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Abstract 

Background  Glioma is a highly heterogeneous brain tumor categorized into World Health Organization (WHO) 
grades 1–4 based on its malignancy. The suppressive immune microenvironment of glioma contributes significantly 
to unfavourable patient outcomes. However, the cellular composition and their complex interplays within the glioma 
environment remain poorly understood, and reliable prognostic markers remain elusive. Therefore, in-depth explora-
tion of the tumor microenvironment (TME) and identification of predictive markers are crucial for improving the clini-
cal management of glioma patients.

Results  Our analysis of single-cell RNA-sequencing data from glioma samples unveiled the immunosuppressive role 
of tumor-associated macrophages (TAMs), mediated through intricate interactions with tumor cells and lymphocytes. 
We also discovered the heterogeneity within TAMs, among which a group of suppressive TAMs named TAM-SPP1 
demonstrated a significant association with Epidermal Growth Factor Receptor (EGFR) amplification, impaired T cell 
response and unfavourable patient survival outcomes. Furthermore, by leveraging genomic and transcriptomic data 
from The Cancer Genome Atlas (TCGA) dataset, two distinct molecular subtypes with a different constitution of TAMs, 
EGFR status and clinical outcomes were identified. Exploiting the molecular differences between these two subtypes, 
we developed a four-gene-based prognostic model. This model displayed strong associations with an elevated level 
of suppressive TAMs and could be used to predict anti-tumor immune response and prognosis in glioma patients.

Conclusion  Our findings illuminated the molecular and cellular mechanisms that shape the immunosuppressive 
microenvironment in gliomas, providing novel insights into potential therapeutic targets. Furthermore, the developed 
prognostic model holds promise for predicting immunotherapy response and assisting in more precise risk stratifica-
tion for glioma patients.

Keywords  Glioma, Tumor-associated macrophages, TAM-SPP1, EGFR, Immune suppression

Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Cell & Bioscience

*Correspondence:
Brian H. Y. Chung
bhychung@genomics.org.hk
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-7044-5916
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13578-024-01218-4&domain=pdf


Page 2 of 24Tang et al. Cell & Bioscience           (2024) 14:37 

Introduction
Gliomas represent over 30% of primary brain tumors 
within the Chinese population and are one of the lead-
ing causes of cancer-related deaths globally [1, 2]. Glio-
mas exhibit remarkable heterogeneity, shaped by various 
genetic and epigenetic drivers as well as cellular activi-
ties [3–5]. The World Health Organization (WHO) clas-
sification of central nervous system tumors categorizes 
gliomas into grade 1–4 based on histopathological and 

molecular characteristics [5, 6]. Together, grade 2 and 
grade 3 gliomas account for over 30% of all glioma cases 
[7]. Despite being less aggressive than grade 4 glioblas-
toma (GBM)—which develops rapidly de novo with a 
median overall survival of merely 15 months [8]—grade 
2 and 3 gliomas present a broad range of clinical behav-
iors and survival rates. The progression times for these 
gliomas can vary significantly, ranging from as short as 
two years to well over a decade [4, 9–11]. While genetic 
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alterations such as TP53, isocitrate dehydrogenase (IDH), 
cyclin dependent kinase inhibitor 2A (CDKN2A) muta-
tions and chromosome 1p/19q codeletion are recog-
nized contributors to glioma pathology, the importance 
of non-genetic factors in tumor progression and patient 
risk assessment is increasingly acknowledged [12]. Since 
current patient risk stratification relies solely on well-
established genetic changes, it is imperative to identify 
key molecular factors that can enhance the precision of 
risk assessments in grade 2 and grade 3 gliomas.

Currently, the standard treatment options for gliomas 
are limited to surgical resection and chemoradiotherapy 
[7]. However, complete resection often poses a significant 
challenge, contributing to tumor relapse and progression. 
Moreover, residual tumor cells adapt to the immunosup-
pressive tumor microenvironment (TME), contributing 
to disease recurrence [13]. The glioma TME is a highly 
immunosuppressive milieu, posing a significant barrier to 
eradicating cancer cells and inducing antitumor immu-
nity [14]. Therefore, re-writing the suppressive environ-
ment and boosting the patient’s own anti-tumor immune 
response is vital for favorable prognosis.

Researchers have uncovered the intricate interactions 
between glioma cells, neurons and immune cells, which 
support glioma progression and contribute to therapy 
resistance [15, 16]. Tumor-associated macrophages 
(TAMs), comprising both brain-resident microglia cells 
and bone marrow-derived macrophages, are recruited 
by tumor-derived cytokines and chemokines such as 
CXC motif chemokine ligand 16 (CXCL16), CC motif 
chemokine ligand 2 (CCL2), transforming growth fac-
tor beta (TGF-β) and interleukin 33 (IL-33) [17]. TAMs 
play crucial roles in therapy resistance by promoting 
cancer cell survival, inducing angiogenesis and suppress-
ing CD8+T cell function through cell–cell interactions, 
suppressive cytokine secretion, and immune checkpoint 
upregulation [18–20]. Recent study suggests that TAMs 
initiate a prolonged immune response that results in T 
cell exhaustion and impedes antitumor immunity in glio-
blastoma [21]. Clinical attempts to disrupt the total TAM 
population by inhibiting the interactions between colony 
stimulating factor 1 receptor (CSF1R) with its ligands 
CSF1 and IL-34 have shown limited efficacy in GBM and 
other solid tumors [22, 23]. This ineffectiveness may be 
due to the compensatory activation or recruitment of 
other immune suppressive cells [24]. Therefore, precisely 
targeting specific macrophage subpopulations could 
improve therapy efficacy.

Advances in single-cell sequencing technology have 
revealed transcriptomic diversity in TAMs [25] and offers 
an avenue to explore cell–cell interactions within the gli-
oma TME. However, our understanding of the heteroge-
neity and plasticity of TAMs during glioma progression 

remains limited. Several studies have highlighted the high 
heterogeneity of TAMs in grade 4 GBM, which extends 
beyond the linear M1/M2 transition paradigm [26, 27]. 
Grade 2–3 gliomas are known to be less aggressive than 
grade 4 GBM, apart from genetic differences among gli-
oma grades, grade 2–3 is characterized by a less suppres-
sive TME [28–30]. However, the analysis of the TME in 
grade 2–3 gliomas and grade 4 GBM alongside but sepa-
rately is rarely conducted. Such an analytical approach 
may provide insights into glioma progression and assist 
in identifying key TAM subtypes for devising effective 
therapeutic strategies, including combined therapies.

