in turn promotes the binding of 
ATG13 to the Focal adhesion kinase family interacting 
protein of 200  kDa (FIP200). The ATG13-ULK1-FIP200 
complex, along with other ATG proteins, promotes the 
formation of double-membrane autophagic vesicles and 
initiates the autophagy process [23–26]. The nucleation 
process is closely related to the formation of the PI3K-
Beclin-1 complex. This complex also involves ATG12, 
ATG5, ATG16, and microtubule-associated protein 
light chain 3(LC3) [27, 28]. ATG12 is initially activated 
by the ubiquitin-activating enzyme E1 ATG7. It is then 
transported and bound to ATG5 with the help of the 
ubiquitin-activating enzyme E2 ATG10. Finally, it binds 
to ATG16 to form the ATG12-ATG5-ATG16 multibody 
complex. This complex is localized on the surface of 
the outer membrane of the preautophagosomal struc-
ture and is involved in the extension of the outer mem-
brane of the preautophagosome [29]. Additionally, the 
LC3 precursor is processed by ATG4 into LC3-I. LC3-I 
is then covalently linked to phosphatidylethanolamine 
(PE) to become lipid-soluble LC3-PE (also known as 
LC3-II). This process is facilitated by the action of the 
E1-like enzyme ATG7 and the E2-like enzyme ATG3 and 
is involved in membrane extension [28, 30]. Once the 
separation membrane is closed, the double membrane 
vesicle structure formed is called an autophagosome [30]. 
Subsequently, the autophagosome crosses the micro-
tubule skeleton and fuses with the lysosome to form an 
autophagic lysosome. The autophagosomes and their 
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contents are then degraded under the action of lysosomal 
hydrolase. The amino acids and some proteins produced 
during this degradation process can provide nutrients 
and energy or be recycled by the cells [31]. Autophagy is 
regulated in various ways to maintain normal autophagy 
levels. Mammalian target of rapamycin (mTOR) is a key 
regulatory protein in the initiation of autophagy that neg-
atively regulates autophagy. Additionally, the PI3K/AKT, 
MAPK/ERK, AMPK, and other signaling pathways regu-
late autophagy by modulating mTOR [32, 33].

Currently, more than 150 posttranscriptional modifica-
tions have been identified in RNA across all organisms 
[34, 35]. Among these, m6A modification is the most 
abundant RNA modification in eukaryotic cells, with 
approximately 25% of cellular transcriptomes containing 
multiple m6A-modified residues [36, 37]. m6A modifica-
tion primarily occurs in RRACH sequences (where R = A 
or G, H = A, C, or U), and it is predominantly enriched 
near the stop codon, the 3′ untranslated region (3’UTR), 
and long internal exons [36–39]. Furthermore, it has also 
been found in precursor RNAs and noncoding RNAs 
[40, 41]. m6A can be added by methyltransferase com-
plexes and removed by demethylases, indicating that 
the process of m6A modification is dynamic and revers-
ible in mammals [42]. Regulators of m6A can be cat-
egorized into three types: methyltransferase complexes, 
known as ‘writers’, catalyze the m6A modification pro-
cess; demethylases, referred to as ‘erasers’, remove the 
m6A modification; and RNA-reading proteins, termed 

‘readers’, recognize the m6A modification, bind to the 
RNA, and carry out the corresponding functions (Fig. 2) 
[43]. Methyltransferases involved in m6A modification 
include METTL3, METTL14, WTAP, VIRMA, RBM15, 
ZC3H13, and METTL16 [40, 43, 44]. Demethylases such 
as FTO and ALKBH5, with FTO being the first demethy-
lase identified, have confirmed the reversibility of m6A 
modification [45]. ‘Readers’ recognize and bind to m6A 
sites, leading to different outcomes for target RNAs, such 
as splicing, nuclear export, translation, and degradation 
[42, 46]. Members of the YT521-B homology (YTH) 
structural domain family, including YTHDF1, YTHDF2, 
YTHDF3, YTHDC1, and YTHDC2, possess a conserved 
m6A-binding domain that selectively binds to m6A mod-
ification sites on mRNAs, resulting in diverse fates for 
target RNAs [36, 47]. Additionally, Insulin-like growth 
factor 2 mRNA-binding proteins (IGF2BPs) also bind 
to m6A-modified sites, enhancing mRNA stability and 
translation (Table 1) [48].

Duality of autophagy and m6A modification 
in cancer
The exact role of autophagy in cancer regulation is still 
not fully understood. In their review, Klionsky et  al. 
discussed the history of autophagy and its relation-
ship with cancer. They highlighted that autophagy can 
have a dual role in cancer, either promoting or inhibit-
ing cancer development and progression depending on 
the type and stage of the tumor [65]. During the early 

Fig. 1  Molecular Mechanism of Autophagy With the participation of various autophagy-related proteins, autophagosomes are formed 
through the processes of autophagy initiation, nucleation, and elongation. Subsequently, autophagosomes fuse with lysosomes to degrade 
the cargoes within them. The degraded products are then recycled, providing nutrients and energy
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stages of tumor development, autophagy can remove 
misfolded proteins, damaged organelles, and ROS, pro-
viding a protective effect on the cell [66]. It helps to 
limit inflammatory responses, maintain genomic stabil-
ity, and act as a suppressor of tumorigenesis. However, 
as cancer progresses, tumor cells exploit the stress-
reducing property of autophagy to cope with environ-
mental stresses and unfavorable factors, promoting 
tumor development [9]. For instance, in fast-growing 
tumors, some tumor cells are located far away from 
blood vessels and experience nutrient and oxygen dep-
rivation. Autophagy aids these oxygen-deprived cells by 
recycling energy and helping them survive.