Immunotherapies such as immune checkpoint block-
ade (ICB) and therapeutic vaccines have shown remark-
able success in treating several types of cancer by 
harnessing the patient’s own immune response [31, 32]. 
However, their efficacy in inducing antitumor responses 
and achieving long-term remissions in glioma patients 
is limited. For instance, phase III clinical trials, such as 
CheckMate 498, CheckMate 548 and CheckMate 143, 
evaluated the use of Nivolumab (a programmed death 
1 (PD-1) blockade antibody) alone or in combination 
with radiotherapy, temozolomide (TMZ), or both, failed 
to meet the primary endpoints in glioblastoma patients 
[33–35]. While some clinical trials have shown prom-
ise in GBM patients using personalized vaccines target-
ing tumor-specific antigens, not all patients benefit from 
this treatment [36, 37]. For example, the IDH1-vac, an 
IDH1 (R132H)-specific peptide vaccine, met its primary 
safety endpoint in a phase I trial involving 33 grade 3 and 
4 IDH1(R132H)+ astrocytomas patients. Despite this, 
a subset of patients failed to mount a vaccine induced 
immune response and experienced disease progression 
[38]. Another allogeneic/autologous therapeutic vaccine 
that showed a survival benefit in a phase II study only 
achieved a 12-month survival rate of 40% [39]. Since the 
underlying causes of failed anti-tumor immune responses 
are not clear, it is essential to identify the barriers that 
hinder successful immune response in order to improve 
the effectiveness of immunotherapy for glioma treatment.

Genetic alterations in tumor cells can greatly influence 
the immune environment by regulating the recruitment, 
activation or suppression of immune cells. For exam-
ple, Kirsten rat sarcoma virus (KRAS) mutations that 
are commonly found in colorectal and lung cancer, can 
induce immune evasion by producing immunosuppres-
sive cytokines such as IL-10 and TGF-β [40]. IDH muta-
tions can lead to the accumulation of 2-hydroxyglutarate 
(2-HG), which is known to suppress antitumor T cell 
immunity [41]. Nevertheless, the tumour-intrinsic altera-
tions that dictate the TAM landscape in human gliomas 
are not well defined. A comprehensive understanding of 
cancer genomics and tumor immunology would reveal 
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disease mechanisms and elucidate the limited success 
of targeted therapies such as epidermal growth factor 
receptor (EGFR) inhibition in glioma [42].

In this study, we performed an integrative analysis 
using both bulk and single-cell RNA-sequencing data 
to characterize the complex TME of glioma. Focus-
ing on the heterogeneous TAMs, the current analyses 
identified three distinct TAM subsets, characterized 
by high expressions of either chemokine (C–C motif ) 
ligand 3 (CCL3), allograft inflammatory factor 1 (AIF1), 
or secreted phosphoprotein 1 (SPP1). These subsets 
displayed differential associations with genetic altera-
tion, T cell exhaustion and patient survival. These find-
ings provide a rationale for developing new combination 
therapies. Moreover, a prognostic model was constructed 
based on the TAM landscape, which can predict anti-
tumor immune responses and assist in risk assessment. 
These findings shed light on the heterogeneous immune 
environment underlying poor prognosis and provide tar-
gets for reprogramming the immunosuppressive TME 
for future treatment strategies.

Results
Analysis of cellular communication networks reveals 
tumor‑promoting interactions between TAMs, tumor cells 
and lymphocytes
Considering that grade 4 GBM is characterized by a 
more suppressive TME than low-grade glioma [28, 
29], we initially focused on examining the TME of two 
patients with low-grade glioma. To this end, we analyzed 
a publicly available single-cell RNA-sequencing data-
set from four glioma tissues of two patients with low-
grade glioma [26]. An initial quality control examination 
revealed 17,687 cells, with a median of 2,628 genes per 
cell. The data were analyzed using Uniform Manifold 
Approximation and Projection (UMAP) for dimension-
ality reduction and clustering. Seven distinct cell clus-
ters were observed, namely Clusters C0 to C6 (Fig.  1a). 
Approximately 40% of the total cells were in Cluster C0, 
which highly expressed microglia markers P2RY12 and 
TMEM119, along with macrophage markers ITGAM 
(encoding for CD11b), CD68 and CD14. This popula-
tion was designated as C0-TAM (Additional file  1: Fig. 
S1a, b). This is consistent with previous knowledge that 
TAMs represent a prominent immune cell population 
within the TME of gliomas [43]. By analyzing the expres-
sion of cell type-specific canonical markers (Fig. 1b), we 
categorized the remaining six clusters as follows: C1-gli-
oma-DLL3, indicating gliomas with high cell surface 
expression of the notch ligand delta-like ligand 3 (DLL3) 
expression; C2-glioma-SPARCL1, referring to gliomas 
with elevated expression of acidic and rich in cysteine-
like 1 (SPARCL1), which has been reported in cancer 

stem cell [44]; C3-oligodendrocyte; C4-glioma-TOP2A, 
characterized by high levels of topoisomerase II-alpha 
(TOP2A) expression, which is indicative of proliferating 
tumor cells [45], C5-endothelial cell and C6-lymphocyte 
(Fig. 1a). The above marker gene based manual annota-
tion (Additional file  8: Table  S1) demonstrated a high 
level of consistency with the automated cell-type scor-
ing performed by ScType, a data-driven tool that enables 
cell type annotation through comprehensive cell marker 
databases (Fig. 1c and Additional file 8: Table S2) [46].

We then examined the intercellular communication 
between these seven cell clusters within the TME using 
the human CellChat database [47]. We analyzed the sign-
aling patterns originating from and received by each of 
the seven cell clusters. Out of the 229 curated pathways, 
six signaling pathways, including migration inhibitory 
factor (MIF), thymus cell antigen 1 (THY1), angiopoie-
tin-like protein (ANGPTL), osteopontin (SPP1), galectins 
(GALECTIN) and platelet-derived growth factor (PDGF) 
pathways were highly active in transmitting signals 
between different cell clusters (Fig. 1d).