A variety of cellular activities in cancer development 
and progression, including proliferation, apoptosis, 
migration, invasion, angiogenesis, and drug resistance, 
are closely linked to autophagy. The dual nature of 
autophagy’s effects on tumors is also reflected in its dual 
effects on these biological behaviors of tumor cells. For 
instance, pancreatic ductal adenocarcinoma and lung 
cancer have been found to have high levels of autophagy, 
which is crucial for maintaining tumor growth. Inhibi-
tion of autophagy, on the other hand, can result in tumor 
regression and reversal of malignancy [67, 68]. How-
ever, some examples contradict the role of autophagy in 
promoting tumor cell proliferation. In lymphoma and 

Fig. 2  Mechanism of m6A modification. RNA undergoes m6A modification by adding a methyl group to the nitrogen atom at position 6 
of adenine through the action of ‘writers’. This process is known as m6A modification and can be reversed by ‘erasers’. The m6A-modified RNA, 
in the presence of ‘readers’, undergoes various outcomes such as splicing, nuclear export, translation, stability enhancement, etc., which ultimately 
influence the expression of target genes
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breast cancer cells, activation of autophagy has been 
shown to induce cell cycle arrest and inhibit the prolif-
eration of cancer cells [69, 70]. Similarly, autophagy has 
dual impacts on cancer metastasis, with the ability to 
either enhance or reduce cancer migration and invasion 
under different circumstances [71, 72]. One study sug-
gested that autophagy inhibits breast cancer metastasis 
by degrading the autophagy cargo receptor NRB1 [73]. 
However, other studies have reported that autophagy 
promotes cancer metastasis. In lung and liver cancers, 
for example, autophagy promotes epithelial-mesenchy-
mal transition, leading to increased cancer cell metas-
tasis and invasion [74, 75]. The roles and functions of 
autophagy and apoptosis are interconnected and mutu-
ally influence each other. Autophagy and apoptosis work 
together to promote cell death, but autophagy can also 
counteract the apoptotic effect and promote cell sur-
vival [22, 76–78]. A study conducted on neuroblastoma 
cells revealed that overexpression of ATG5 or beclin-1 
reduced angiogenesis, while silencing of ATG5 and Bec-
lin-1 had the opposite effect [79]. Similarly, in triple-neg-
ative breast cancer, the combination of herbal monomers 
called SANT increased autophagic flux, inhibited tumor 
growth, and suppressed angiogenesis [80]. On the other 
hand, the deletion of the Beclin-1 gene in a mouse mela-
noma tumor model resulted in enhanced angiogenesis 
[81]. These findings suggest that autophagy may limit 
excessive angiogenesis in tumors. However, there are 
also studies indicating that autophagy in tumor cells 

can promote angiogenesis. For example, in bladder can-
cer cells, autophagy induces the secretion of extracellu-
lar vesicles, increases vascular endothelial growth factor 
A(VEGFA)expression, and facilitates angiogenesis [82]. 
In breast cancer, chaperone-mediated autophagy regu-
lates glycolysis to promote angiogenesis [83]. Finally, 
autophagy plays a role in modulating the sensitivity of 
cancer cells to chemotherapy. On the one hand, there is 
increasing evidence suggesting that autophagy is para-
doxically activated as a protective mechanism, mediat-
ing the acquired drug-resistant phenotype of certain 
cancer cells during chemotherapy. On the other hand, 
autophagy can also induce cancer cell death during anti-
cancer therapy. For instance, in a study involving colon 
cancer cells treated with 5-FU, autophagy was found to 
induce autophagic cell death, which was inhibited when 
autophagy was suppressed [84]. Additionally, the induc-
tion of autophagy effectively inhibits the growth of cis-
platin-resistant uroepithelial cancer cells [85]. These 
findings clearly demonstrate the role of autophagy in 
inducing cell death during anticancer therapy. However, 
other studies have shown that autophagy can promote 
cancer drug resistance and cell survival, while inhibit-
ing autophagy enhances the sensitivity of cancer cells 
to anticancer drugs [86–89]. Although the exact role of 
autophagy in regulating cancer treatment sensitivity is 
still a topic of debate, both in vivo and in vitro data tend 
to support the idea that autophagy promotes the resist-
ance of cancer cells to chemotherapeutic treatments and 

Table 1  Functions of the m6A regulator

Type Regulator Function References

“Writer” METTL3 Binds to METTL14 to form a stable heterodimer that acts as a catalytic core [49]

METTL14 Binds to METTL3 to form a stable heterodimer that serves as a structural support for binding to RNA [49]

WTAP Ensure that the METTL3-METTL14 heterodimer is localized in the nuclear speckle [50, 51]

RBM15 Binds the m6A complex and recruits it to specific RNA sites [44, 52]

VIRMA, KIAA1429 Regulation of regioselective methylation by recruitment of MTCs [53]