The MIF signals sent by glioma cells (Clusters C1, C2 
and C4) were mainly received by TAMs (Cluster C0) via 
receptors CD74 and CXCR4, and by lymphocytes (Clus-
ter C6) via CD74, CXCR4 and CD44 (Fig. 1e, f ). The MIF 
signaling axis on CD74/CXCR4 was found to be upregu-
lated in glioma infiltrating macrophages and has been 
implicated in brain tumorigenesis by impeding micro-
glial polarization [48, 49]. Meanwhile, ligand-receptor 
interactions between THY1 (CD90) and ITGAX/ITGB2 
(CD11C/CD18) were observed from glioma cells (Clus-
ters C1, C2, and C4) to TAMs (Cluster C0) (Fig. 1g, h). 
CD90 is a marker associated with mesenchymal stem 
cells in gliomas. Studies have reported that glioma tumor 
cells with high levels of CD90 are highly invasive [50, 
51]. Additionally, CD11C/CD18 belongs to the family of 
integrins and is mainly expressed by myeloid cells. These 
adhesion molecules are known to potentiate cancer stem 
cell function [52, 53], supporting the role of the THY1-
ITGAX/ITGB2 axis in glioma cell adhesion, survival, 
and differentiation. We also observed an enrichment of 
the ANGPTL signaling pathway between glioma (mainly 
from Clusters C1) and TAM (Cluster C0), mediated by 
angiopoietin-like 2 (ANGPTL2) and toll-like receptor 4 
(TLR4) (Fig.  1i, j). On the other hand, TAMs signal the 
glioma cells through the PDGFB to PDGF receptor alpha 
(PDGFRα) axis (Additional file  1: Fig. S1c, d), which 
could trigger downstream phosphatidylinositol 3 kinase 
(PI3K) and mitogen-activated protein kinase (MAPK) 
pathways. This leads to tumor proliferation, metastasis, 
and angiogenesis in many malignancies [54]. The results 
suggest that TAM cells can interact with tumor cells in a 
reciprocal manner, facilitating glioma tumor growth.
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Fig. 1  Illustration of cellular communication networks between tumor cells and TAMs in the low-grade glioma microenvironment. a scRNA-seq 
analysis of glioma patients. UMAP projection of 17,687 single cells isolated from tumor tissues, coloured by graph-based cell clusters and inferred 
cell types. b Volcano plot showing significantly upregulated or downregulated genes in each cluster, with the top three markers for each cluster 
highlighted. c UMAP projection of 17,687 single cells coloured according to automated cell type annotation by “ScType”. d Heatmap revealing 
the major MIF, THY1, ANGPTL, SPP1, GALECTIN and PDGF signals that significantly contribute to outgoing or incoming signaling for specific 
cell groups. e, g, i Chord plots and heatmaps showing significantly interacting pathways and communication probabilities of MIF (e), THY1 (g) 
and ANGPTL (i) pathways between tumor cells and TAMs in glioma TME. f, h, j Circle and violin plots depicting ligand-receptor pairs in each 
pathway and their respective expression patterns in each cell cluster
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To elucidate the mechanisms of TAM-mediated immu-
nosuppression, we also investigated the interactions 
between TAMs and lymphocytes. Our findings revealed 
that the SPP1 and GALECTIN signaling pathways signifi-
cantly contribute to the communication between TAMs 
(Cluster C0) and lymphocytes (Cluster C6) (Fig.  1d; 
2a-d). These findings were in line with previous studies. 
For instance, the interaction between the glycoprotein 
SPP1 and the cell surface receptor CD44 has been found 
to inhibit T cell activation and proliferation, as well as 
promote tumor immune evasion [55, 56]. Additionally, 
Galectin-9 (encoded by LGALS9), a recognized suppres-
sive immunomodulator, has been reported to confer 
immune tolerance by exhausting natural killer (NK) cells 
and stimulating regulatory T cell (Treg) differentiation 
through its interaction with CD44 [57, 58].

Single‑cell RNA‑seq analysis reveals heterogeneous TAM 
subtypes in gliomas
To investigate the functional variations among TAMs in 
glioma, we characterized the TME at a higher resolu-
tion and further annotated it into 13 distinct cell clusters 
based on unique cell markers (Fig.  2e, f ). Among these 
clusters, the TAM population (Cluster C0 in Fig. 1a) was 
further divided into three subsets and named as TAM-
CCL3, TAM-AIF1, and TAM-SPP1 (Fig. 2e, f ). The sub-
set TAM-CCL3 exhibited relatively higher expression 
of chemokine-related genes, such as CCL3, CCL4 and 
CCL4L2, which are known markers of active microglia 
(Fig. 2f and Additional file 2: Fig. S2a) [49, 59]. Pathway 
enrichment analysis conducted using ‘fgsea’, on the dif-
ferentially expressed genes in the TAM-CCL3 subset 
compared to other TAM subsets, revealed an enrich-
ment of immune activation pathways (p < 0.05). These 
pathways include tumor necrosis factor alpha (TNFα) 
signaling, inflammatory response, IL2 and signal trans-
ducer and activator of transcription 5 (STAT5) signaling, 
and interferon-gamma (IFNγ) response, suggesting its 
involvement in anti-tumor immune response (Fig.  2g). 
The TAM-AIF1 subset expressed high levels of AIF1, 
C1QA, C1QB and P2RY12 (Fig. 2f and Additional file 2: 
Fig. S2a), which are markers of activated and homeo-
static microglia [60, 61], suggesting that this population 
consist of brain-resident microglia. On the other hand, 
the TAM-SPP1 subset was characterized by high expres-
sion of SPP1, FTL, LAPTM5, S100A11 (Additional file 8: 
Table  S3). SPP1 is a secreted glycoprotein that highly 
expressed by bone marrow-derived monocytes and is 
known to sustain glioma cell survival and stimulate angi-
ogenesis [62]. TAM-SPP1 subset also highly expressed 
lipid metabolism genes, including APOC1, APOC2, and 
TREM2, which are known markers of lipid-associated 
macrophages (LAMs) [63, 64] (Fig.  2e, f and Additional 

file  2: Fig. S2a). Pathway analysis indicated that TAM-
SPP1 was enriched in angiogenesis, catabolic, and ana-
bolic metabolic pathways (Fig.  2h). This implies that 
TAM-SPP1 utilizes the limited nutrients available in the 
TME by activating metabolic pathways, potentially play-
ing a role in regulating metabolic hemostasis and angio-
genesis within the glioma TME (Fig. 2h).

Next, we evaluated the clinical relevance of the three 
TAM subsets for prognosis prediction. Gene expres-
sion data from 507 low grade glioma patients were 
obtained from the TCGA database. We observed that 
patients expressing high levels of signature markers in 
the TAM-AIF1 and TAM-SPP1 subsets had poorer sur-
vival outcomes, whereas patients expressing high levels 
of markers in the TAM-CCL3 subset had better survival 
outcomes (Fig.  2i and Additional file  2: Fig. S2b). We 
therefore speculate that the composition of TAMs may 
significantly influence the prognosis of low-grade glioma 
patients.