METTL16 Catalytic m6A modification of U6-snRNA involved in pre-RNA splicing [40]

ZC3H13 Enhancement of m6A by ligating WTAP to the mRNA binding factor Nito [54]

“Erasers” FTO Remove m6A modifier

ALKBH5 Remove m6A modifier [55]

“Readers” YTHDF1 Enhancement of m6A mRNA translation by promoting ribosome assembly and interaction with initiation 
factors

[56]

YTHDF2 Selective binding and recruitment of m6A-modified mRNAs to mRNA decay sites induces transcript degra-
dation

[57]

YTHDF3 Interaction with YTHDF1 promotes RNA translation and interaction with YTHDF2 promotes RNA degrada-
tion

[58, 59]

YTHDC1 Involved in RNA splicing and export [60, 61]

YTHDC2 Increased translation efficiency but reduced abundance of target mRNAs [62, 63]

IGF2BPs Enhanced mRNA stability and translation [48]

EIF3 Promote mRNA translation [64]
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that inhibiting autophagy can restore the sensitivity of 
chemotherapy-resistant cancer cells to these drugs [90].

m6A modifications have a wide range impact on RNA 
metabolism, influencing various processes, such as RNA 
expression, splicing, nuclear export, translation, and 
decay. Consequently, they play a crucial role in numer-
ous physiological and pathological processes [91–94]. 
Increasing evidence suggests that m6A modifications 
are particularly significant in the initiation and progres-
sion of cancer and that abnormal m6A modifications are 
strongly linked to cancer development [95–98]. In cancer, 
m6A modifications have a dual role, acting as a tumor 
suppressor by inhibiting the expression of oncogenes 
or promoting the expression of tumor suppressor genes 
and acting as a tumor-initiating factor by promoting the 
expression of oncogenes or inhibiting the expression of 
tumor suppressor genes [43]. In non-small cell lung can-
cer (NSCLC), m6A modifications are highly enriched in 
RMRP, which enhances its RNA stability and promotes 
cell proliferation, invasion, migration, and resistance to 
radiotherapy in NSCLC cells [99]. Similarly, in breast 
cancer, the level of m6A modification of the tumor sup-
pressor LATS1 mRNA is upregulated, resulting in the 
downregulation of LATS1 expression and promoting 
cancer development and progression [100]. These find-
ings indicate that m6A modification plays a role in pro-
moting cancer development and progression. However, 
it has also been demonstrated that m6A modification 
can inhibit cancer development and progression. For 
instance, in colon cancer, downregulation of m6A levels 
reduces YTHDF2-dependent mRNA degradation, lead-
ing to increased expression of its target gene, KIF26B, 
and facilitating colon cancer progression and metastasis 
[101]. Similarly, in thyroid cancer, METTL3-regulated 
m6A modification enhances STTEAP1 mRNA stabil-
ity in a YTHDF2-dependent manner, thereby inhibiting 
thyroid cancer cell proliferation, migration, and invasion 
[102]. In addition, there is a substantial body of research 
supporting the dual role of m6A modifications in cancer 
[98, 103–105]. Previous studies have indicated that the 
impact of m6A on tumor progression through the regula-
tion of target genes is influenced by three factors. First, 
it depends on whether the target genes are oncogenes or 
tumor suppressor genes. Second, the level of m6A modi-
fications in cancers plays a crucial role. Last, the altera-
tion of target mRNA expression and function is mediated 
by’readers’, which can be categorized into positive-
reader-role, promoting RNA expression, and negative-
reader-role, inhibiting RNA expression [43].

Autophagy and m6A modifications play dual roles as 
both tumor suppressors and tumor promoters in cancer. 
The role of autophagy in cancer is influenced by factors 
such as the tumor microenvironment, tumor type and 

stage, and genetic background. Consequently, the role 
of autophagy in cancer can vary even within the same 
type of cancer. Similarly, m6A modification in tumors is 
dependent on the type of target genes, the level of m6A 
modification, and changes in target mRNA expression 
and function mediated by’readers’. Therefore, the role of 
m6A modification in cancer can also differ within the 
same type of cancer, adding complexity and uncertainty 
to the roles of autophagy and m6A modification in can-
cer. Furthermore, autophagy and m6A modifications are 
interconnected, as m6A modifications target autophagy-
related genes to participate in the autophagy process, 
thereby synergistically influencing cancer (Fig.  3). To 
advance the translation of research into clinical applica-
tions, it is crucial to gain a clearer understanding of the 
association between autophagy and m6A modifications 
and their respective roles in cancer.

m6A modification‑mediated autophagy regulation
Numerous studies have demonstrated the significant 
role of m6A modification in the regulation of autophagy. 
This modification can directly impact the expression 
of ATG genes and modulate the signal transduction 
mechanism of autophagy. The pioneering work by Jin 
et  al. initially linked m6A modification to autophagy. 
Their study revealed that FTO specifically upregulated 
the abundance of the ULK1 protein, thereby facilitating 
autophagy initiation. Following m6A modification, ULK1 
transcripts with m6A tags were targeted for degradation 
by YTHDF2. However, overexpression of FTO removed 
the m6A modification, resulting in an extended half-life 
of ULK1 transcripts and promoting the expression of 
ULK1 proteins, ultimately enhancing autophagy initia-
tion [106]. Additionally, FTO directly targets ATG5 and 
ATG7, mediating their expression in a m6A-dependent 
manner and thus promoting autophagy. Conversely, FTO 
silencing leads to METTL3-mediated m6A modification 
of ATG5 and ATG7 transcripts. These modified tran-
scripts are then recognized by YTHDF2 for targeting and 
subsequent degradation, resulting in reduced expression 
of ATG5 and ATG7 and inhibition of autophagy [107, 
108]. Furthermore, FIP200, another crucial molecule in 
autophagy formation, can also undergo m6A modifica-
tion. YTHDF2 recognizes and degrades m6A-modified 
FIP200 mRNA, thereby inhibiting autophagy. On the 
other hand, demethylation of FIP200 mRNA mediated 
by the demethylase ALKBH5 enhances autophagic flow 
[109]. These findings suggest that m6A modification 
directly impacts the expression of ATG genes, thus regu-
lating the autophagy process. Furthermore, m6A modi-
fication can indirectly regulate autophagy by influencing 
the expression of autophagy regulators. For instance, in 
cardiomyocytes, METTL3 mediates m6A modification 
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of TFEB mRNA, a regulator of autophagy genes, result-
ing in reduced TFEB expression and inhibited autophagic 
flow. Conversely, silencing METTL3 or overexpressing 
the RNA demethylase ALKBH5 has the opposite effect 
[110]. mTOR, an important regulator of autophagy, is 
also a downstream target of the PI3K/AKT and AMPK 
pathways. Studies have revealed that m6A modification 
can regulate the PI3K/AKT and AMPK pathways, sug-
gesting that m6A modification can modulate autophagy 
by influencing these pathways. Specifically, M6A modi-
fication promotes the translation of PPM1A, a nega-
tive regulator of AMPK, while inhibiting the translation 
of CAMKK2, a positive regulator of AMPK. Conse-
quently, m6A modification leads to reduced AMPK 
activity and subsequent inhibition of autophagy [111]. 
However, several studies have demonstrated that m6A 
modifications can also promote autophagy initiation. 
For instance, in non-small cell lung cancer, METTL3 

positively regulates autophagy by increasing the expres-
sion of ATG5 and ATG7 [112]. In sensory hair cells, 
overexpression of YTHDF1 enhances the translation of 
the autophagy-related gene ATG14, thereby promot-
ing autophagy. Conversely, deletion of YTHDF1 inhibits 
autophagy [113]. Additionally, METTL14-mediated m6A 
modification inhibits eIF4G1 expression, which further 
promotes autophagy [114]. Collectively, these findings 
indicate that m6A modifications have a dual role in the 
regulation of autophagy. First, m6A modifications target 
ATG genes and autophagy regulatory pathways, result-
ing in the negative regulation of autophagy. Second, m6A 
modifications stimulate the initiation of autophagy. These 
findings suggest that the impact of m6A modification on 
autophagy is influenced by the specific autophagy-related 
genes targeted by the modification, as well as the influ-
ence of ’readers’ on the expression and function of these 
genes.

Fig. 3  Association of m6A modification and autophagy in cancer progression
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The role of m6A modification‑mediated autophagy 
in cancer
m6A modification and autophagy are two important and 
independent cellular processes that can individually or 
interactively contribute to tumor development. Numer-
ous studies have demonstrated that m6A modifications 
can directly regulate the expression of autophagy-related 
proteins and pathways, thus influencing the autophagy 
process and participating in tumor development. Con-
ducting systematic investigations on the mechanisms 
underlying autophagy, m6A modifications, and their 
interactions in cancer will be valuable for developing 
anticancer drugs and formulating therapeutic strategies. 
We provide a comprehensive overview of the role of m6A 
modification-mediated autophagy in various cancers. A 
comprehensive understanding of the interaction between 
m6A modification and autophagy will enhance our 
knowledge of their dual roles in cancer and contribute to 
the development of future cancer therapeutic strategies.

m6A modification and autophagy in hepatocellular 
carcinoma
In hepatocellular carcinoma (HCC) (Fig.  4), the expres-
sion of the methylated reader protein YTHDF1 is 
upregulated and significantly associated with hypoxia-
induced autophagy and poor patient prognosis. Silenc-
ing of YTHDF1 inhibits autophagy, as well as the 
proliferation, migration, and invasion ability of hepato-
cellular carcinoma cells. Mechanistic studies have shown 
that under hypoxic conditions, HIF-1α directly binds 
to the promoter region of the YTHDF1 gene to pro-
mote its expression. YTHDF1 promotes the translation 
of the autophagy-related genes ATG2A and ATG14 in a 
m6A-dependent manner. This facilitates the process of 
autophagy and the associated malignant tumor biological 
behaviors [115]. However, m6A modifications can also 
inhibit the autophagy process depending on the target 
gene. Enhanced WTAP expression increases the m6A 
modification of LKB1 mRNA, which reduces the stabil-
ity and expression of the LKB1 transcript. This leads to 
reduced AMPK phosphorylation and autophagy inhi-
bition and promotes the growth of HCC cells [116]. In 
terms of chemotherapy resistance, a study found that sig-
nificant downregulation of METTL3 in sorafenib-resist-
ant hepatocellular carcinoma activated autophagy-related 
pathways and promoted the expression of sorafenib-
resistant and angiogenic genes [117]. The mechanism 
behind this was identified as METTL3 promoting m6A 
modification of FOXO3 mRNA, which promoted FOXO3 
expression via YTHDF1. FOXO3 repressed the expres-
sion of the autophagy-associated genes ATG3, ATG5, 
ATG7, ATG12, ATG16L1, and MAP1LC3B. Therefore, 