TAM subtypes exhibit distinct functions and are regulated 
by different transcriptional networks
We then investigated how TAM subsets exert their tumor 
suppression or promotion functions. Several immune-
checkpoint molecules were substantially expressed in the 
lymphocyte cluster (Fig. 3a), including CTLA4 (encoding 
Cytotoxic T-Lymphocyte Associated Protein 4, CTLA4), 
LAG3 (encoding Lymphocyte-Activation Gene 3, LAG-
3), PDCD1 (encoding Programmed Death-1, PD-1) and 
TIGIT (encoding T-cell Immunoreceptor with Ig and 
ITIM domains, TIGIT) (Fig.  3a). Signature scores of 
immune checkpoints, including CTLA4, LAG3, PDCD1, 
PD-L1, PD-L2 and TIGIT as well as the top five marker 
genes within each TAM subset were calculated using 
RNA-seq data from TCGA low grade glioma patients. 
Remarkably, the signature scores of immune checkpoints 
strongly correlated with the markers of TAM-AIF1 and 
TAM-SPP1 (p < 0.0001, R = 0.77 and 0.72, respectively) 
(Fig.  3b-d), suggesting that TAM-AIF1 and TAM-SPP1 
might foster T-cell exhaustion in the TME. Moreo-
ver, Tumor Immune Dysfunction and Exclusion (TIDE) 
analysis, which integrates the expression signatures of T 
cell dysfunction and T cell exclusion to predict immu-
notherapy response [65], showed that the TAM-SPP1high 
patients were significantly more susceptible to immu-
notherapy resistance based on higher TIDE (p < 0.01), T 
cell dysfunction (p < 0.0001) and T cell exclusion scores 
(p < 0.01) compared to TAM-SPP1low patients (Fig.  3e). 
On the contrary, TAM-CCL3high patients displayed lower 
TIDE (p < 0.05) and T cell exclusion scores (p < 0.01) com-
pared to TAM-CCL3low patients (Additional file  3: Fig. 
S3a). These results suggested that TAM-SPP1 plays the 
major role in suppressing T cells and could be a potential 
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Fig. 2  Illustration of cellular communication network between TAMs and lymphocytes as well as the characterization of TAM subsets in glioma 
patients. a, c Chord plots and heatmaps displaying significantly interacting pathways (SPP1 and GALECTIN) and communication probabilities 
between TAMs and lymphocytes in glioma TME. b, d Circle plots and violin plots indicating the ligand-receptor pairs in SPP1 and GALECTIN 
pathways and their expression patterns across cell clusters. e UMAP coloured by graph-based cell clusters and inferred cell types at an increased 
resolution. f Dot plot displaying three canonical markers among the top differentially expressed genes across clusters. g, h Hallmark pathway 
analysis showing the top 15 enriched categories of differentially expressed genes in TAM-CCL3 (g) and TAM-SPP1 (h) (Log2FC > 0.25, p < 0.05, n = 338 
and 476) compared with other TAM subsets, coloured by normalized enrichment scores (NES) score. i Clinical prognostic prediction values for each 
TAM subtype in TCGA glioma patients. (with median value of gene expression used as cut-off. Green: high expression of biomarkers associated 
with better survival; red: high expression of biomarkers associated with poor survival ; ns: not significant)
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Fig. 3  Characterization of distinct functions and diversely activated transcription factors within TAM subsets. a Dot plot indicating the expression 
of T cell exhaustion markers in each cluster of the glioma single cell dataset. b–d Spearman correlation between signature scores of the top five 
markers in TAM-AIF1 (C1QB, C1QA, HLA-DRB1, AIF1, CD74), TAM-CCL3 (CCL3, CCL4, IL1B, CCL3L1, CCL4L2), TAM-SPP1 (SPP1, FTL, APOC1, S100A11, APOC2), 
and the signature score of immune checkpoints (CD274, PDCD1LG2, CTLA4, PDCD1, LAG3, TIGIT) in the TCGA glioma dataset. e Analysis of TIDE, T cell 
dysfunction and T cell exclusion scores calculated by the TIDE algorithm in TCGA glioma patients with high and low marker scores for TAM-SPP1. f, 
g, h Violin plots showing expression of three TFs (BCL3, NFKB2, and MEF2C), selected as examples of enriched TFs in TAM-CCL3 or TAM-AIF1. i–k, m 
UMAP plots showing the regulon activity for TFs at the single-cell resolution, with cells having AUC scores higher than the threshold highlighted. 
l Heatmap showing top regulon activity in each TAM subtype. Statistical significance was determined by two-tailed Spearman correlation 
between variables for (b–d), and by unpaired two-tailed Student’s t-test for (e). **p < 0.01; ****p < 0.0001
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marker for predicting immunotherapy responses in gli-
oma patients.

We hypothesized that different TAM subsets influence 
glioma progression through transcription factors (TFs) 
that regulate gene expression networks. Single-Cell Reg-
ulatory Network Inference and Clustering (SCENIC) was 
applied to infer TF-target gene interactions and define 
cell type-specific regulatory network activity [66]. The top 
three cluster-distinct TFs were identified for the 13 cell 
clusters (Additional file 3: Fig. S3b). The SOX TF family, 
which play an anticipated role in maintaining stemness 
and initiating the differentiation of stem cells in glioma 
[67], exhibited aberrant activity in some glioma cell clus-
ters (Additional file  3: Fig. S3b). SOX9 and HEY2, TFs 
associated with glioma stemness, were highly expressed 
in the Glioma-SPARCL1 population (Additional file  3: 
Fig. S3b), suggesting that this population might consist of 
glioma stem cells. In addition, SOX10 and NKX6.2 were 
highly expressed in oligodendrocytes, which have been 
reported to be involved in the differentiation and matu-
ration of oligodendrocytes [68, 69]. MECOM and EBF1 
were highly active in endothelial cells, consistent with 
their known roles as endothelial lineage regulators [70, 
71]. BCL11B and PBX4 were highly expressed in lympho-
cytes (Additional file  3: Fig. S3b), consistent with their 
established roles in T cell development [72, 73].

The activity of the regulon (TF and its target genes) 
in each cell was qualified using the area under the curve 
(AUC) value, which reflects the proportion of regulon 
genes expressed in the cell. The regulon activity of the 
TAMs cell clusters provides a greater understanding of 
their functional heterogeneity. Notably, BCL3 (encod-
ing B-Cell Lymphoma 3) and NFKB2 (encoding Nuclear 
Factor Kappa B Subunit 2), which serve as master regula-
tors of inflammatory response, inflammasome activation, 
cytokine release, and cell survival [74], were enriched in 
the TAM-CCL3 subset (Fig. 3f, g). Cells with high BCL3 
and NFKB2 regulon activity were shown on the UMAP 
plot, corresponded well with the TAM-CCL3 subset 
(Fig. 2, 3i, j). Moreover, myocyte-specific enhancer factor 
2C (MEF2C), a marker of brain-resident microglia [75], 
was highly expressed in both TAM-AIF1 and TAM-CCL3 
subsets (Fig.  3h) and showed higher regulon activity in 
these two subsets (Fig. 3k). The activation of lipid synthe-
sis, as suggested by the high expression of SREBF1 regu-
lon (Fig. 3l, m) as well as the enriched pathways of lipid 
metabolism and oxidative phosphorylation (OXPHOS) 
(Fig.  2h), indicated that TAM-SPP1 was likely undergo-
ing metabolic reprogramming. Such changes suggest 
that TAM-SPP1 has a bias towards energy utilization, as 
enhanced OXPHOS would facilitate the anti-inflamma-
tory function of macrophages [76, 77]. This single-cell 
analysis revealed the functional heterogenicity of TAMs 

within the glioma TME and uncovered the underlying 
transcriptional regulatory networks.