the overexpression of FOXO3 due to m6A modification 
inhibited autophagy and promoted cell death in hepa-
tocellular carcinoma cells. On the other hand, the dele-
tion of METTL3 promoted autophagy and resistance to 
sorafenib by inhibiting the expression of FOXO3 [117]. 
FOXO3 is known as one of the first transcriptional reg-
ulators associated with autophagy. It enters the nucleus 
and binds to the promoters of autophagy-related genes, 
enhancing their expression and promoting autophagy 
[118–120]. However, this study found that the role of 
FOXO3 in autophagy regulation was contrary to gen-
eral studies, and the molecular mechanism behind 
this discrepancy remains unclear, necessitating further 
investigation.

m6A modification and autophagy in lung cancer
In the context of small cell lung cancer (SCLC) (Fig. 4), 
the presence of m6A modification is closely linked to 
chemoresistance. SCLC is known for its highly aggres-
sive nature, and although the combination of cisplatin 
and etoposide chemotherapy is initially effective for 
most patients, a significant number of patients eventually 
develop chemoresistance, resulting in rapid tumor pro-
gression. Research studies have indicated that METTL3 
is highly expressed in chemotherapy-resistant SCLC 
cell lines. This high expression of METTL3 is associated 
with a poor prognosis for patients. Furthermore, both 
in vivo and in vitro experiments have demonstrated that 
overexpression of METTL3 promotes chemoresistance 
in SCLC. Mechanistic investigations have revealed that 
METTL3 induces m6A methylation of Decapping Pro-
tein 2 (DCP2), leading to the degradation of DCP2. This 
degradation, in turn, triggers mitochondrial autophagy 
through the Pink1-Parkin pathway, ultimately resulting 
in chemoresistance in SCLC [121]. In non-small cell lung 
cancer (NSCLC), METTL3 is expressed at higher levels 
than in paired normal tissues and is involved in gefitinib 
resistance. It does this by increasing the expression of the 
key genes of the autophagy pathway, ATG5 and ATG7, 
thereby positively regulating autophagy [112]. Another 
protein, IGF2BP2, is also highly expressed in NSCLC 
and promotes the stabilization of lncRNA MALAT1 by 
a m6A-dependent mechanism. This, in turn, promotes 
the expression of the downstream target gene ATG12 
and enhances autophagy and NSCLC proliferation [122]. 
However, there are studies that suggest that m6A modi-
fication promotes autophagy and inhibits NSCLC pro-
gression. For instance, FU et  al. found that FTO, which 
is highly expressed in NSCLC, inhibits GAS5 expression 
and autophagy by decreasing lncRNA GAS5 m6A meth-
ylation levels. Inhibition of FTO facilitated autophagic 
death of NSCLC cells and inhibited tumor growth via the 
GAS5/UPF1/BRD4 pathway [123]. Similarly, Guo et  al. 
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reported that upregulation of ALKBH5 promoted the 
expression of the ubiquitin conjugating enzyme UBE2C, 
which in turn reduced the expression of ATG3 and LC3, 
leading to autophagy inhibition and NSCLC progression 
[90].

m6A modification and autophagy in gastrointestinal 
tumors
In the treatment of gastrointestinal mesenchymal stro-
mal tumors (GISTs) (Fig.  5), resistance to imatinib 
poses a significant challenge. This resistance is caused 

by various mechanisms, including autophagy and m6A 
methylation. Recent studies have shown that the pro-
teins METTL3, USP13, PAK1, and ATG5 are upreg-
ulated in drug-resistant tumors. Furthermore, the 
expression of these proteins is positively correlated 
and associated with a poor prognosis in GIST patients. 
Mechanistic investigations suggest that the stabiliza-
tion of USP13 mRNA is facilitated by IGF2BP2 in a 
METTL3-mediated m6A-dependent manner. Addi-
tionally, USP13, an essential deubiquitinating enzyme, 
stabilizes ATG5 with the involvement of the PAK1 

Fig. 4  Role of m6A modification-mediated autophagy in hepatocellular carcinoma and lung cancer, m6a modification influences the expression 
of ATG genes or regulatory proteins that are upstream of autophagy. This regulates the levels of autophagy and impacts the progression of tumors. 
In the case of hepatocellular carcinoma, m6a modification affects the expression of specific target genes such as ATG14, ATG2A, LKB1, and FOXO3, 
thereby influencing the level of autophagy and the progression of the disease. Similarly, in lung cancer, m6a modification affects the expression 
of target genes like DCP2, ATG5, ATG7, and also influences the stability of LncRNA GAS5 and LncRNA MALAT1. These changes in gene expression 
and stability subsequently regulate autophagy and impact the progression of lung cancer
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serine/threonine protein kinase. This stabilization 
enhances autophagy and contributes to the develop-
ment of imatinib resistance in GIST cells [124]. In 
gastric cancer, FTO has been identified as a potential 
target for cisplatin resistance. Studies have shown that 
in cisplatin-resistant gastric cancer cells, the expression 
level of FTO is significantly increased, while the level of 
m6A in total RNA is significantly decreased. Addition-
ally, the level of autophagy is significantly increased in 
these cells. Conversely, when FTO is deleted, the level 
of autophagy decreases, and cisplatin-resistant cells 
become more sensitive to cisplatin treatment. Mecha-
nistically, FTO targets ULK1 to regulate autophagy 
and cisplatin resistance in a m6A-dependent manner. 