Single‑cell RNA‑seq analysis reveals interaction 
between representative TAM subsets and exhausted T cells
This above analysis enabled us to investigate the TAMs 
in low-grade patients without the interference from 
aggressive high-grade glioma, which led to the identifi-
cation of three distinct and easily distinguishable TAM 
populations. To ascertain whether such findings could be 
seen to larger datasets and to further elucidate whether 
these three distinct TAM subpopulations are associ-
ated with the aggressiveness of glioma, we extended the 
analysis across tumor grades by incorporating 122,626 
cells from an additional 15 patients, including four grade 
3 and eleven grade 4 glioma patients (Fig.  4a). Detec-
tion of large-scale copy number alterations by InferCNV 
analysis on the scRNA-seq data differentiating malig-
nant cells from normal cells (Fig. 4b). Grade 4 GBM and 
grade 2–3 low grade glioma (LGG) have distinct tran-
scriptomic profile for tumor cells, while they exhibited 
similar immune cell transcriptome profile (Fig.  4b, c). 
An examination of all significant cell–cell communica-
tions pathways between CD68+TAMs and lymphocytes 
(Fig.  4d, e) substantiated that SPP1 and GALECTIN 
signaling are predominantly responsible for the interac-
tions between TAMs and lymphocytes (Fig. 4f ). Notably, 
the TAM cells from grade 4 GBM expressed higher level 
of SPP1 compared to grade 2–3 LGG (Fig. 4g). We then 
performed clustering on the TAM subsets from the 17 
cross-grade glioma patients and found three major TAM 
subsets with distinguished expression of CCL3, AIF1, and 
SPP1 respectively, the three subsets also share most of 
the marker genes with the previously identified TAMs in 
grade 2 glioma (Fig. 4h, i and Additional file 8: Table S4). 
Interestingly, the AIF1+TAM and SPP1+TAM were sig-
nificantly more prevalent in grade 4 GBM compared to 
grade 2/3 gliomas (Fig. 4j).

To better understand the lymphocyte subtypes, we per-
formed de novo clustering on lymphocytes derived from 
17 patients. This analysis revealed six major types of lym-
phocytes, including αβT cells, unconventional γδT cells, 
exhausted T cells, plasma B cells, pre-B cells and cycling 
T cells (Fig.  4k). Among these, the most abundant αβT 
cells was characterized by the expression of CD3G, CD2, 
GZMK, CCL5 as well as CD69, the latter being a marker 
prevalent in tissue-resident rather than circulating T 
cells. Another exhausted T-cell subset exhibited elevated 
levels of immune checkpoint molecules and the activa-
tion marker CD25 (IL2RA) (Fig.  4l). Additionally, cell–
cell interaction analysis between subsets of TAMs and T 
cells revealed that SPP1 signaling largely emanates from 
TAM-SPP1, whereas GALECTIN signaling primarily 
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comes from TAM-AIF1 (Fig.  4m). We found that these 
exhausted T cells are one of the major recipients of both 
SPP1 and GALECTIN signaling, followed by αβT cells 
and cycling T cells (Fig. 4m).

Moreover, we examined a mouse dataset containing 
12,228 single cells from non-tumor bearing mice, LGG, 
and high-grade gliomas (HGG) [49]. This dataset was 
generated using a spontaneous murine glioma model that 

Fig. 4  Single-cell RNA-seq analysis reveals interaction between representative TAM subsets and exhausted T cells. a, b UMAP projection of 122,626 
single cells isolated from 17 glioma patients (six grade2/3 LGG and 11 grade 4 GBM samples), coloured by LGG/GBM (a) and normal/malignant cells 
(b). c–e UMAP plot coloured by expression pattern of PTPRC (c), CD68 (d) and CD3D (e). f Chord plot showing the significantly interacting pathways 
between TAMs and lymphocytes in the glioma TME. g UMAP plot and violin plot showing SPP1’s expression pattern and levels in LGG and GBM. 
h UMAP projection of the three clusters of TAMs in the 17 glioma patients. i Dot plot indicating the expression of CCL3, CCL4L2, IL1B, AIF1, C1QA, 
C1QB, SPP1, S100A11 and LGALS1 in each cluster of the TAM subsets. j Box plot showing the proportion of AIF1+TAM and SPP1+TAM in total cells 
between LGG and GBM. k UMAP projection of six clusters of lymphocytes in the 17 glioma patients. l Dot plot indicating the expression of marker 
genes in each cluster of the lymphocytes. m Heatmap revealing the intensity of outgoing and incoming signals for TAM and lymphocyte subsets. 
Statistical significance was determined by unpaired two-tailed Student’s t-test for (j). *p < 0.05
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recapitulates LGG-to-HGG malignant progression. Con-
sistent with the findings in human gliomas, Spp1, Aif1 
and Ccl3 mainly expressed in glioma-associated mac-
rophages, hemostatic microglia and activated microglia, 
respectively (Additional file  3: Fig. S3c–e). Importantly, 
Spp1+TAMs were most abundant in HGG (n = 836) com-
pared with LGG (n = 233) and less abundant in the non-
tumor bearing mice (n = 112) (Additional file 3: Fig. S3f ). 
Taken together, these results suggest a potential onco-
genic role for SPP1+TAM in promoting glioma develop-
ment. Moreover, monitoring the composition of TAMs, 
especially SPP1+TAM, in low-grade gliomas is important 
for prognosis prediction.

TAM‑SPP1 is associated with poor prognosis and worse 
survival in glioma patients
In the previous section, we highlighted the complex 
interplay between tumor and immune cells, and  illus-
trated the heterogeneous functions of TAM subsets 
within the glioma TME. To corroborate these findings 
on a broader scale, we employed the deconvolution algo-
rithm CIBERSORTx [78] to explore the composition of 
infiltrating immune cells in low grade glioma patients 
from the TCGA and the Chinese Glioma Genome Atlas 
(CGGA) datasets (Additional file 8: Table S5 and S6). Ini-
tially, we constructed a glioma-specific reference matrix 
based on the single-cell gene expression of the seven cell 
clusters mentioned earlier (Fig. 2e), which encompassed 
the three TAM subsets, as well as endothelial cells, gli-
oma cells, oligodendrocytes, and lymphocytes. Subse-
quently, the customized gene-cell reference matrix was 
used to estimate the abundance of the seven cell clusters 
from the bulk RNA-seq datasets of TCGA and CGGA 
cohorts (Additional file  4: Fig. S4a). The bulk RNA-seq 
data were successfully deconvoluted with a median cor-
relation of 0.817 (SD = 0.097) for the TCGA patients and 
0.727 (SD = 0.182) for the CGGA patients.

Intriguingly, both TCGA and CGGA datasets indicated 
that TAM-SPP1 was consistently more abundant in pri-
mary glioma patients with poor prognosis (p < 0.0001, 
Fig.  5a, b), and was significantly associated with poorer 
overall survival compared to those with low levels 
(p < 0.0001, Fig.  5c, d). Recurrent glioma patients from 
the CGGA cohort also had elevated proportions of TAM-
SPP1 compared to primary patients (Fig.  5e). Addition-
ally, we noticed a trend towards better survival outcomes 
for patients with high levels of TAM-CCL3 (Fig.  5f, g). 
Higher level of TAM-AIF1 associated with poor overall 
survival of glioma patients in the CGGA cohort (Addi-
tional file  4: Fig. S4b). Overall, TAM-SPP1 emerged as 
one of the most profound predictors of glioma patient 
prognosis.