The deletion of FTO leads to an increase in m6A in 
ULK1 mRNA, which is then recognized and degraded 
by YTHDF2. This degradation negatively regulates 
autophagy and enhances the sensitivity of cisplatin-
resistant cells to cisplatin [125]. Furthermore, FTO 
inhibits mTORC1, a negative regulator of autophagy, 
and promotes pro-survival autophagy, ultimately lead-
ing to chemoresistance in gastric cancer [126]. In colon 
cancer, WTAP exhibits high expression in colon cancer 
tissues and cells. It mediates the m6A modification of 
the tumor suppressor FLNA mRNA, resulting in the 
inhibition of FLNA expression. This inhibition sup-
presses autophagy and promotes colon cancer cell pro-
liferation [90].

Fig. 5  Role of m6A modification-mediated autophagy in gastrointestinal and genitourinary tumors, In gastrointestinal tumors, m6a modification 
impacts the expression of target genes such as USP13, ULK1, mTOR, FLNA, etc., leading to the regulation of autophagy levels and influencing 
the progression of gastrointestinal tumors. Similarly, in genitourinary tumors, m6a modification affects the expression of target genes such as SLK2, 
DRAS, ATG5, etc., thereby regulating autophagy levels and impacting the progression of genitourinary tumors
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m6A modification and autophagy in the genitourinary 
system
In clear cell renal cell carcinoma (ccRCC) (Fig.  5), the 
expression of FTO was found to be elevated, while m6A 
modification levels were reduced compared to neigh-
boring noncancerous tissues. This increase in FTO 
expression was strongly associated with autophagy and 
poor patient prognosis. Additionally, when FTO was 
downregulated, it resulted in an increase in autophagic 
flux by targeting ATG5 and ATG7. This downregula-
tion of FTO also inhibited the growth and metastasis 
of ccRCC both in  vivo and in  vitro. Mechanistically, 
the downregulation of FTO led to an increase in the 
level of m6A modification of SIK2 mRNA. This modi-
fied mRNA was then recognized by IGF2BP2 in a 
m6A-dependent manner, which increased its transcript 
stability and expression. SIK2 promoted the autophagy 
pathway, leading to the inhibition of ccRCC progres-
sion [127].

In cervical cancer (CC), HIF1α induces the upregula-
tion of lncRNA DARS-AS1 under hypoxic conditions. 
This promotes protective autophagy and tumor cell 
survival. Mechanistically, DARS-AS1 recruits METTL3 
and METTL14 to enhance the stability and translation 
of DARS mRNA, a cytoplasmic aspartic acid-tRNA 
synthetase gene, in a m6A-dependent manner. This 
subsequently increases the expression of ATG5 and 
ATG3, which affects autophagy in CC cells. This mech-
anism helps tumor cells adapt to hypoxic conditions 
and promotes their survival [128]. Moreover, RBM15 
expression is significantly elevated in HPV-positive cer-
vical cancer cell lines. RBM15 binds to c-myc mRNA, 
leading to an increase in the m6A level and protein 
expression of c-myc. This downregulates autophagy and 
promotes cervical cancer cell growth [129].

In seminomas, the majority of patients exhibit high 
sensitivity to cisplatin. However, some patients experi-
ence poor treatment outcomes due to cisplatin resist-
ance [130, 131]. Research has shown that the expression 
of METTL3 is significantly higher in cisplatin-resistant 
TCam-2/CDDP cell lines than in cisplatin-sensitive 
TCam-2 cell lines. Moreover, when METTL3 was over-
expressed in TCam-2 cells, the proliferation rate in 
the presence of cisplatin was significantly higher than 
that in the METTL3 knockdown group. This suggests 
that overexpression of METTL3 enhances the cisplatin 
resistance of TCam-2 cells. Mechanistic studies indi-
cate that METTL3 directly targets the ATG5 transcript 
and promotes ATG5 expression in a m6A-dependent 
manner. This promotes autophagy and resistance to 
spermatogonial tumors.