Next, we attempted to classify the TCGA glioma 
patients using the molecular signatures of the three dis-
tinct and easily distinguishable TAM populations. The 
patients were scored based on the expression of the 
top 15 markers within each TAM subset, segregating 
them into two distinct clusters, referred to as Cluster 1 
and Cluster 2 (Fig.  5h and Additional file  8: Table  S7). 
Cluster 2 patients showed elevated levels of TAM-SPP1 
(p < 0.0001), TAM-AIF1 (p < 0.0001) and low levels of 
TAM-CCL3 (p < 0.0001, Fig. 5i), and experienced poorer 
survival outcome (Fig. 5j) compared to Cluster 1 patients. 
Consistent with the suppressor role of TAM-SPP1 in T 
cell inactivation through interacting with inhibitory 
checkpoints and secretion of suppressive cytokines [56, 
79–81], we observed that Cluster 2 patients expressed 
higher levels of inhibitory immune molecules such as 
CTLA4, LAG3, IL10, and TGFB1 (Fig.  5k), indicating a 
more suppressive TME. Considering the heterogeneity 
of TAMs, these results support our hypothesis that the 
composition of TAMs can serve as a prognostic predictor 
for glioma patients.

A TAM signature‑based prognostic model effectively 
predicts the anti‑tumor immunity and accurately assesses 
the risk for glioma patients
Furthermore, we developed a prognostic model for 
glioma patients based on the molecular differences 
observed between patients in Cluster 1 and Cluster 2 
(Additional file  5: Fig. S5a), who showed distinct prog-
nosis, immune cell infiltration patterns and inhibitory 
molecules (Fig. 5i-k). Using a log2 fold change cut-off of 
0.6, 1959 genes differentially expressed between Cluster 
1 and Cluster 2 patients. Subsequently, a univariate Cox 
regression analysis detected 1311 genes significantly 
associated with patient outcomes. To further identify 
the most crucial variables associated with patient sur-
vival, a least absolute shrinkage and selection operator 
(LASSO) penalty Cox regression analysis was applied, 
and 17 genes were shortlisted. The 17 genes were ranked 
by the random forest algorithm (Additional file  5: Fig. 
S5b, c). Among the top 10 genes, four were found to be 
most predictive, including APOBEC3C, EMP3, IGF2BP2 
and TGIF1 (Additional file 5: Fig. S5c). Using these four 
genes, a prognostic model was built for glioma patients 
through multivariate Cox regression analysis.

The predictive performance of the model was then 
evaluated using time-dependent receiver operating 
characteristic (ROC) curves at 1, 3 and 5 years, which 
demonstrated an area under curve (AUC) exceed-
ing 0.7 at each of these time points (Fig. 6a). Using the 
risk score derived from the prognostic model, patients 
were stratified into high- and low-risk groups, with 
the optimal cut-point in the ROC curve serving as the 
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Fig. 5  Survival analysis of TAM subsets deconvoluted from bulk RNA-seq datasets. a, b Boxplots showing the differential distribution of TAM-SPP1 
in primary glioma patients from the TCGA (a) and CGGA (b) datasets (Good: alive; poor: death). c, d Kaplan–Meier curves of overall survival 
according to the proportions of TAM-SPP1 in TCGA (c) and CGGA (d) glioma patients. e Boxplots showing the differential distribution of TAM-SPP1 
in primary and recurrent glioma patients from the CGGA dataset. f, g Kaplan–Meier curves of overall survival according to the proportions 
of TAM-CCL3 in TCGA (f) and CGGA (g) glioma patients. h Heatmap depicting a consensus clustering solution (K = 2) for three TAM signatures in 507 
primary glioma samples from the TCGA dataset, the blue color indicating a high level of similarity in the expression profiles among the genes 
within a cluster. i Boxplot showing the differential distribution of seven cell types in Cluster 1 and Cluster 2 glioma patients from the TCGA datasets. 
j Kaplan–Meier curves of overall survival of patients in Cluster 1 and Cluster 2 among the 507 TCGA glioma patients. k Heatmap illustrating 
the expression pattern of inhibitory ligands, receptors, and enzymes in each cluster. Expression values are represented by z scores calculated 
across all tumors in the two clusters. (orange: high expression; green: low expression). Statistical significance was assessed by unpaired two-tailed 
Student’s t-test for (a, b, e, i), and by two-sided log-rank (Mantel-Cox) test for (c, d, f, g, j). *p < 0.05; **p < 0.01; ****p < 0.0001
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threshold. Kaplan–Meier analysis revealed a signifi-
cantly poorer prognosis for patients in the high-risk 
group (p < 0.0001; Fig. 6b).

We assessed the prognostic ability of our four-gene 
prognostic model and established clinical risk factors 
using univariate Cox regression analyses. In addition 
to current well-known indicators of glioma prognosis, 
such as IDH mutation, 1p/19q co-deletion and MGMT 
promoter methylation, the risk score also represents a 
significant independent predictor for overall survival 
(Additional file  5: Fig. S5d). We then included all rele-
vant clinical variables as cofactors in a multivariate Cox 
regression analysis. Importantly, the risk score remained 
the significant prognostic risk factor (HR 2.216, 95% CI 
1.753–2.8, p < 0.001) (Additional file 5: Fig. S5e). This sug-
gests that integrating the risk score with existing clinical 
indicators could enhance the overall survival predictions 
for glioma patients. Although patients with IDH muta-
tion generally have better survival outcomes compared 
to patients with wildtype IDH, the survival rates still 
vary significantly. Therefore, we examined whether our 
developed prognostic model could provide a more accu-
rate risk prediction based on the current risk assessment 
by IDH status. Univariate analysis results indicated that 
the risk score effectively further classified IDH-mutant 
patients into high- and low-risk groups (Fig. 6c). Consist-
ent with the previous findings that patients in Cluster 2 
had higher levels of TAM-SPP1 and TAM-AIF1 (Fig. 5i), 
patients with higher risk scores also demonstrated 
higher levels of TAM-SPP1 (p < 0.0001) and TAM-AIF1 
(p < 0.0001) but not TAM-CCL3 (Fig.  6d-f ). Moreo-
ver, the signature scores of marker genes in TAM-SPP1 
(R = 0.75, p < 0.05) and TAM-AIF1 (R = 0.75, p < 0.05) 
displayed a stronger correlation with the risk score than 
TAM-CCL3 (R = 0.16) (Fig.  6g–i). These results indi-
cate that the risk score can reflect the degree of immune 

suppression in the TME caused by different proportions 
of TAM composition.

In addition, high-risk patients showed significantly 
higher susceptibility to immunotherapy resistance 
(p < 0.0001; Fig.  6j) as indicated by their higher TIDE 
(p < 0.0001), T cell dysfunction (p < 0.05) and T cell exclu-
sion scores (p < 0.0001) compared to low-risk patients 
(Fig. 6k, m), suggesting an immunologically barren TME 
in high-risk patients. This is in line with our earlier obser-
vations that TAM-SPP1 and TAM-AIF1 subsets were 
associated with T cell exhaustion (Fig. 3c, d).