m6A modification and autophagy in head and neck tumors
In laryngeal squamous cell carcinoma (LSCC) (Fig.  6), 
the upregulation of IGF2BP3 and TMA7 in LSCC tis-
sues reduces autophagy levels and promotes LSCC pro-
gression and cisplatin resistance. Mechanistically, the 
m6A-methylated reader IGF2BP3 enhances the stability 
of TMA7 in a m6A-dependent manner. TMA7 inter-
acts with UBA2 to inhibit autophagy in LSCC through 
the PI3K/mTOR signaling pathway, thus promoting the 
proliferation, invasion, migration, and colony-forming 
ability of LSCC cells and inducing resistance to cisplatin 
[132]. In oral squamous cell carcinoma (OSCC), FTO 
expression is elevated and correlates with autophagic 
flux. Knockdown of FTO expression in OSCC cell lines 
enhances autophagic flux and suppresses malignant 
tumor behavior. The underlying mechanism involves 
increased m6A modification of the target gene eIF4G1 
mRNA after FTO silencing. YTHDF2 captures m6A-
modified eIF4G1 mRNA, leading to its degradation. 
This results in reduced expression of the eIF4G1 pro-
tein, a negative regulator of autophagy, which promotes 
autophagy and inhibits tumor malignant behavior [133]. 
Furthermore, overexpression of METTL14 increases 
the m6A modification level of eIF4G1 mRNA, inhibit-
ing its expression, enhancing autophagy, and suppress-
ing migration, invasion, and proliferation of OSCC [114]. 
In the context of nasopharyngeal carcinoma (NPC), it 
was observed that the levels of m6A modification and 
METTL3 expression were significantly higher in tumor 
tissues than in neighboring tissues. Mechanistic studies 
revealed that METTL3 increased the m6A level of the 
long noncoding RNA ZFAS1. This, in turn, enhanced the 
stability and expression of ZFAS1 through the involve-
ment of the reader protein YTHDF3. Furthermore, 
ZFAS1 competitively bound to miR-100-3p, leading to 
the promotion of ATG10 expression by inhibiting the 
PI3K/AKT pathway, which promoted autophagy pro-
cesses and NPC cell proliferation, migration and tumor 
growth [90].

m6A modification and autophagy in leukemia
In chronic myelogenous leukemia (CML) (Fig.  6), 
METTL3 decreases the expression of PTEN by increasing 
the m6A modification level of PTEN mRNA. This leads 
to downregulation of the autophagy-related proteins 
LC-II, Beclin-1, ATG5, and ATG3, inhibiting autophagy 
and promoting chemical resistance in CML [134]. In 
acute myeloid leukemia (AML), TP53INP2 is upregulated 
by FTO-mediated modification of m6A, which enhances 
autophagy activity by promoting the interaction of LC3 
and ATG7, ultimately promoting leukemia cell survival 
[135]. Additionally, METTL3 enhances the stability of the 
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lncRNA PSMA3-AS1, which further regulates ATG16L1 
by targeting miR-3a-20p. This modulation of autophagy 
levels contributes to the progression of AML.

Tumor control strategies based on m6A 
modification and autophagy
New therapeutic targets in oncology research are highly 
exciting. Numerous studies have shown that aberrant 
autophagy promotes tumor progression and chemoresist-
ance. Autophagy provides energy for tumor cells to adapt 
to adverse environments, leading to tumor progression 
and drug resistance. Recent findings indicate that m6A 
modifications and their regulators play a crucial role in 
autophagy-mediated tumor progression and anticancer 
drug resistance. Therefore, targeting m6A modifications 
to counter autophagy-associated tumor progression and 
drug resistance shows promise as a therapeutic strategy. 
For instance, in a mouse model of hepatocellular carci-
noma, knockdown of YTHDF1 significantly inhibited 
autophagy and tumor growth [115]. Similarly, in OSCC, 

downregulation of FTO and overexpression of METTL14 
enhanced autophagy while inhibiting cell proliferation, 
migration, invasion, and tumor growth [114, 133]. In 
ccRCC, downregulation of FTO enhanced autophagic 
flux, leading to inhibition of tumor growth and metas-
tasis in  vivo and in  vitro. Moreover, the small molecule 
inhibitor FB23-2, which targets FTO, suppressed tumor 
growth in a ccRCC mouse model, indicating that FTO is 
a potential druggable target and that FTO inhibitors hold 
therapeutic potential for tumor treatment [127].

Tumor drug resistance is a significant challenge in 
tumor therapy. Autophagy, in most tumors, plays a role 
in providing the energy required to evade radiother-
apy-induced apoptosis, thus promoting tumor cell sur-
vival and leading to treatment resistance. Consequently, 
autophagy has been proposed as a cytoprotective mecha-
nism contributing to the generation of drug resistance. 
Inhibiting autophagy could potentially be a strategy to 
reverse drug resistance in various tumors. For instance, 
in hepatocellular carcinoma, METTL3 stabilizes FOXO3 

Fig. 6  Role of m6A modification-mediated autophagy in head and neck tumors and leukemia, In head and neck tumours, m6a modification 
impacts the expression of target genes like TMA7, eIF4G1, and the stability of LncRNA ZFAS1. This modification also regulates autophagy levels 
and influences the progression of head and neck tumours as well as chemotherapy resistance. Similarly, in leukaemia, m6a modification affects 
the expression of target genes such as PTEN, TP53INP2, and the stability of LncRNA PSMA3-AS1. This modification also regulates the level 
of autophagy and affects the progression of leukaemia, particularly in terms of chemotherapy resistance
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in a m6A-dependent manner, inhibiting autophagy and 
increasing the sensitivity of HCC to sorafenib [117]. 
Inhibition of mitochondrial autophagy by the METTL3 
inhibitor STM2457 in SCLC has been shown to reverse 
chemoresistance in both in  vivo and in  vitro models 
[121]. In NSCLC, β-elemen reduces m6A methylation 
levels in gefitinib-resistant cells, inhibiting the cellu-
lar autophagy process and reversing gefitinib resistance 
[112]. In gastrointestinal mesenchymal tumors, inhibi-
tors of USP13 attenuate ATG5 and inhibit m6A mod-
ification-mediated autophagy. Coadministration with 
3-methyladenine enhances the therapeutic effect of 
imatinib in tumor model mice [124]. FTO knockdown in 
cisplatin-resistant gastric cancer cells (SGC-7901/DDP) 
inhibits ULK1-mediated autophagy and reverses cispl-
atin resistance both in  vivo and in  vitro [125]. Further-
more, targeted inhibition of m6A modification-mediated 
autophagy increases tumor sensitivity to cisplatin in vari-
ous tumors, including laryngeal squamous cell carcinoma 
and seminomas [132, 136].