Similar results were obtained when the prognostic 
model was evaluated using the CGGA dataset. The AUC 
values for 1-, 3-, and 5-year overall survival in the CGGA 
cohort were 0.693, 0.723, and 0.736, respectively (Fig. 6n). 
Patients with higher risk scores had poorer survival 
(p < 0.0001, Fig. 6o) and were predicted to have a poorer 
immunotherapy response (p < 0.001, Fig.  6p) based on 
higher TIDE and T cell exclusion scores (p < 0.0001, 
Fig.  6q, r). High-risk patients in the CGGA cohort also 
had higher levels of TAM-SPP1 (p < 0.0001) and TAM-
AIF1 (p < 0.01, Fig. 6s, t). The risk score was also strongly 
correlated with the signature score of immune check-
points (R = 0.74 and 0.72, p < 0.05, Additional file  5: 
Fig. S5f, g). Taken together, these results confirmed the 
robustness of the TAM-based prognostic model in indi-
cating the functional status of T cells and predicting 
patient outcomes.

EGFR amplification is associated with suppressive TAM 
subsets and a higher risk score
To investigate the genetic alterations associated with 
immunological differences and patient outcomes, we 
analyzed the somatic mutation profiles in the two clus-
ters of glioma patients. According to single nucleotide 
variation (SNV) analysis, most variants in both clusters 

(See figure on next page.)
Fig. 6  Assessment of prognostic performance and predictive power of the TAM signature-based model. a ROC curves of the prognostic 
model predicting 1/3/5-years survival in the TCGA glioma dataset. b Kaplan–Meier curves of overall survival in TCGA glioma dataset according 
to the high (n = 178) and low (n = 329) risk score calculated based on the prognostic model. The cut-off is selected using the point that maximizes 
the difference between the true positive rate (TPR) and the false positive rate (FPR). c Forest plot describing the associations between survival 
outcomes with risk scores from the prognostic model and IDH mutation. The p value was inferred by the univariate Cox regression model. d–f 
Violin plots representing the distribution of TAM-SPP1 (d), TAM-AIF1 (e) and TAM-CCL3 (f) between TCGA glioma patients with high (n = 178) or low 
(n = 329) risk scores. g–i Spearman correlation between risk scores and the signature score of the top five markers for each TAM cluster in the TCGA 
glioma dataset. j Prediction of potential clinical response to immunotherapy in TCGA glioma patients, comparing patients with high- versus low-risk 
score. k–m Analysis of TIDE (k), T cell dysfunction (l) and T cell exclusion (m) scores in TCGA glioma patients with high- and low- risk scores. n ROC 
curves of the prognostic model predicting 1/3/5-years survival in the CGGA glioma dataset. o Kaplan–Meier curves of overall survival in CGGA 
glioma dataset according to the high (n = 248) and low (n = 344) risk scores based on the prognostic model. The cut-off is selected using the point 
that maximizes the difference between the TPR and the FPR. p TIDE prediction of potential clinical immunotherapy response in CGGA glioma 
patients, comparing high- versus low-risk scores. q, r Analysis of TIDE (q) and T cell exclusion (r) scores in CGGA glioma patients with high and low 
risk scores. s, t Violin plots representing the TAM-SPP1 (s) and TAM-AIF1 (t) levels in CGGA glioma patients with high- and low-risk scores. Statistical 
significance was assessed by unpaired two-tailed Student’s t-test for (d–f, k–m, q–t), by two-sided χ2 test for (j, p), by two-tailed Spearman 
correlation between variables for (g–i) and by two-sided log-rank test for (b, o). *p < 0.05; **p < 0.01; ****p < 0.0001
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were missense variants, with Cluster 2 patients having 
approximately 15,000 SNPs and Cluster 1 patients less 
than 8000, predominantly cytosine to thymine substitu-
tions (Additional file 6: Fig. S6a, b). The mutation types 
of the top 20 mutated genes were shown (Additional 

file 6: Fig. S6c, d). In both clusters, IDH1, TP53, ATRX, 
CIC, and PIK3CA, which are known to be involved in 
tumorigenesis, were frequently mutated genes. It is 
noteworthy that EFGR mutations were observed in 10% 
of patients in Cluster 2, whereas they were rarely seen 
in Cluster 1 patients (Additional file 6: Fig. S6c, d).

Fig. 6  (See legend on previous page.)
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We also assessed somatic copy number variation 
(CNV) using GISTIC2, which calculates the G-score for 
each genomic location based on the frequency and mag-
nitude of copy number changes [82]. For each cluster, a 
global CNV profile was obtained by selecting CNVs with 
a false discovery rate (FDR) q-value of less than 0.25. 
Interestingly, Cluster 2 patients showed a higher G-score 
for a 7p11.2 amplification which harbors EGFR (Fig. 7a, 
b and Additional file  6: Fig. S6e, f ). This EGFR amplifi-
cation was associated with higher EGFR mRNA expres-
sion and poorer survival outcomes (p < 0.0001, Additional 
file 7: Fig. S7a, b).

CCL2 plays a crucial role in recruitment of blood-
derived monocyte and contributes to the immunosup-
pressive TME [83–85]. Targeting the CCL2/CCR2 axis 
has been shown to reduce tumor infiltrating macrophages 
in pre-clinical glioma studies [86, 87]. The single-cell data 
suggested that EGFR was primarily expressed in glioma 
cells (Additional file  7: Fig. S7c). Previous studies have 
shown that EGFR from tumor cells can regulate the 
recruitment of macrophages by increasing CCL2 expres-
sion in glioblastoma and breast cancer [88–90]. Con-
sistently, we observed higher levels of CCL2 in patients 
with EGFR amplification (p < 0.01, Fig. 7c). Consequently, 
grade 2 and 3 glioma patients with EGFR amplification 
(copy number fold change > 1.2, n = 103) had higher level 
of TAM-SPP1 (p < 0.0001) as well as higher score of TAM-
SPP1 marker genes compared to patients without EGFR 
amplification (Fig.  7d, e). On the other hand, patients 
with amplified EGFR showed lower level of TAM-CCL3 
(p < 0.001) and lower score of TAM-CCL3 marker genes 
(Fig.  7f, g). This observation was consistent with previ-
ous findings (Fig.  5i), implicating that EGFR amplifica-
tion may serve as one of the regulators in depicting the 
TAMs landscape. In support of our hypothesis, most of 
the EGFR-amplified patients had high levels of TAM-
SPP1 (Fig. 7i). Interestingly, these patients showed poorer 
overall survival compared to EGFR-amplified patients 
with low levels of TAM-SPP1 (p < 0.0001, Fig. 7j), indicat-
ing that the recruitment of TAM-SPP1 may underscore 
the oncogenic role of EGFR amplification. This finding 
is corroborated by a well-annotated single-cell dataset 
encompassing 92,102 myeloid cells from 62 patients with 
grade 4 GBM [91]. Among these cells, 35,391 are from 
patients with wild type EGFR, while the remaining cells 
are from patients with amplified EGFR. We leveraged the 
systematic annotation provided by the GBM atlas. The 
results showed that two groups of bone marrow derived 
TAMs (TAM-BDM) (namely TAM-BDM anti-inflam-
matory and TAM-BDM hypoxia/mesenchymal (MES)) 
were more prevalent in patients with amplified EGFR 
compared to those with wild type EGFR. Notably, these 
two groups of TAMs showed high levels of SPP1 but low 

levels of inflammatory cytokines such as CCL4 (Addi-
tional file 7: Fig. S7d, e).