Autophagy, regulated by m6A modification, plays a 
crucial role in tumor progression. Targeting m6A regu-
latory factors can either promote or inhibit autophagy, 
offering a potential strategy to suppress tumor develop-
ment and reverse drug resistance. Notably, autophagy 
tends to enhance chemotherapy resistance in tumors. 
Therefore, targeting m6A regulatory factors to inhibit 
autophagy could be an effective approach to overcome 
drug resistance. These studies open up new avenues 
for the prevention and treatment of tumors, as well as 
the reversal of chemotherapy resistance, by focusing on 
autophagy and m6A. However, further clinical studies are 
needed to fully explore the diagnostic, therapeutic, and 
prognostic value of m6A modification and autophagy in 
cancer.

Conclusion and outlook
Both autophagy and m6A modification play dual roles 
in tumors. The role of m6A modification in cancer is 
reflected in its regulation of the expression of cancer-
related genes. M6A modification is able to regulate mul-
tiple target genes and, depending on the “reader”, can 
either inhibit or promote the expression of the target 
genes. This duality of m6A modifications in tumors can 
be explained by their ability to act as either tumor-pro-
moting factors or tumor-suppressing factors, depending 
on whether they promote or inhibit oncogenes (Fig. 3A). 
Autophagy, on the other hand, functions by remov-
ing misfolded proteins, damaged organelles, and ROS, 
providing cells with the energy needed for metabolism 
and exerting a protective effect. This protective role of 
autophagy can also be exploited by cancer cells, which 
utilize autophagy to obtain nutrients and energy in 

response to environmental stresses and unfavorable stim-
uli, leading to rapid tumor progression and therapeutic 
resistance. However, metabolic stress-induced autophagy 
can also inhibit necrosis, thereby limiting inflamma-
tory responses and potentially inhibiting tumor growth 
[137]. Moreover, excessive progressive autophagy may 
be cytotoxic, causing cell death and potentially inducing 
tumor cell death as well. Autophagy has a dual impact 
on cells, exhibiting both protective and cytotoxic effects. 
These effects can also influence cancer cells, thereby 
contributing to the intricate and contradictory nature 
of autophagy in cancer. The precise role of autophagy in 
tumors is contingent upon various factors including the 
level of autophagy, intra- and extracellular environments, 
tumor type, stage, and genetic background. M6A modi-
fication plays a dual role in the regulation of autophagy. 
It can directly affect the expression of ATG genes or 
autophagy regulators to regulate autophagy. When the 
target gene of m6A modification is an ATG gene, it pro-
motes autophagy by enhancing the expression of the 
ATG gene through positive ’reader’ action. Conversely, 
it inhibits autophagy by reducing the expression of the 
ATG gene through negative ’reader’ action. Additionally, 
m6A modification can regulate autophagy by influenc-
ing the regulators of autophagy. It promotes autophagy 
by enhancing the positive regulators or suppressing the 
expression of negative regulators. Conversely, it inhib-
its autophagy by suppressing the positive regulators or 
promoting the expression of negative regulators. For 
example, changes in METTL3 expression can inhibit 
and promote autophagy by affecting FOXO3 and DCP2, 
respectively [117, 121]. In conclusion, the regulation of 
autophagy in cancer through m6A modification depends 
on its impact on the expression of target genes and the 
reciprocal effect of these target genes on autophagy regu-
lation. The precise role of m6A modification-mediated 
autophagy in cancer is determined by its influence on the 
level of autophagy and the specific characteristics of the 
cancer under investigation (Fig. 3B).

Due to the significant role of m6A methylation modi-
fication and autophagy in tumor progression, modu-
lating m6A modification and autophagy can be an 
effective strategy for the prevention and treatment of 
cancer. Recent studies have highlighted the importance 
of m6A modification-mediated autophagy in cancer 
progression, particularly in drug resistance. By inter-
vening in m6A modification or autophagy, it may be 
possible to halt cancer progression and enhance the 
sensitivity of chemotherapeutic agents. These current 
studies have demonstrated the tremendous therapeutic 
potential of targeting m6A modification and autophagy, 
which holds great research value and a promising 
future. However, due to their dual roles in cancer, 
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simply inhibiting or enhancing autophagy and m6A 
modification will not lead to successful cancer treat-
ment. The unclear roles of these processes in cancer 
raise concerns about their clinical value as therapeutic 
targets. Therefore, understanding the mechanism by 
which m6A modification regulates the dynamic balance 
of autophagy is crucial. As our understanding of the 
pathogenesis deepens, it will contribute to the develop-
ment of effective clinical treatments for cancer. How-
ever, our current knowledge in this emerging field is 
still limited, and further studies are needed to expand 
our understanding in this area.
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