In line with this, patients with EGFR amplification had 
significantly higher risk scores (Fig.  7h) and stronger 
expressions of the four prognostic markers utilized in the 
construction of the risk score model (Additional file  7: 
Fig. S7f–i), compared to patients without EGFR amplifi-
cation. This is consistent with the role of the prognostic 
model in depicting the degree of immune suppression 
that arises from changes in the composition of TAMs. 
On the other hand, most EGFR non-amplified patients 
harbored an IDH mutation (Fig.  7k), and they could be 
further stratified into low- and high-risk groups (Fig. 7l) 
based on the prognostic model. Thus, this model may 
provide additional risk management information for gli-
oma patients with IDH mutations. Taken together, our 
findings highlight the association between EGFR amplifi-
cation and TAM-SPP1 and provide novel approaches that 
complement existing risk stratification methods.

Discussion
In the current study, we aimed to identify factors that 
contribute to impaired immunosurveillance and the 
variation in outcomes for grade 2 and 3 gliomas, which 
have not been fully elucidated. By single-cell analy-
ses, we revealed a comprehensive interaction network 
within the glioma TME, with TAMs playing pivotal 
roles in tumor progression by interacting with both 
tumor and T cells. Corroborating evidence from both 
bulk and single-cell RNA-seq analyses highlighted the 
diversity of TAMs, characterized by heterogeneous 
phenotypes and distinct regulatory networks. Among 
the three TAM subsets, TAM-SPP1 was notably asso-
ciated with diminished T cell response and poorer 
patient outcomes. These analyses shed light on how to 
augment anti-tumor immune response and revitalize 
immunosurveillance by manipulating TAM-SPP1 lev-
els or impeding TAM-cell interactions. These findings 
would provide rationale for combination strategies to 
mitigate tumor cell activity and prevent disease pro-
gression. Importantly, a four-gene prognostic model 
constructed based on the TAM molecular pattern, has 
demonstrated superior predictive ability for predicting 
survival outcomes in both TCGA and CGGA cohorts. 
It also shows improved risk prediction when combined 
with current predictors that primarily focus on genetic 
alterations. In addition, the risk score calculated based 
on the model can be used to predict immune response 
to immunotherapy. Additionally, we discovered a sig-
nificant association between EGFR amplification and 
both the level of TAM-SPP1 and the predicted risk 
score, implicating a potential link between genetic 
changes and immune remodeling. Collectively, the 
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Fig. 7  Association of EGFR amplification with TAM subtypes and risk score. a, b The distribution of GISTIC2.0 assigned G-scores for recurrent 
focal amplifications (red) and deletions (blue) in glioma Cluster 1 (a) and Cluster 2 (b) patients. c Violin plot showing the differential levels 
of CCL2 mRNA [log2(TPM + 1)] expression between TCGA glioma patients with (n = 103) or without (n = 391) EGFR amplification. d, f Violin plots 
representing the differential levels of deconvoluted TAM-SPP1 (d) and TAM-CCL3 (f) proportions between TCGA glioma patients with (n = 103) 
or without (n = 391) EGFR amplification. e, g Violin plots showing the differential signature scores of marker genes for TAM-SPP1 (e) and TAM-CCL3 
(g) between TCGA glioma patients with (n = 103) or without (n = 391) EGFR amplification. h Violin plot showing the differential levels of risk score 
between TCGA glioma patients with (n = 103) or without (n = 391) EGFR amplification. i, k Sankey plots visualizing the relationship between EGFR 
amplification, IDH mutation, TAM-SPP1 and risk score levels. j Kaplan-Meier curve of overall survival in EGFR amplified patients according to the high 
and low TAM-SPP1 levels. l Kaplan-Meier curve of overall survival in EGFR non-amplified and IDH mutant patients according to high- and low-risk 
scores calculated based on the prognostic model. Statistical significance was assessed by unpaired two-tailed Student’s t-test for (c–h) 
and by two-sided log-rank test for (j, l). *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001
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results underscore the pivotal role of TAMs in the sup-
pressive TME and suggest potential therapeutic targets 
to overcome immune suppression in glioma. These 
findings also guide the development of more refined 
clinical markers for better patient risk stratification, 
aligning with current standards.

Accumulating evidence suggests that microenviron-
ment remodeling may have a more pivotal role in gli-
oma evolution than tumor-intrinsic changes [92, 93]. 
Therefore, apart from targeting tumor-intrinsic factors, 
therapeutic interventions overcome extrinsic hurdles 
are crucial for eliminating therapy-resistant residual 
cells, improving treatment response and patient out-
comes. The strategies for eliminating resistant cells and 
improving patient outcomes in grade 2 and 3 gliomas 
remain to be established. Our analysis identifies critical 
ligand-receptor pairs between TAMs and glioma cells 
that promote tumor progression, such as MIF-CD74/
CXCR4, THY1-ITGAX/ITGB2, and ANGPTL2-TLR4. 
Therefore, blocking these ligand-receptor interactions 
may serve as potential therapeutic approaches for clini-
cal management. For instance, targeting MIF signal-
ing could sensitize chemotherapy [94], as MIF has been 
found to cause temozolomide resistance by activating the 
tumor intrinsic PI3K/AKT signaling pathway [95]. Also, 
a recent report suggested that THY1-positive tumor cells 
colocalized with TAMs in GBM, and this was associated 
with recurrence [96]. Interestingly, we also observed an 
increased abundance of TAM-SPP1 in recurrent glioma 
patients and their interaction with tumor cells via THY1-
ITGAX/ITGB2 signaling. Lastly, our findings support 
the idea that gliomas may promote the accumulation 
of suppressive macrophages in the TME through the 
ANGPTL2-TLR4 interaction, as ANGPTL2 has been 
implicated in macrophage accumulation in adipose tissue 
and polarization towards M2 macrophage in other types 
of cancer [97, 98].

In addition to the interactions between tumor cells 
and TAMs, the current analysis also illustrates the sup-
pressive effect of TAMs on T cell activity through SPP1-
CD44 and LGALS9-CD44 interactions, which mainly 
originate from TAM-SPP1 and TAM-AIF1 and received 
by exhausted T cells. These findings are supported by a 
previous study on colon carcinoma, which indicated that 
SPP1 could dampen T cell activation and confer tumor 
immune tolerance through binding to CD44 [56]. Simi-
larly, the LGALS9-CD44 interaction has been shown to 
enforce differentiation and maintenance of suppressive 
regulatory T cells [57]. By using CD44-specific blocking 
antibodies or aptamer [99], it may be possible to reverse 
the immunosuppression on gliomas through the block-
age of CD44 signaling. Taken together, our work offers 
a rationale for combining therapies that block these 

interactions with conventional chemoradiotherapy to 
eradicate resistant tumor cells in grade 2 and 3 glioma.

In this study, we identified three TAM subsets in glio-
mas (Fig.  2e, f, h). Among these subsets, TAM-CCL3, 
representing activated microglia, exhibits elevated levels 
of cytokines and chemokines, such as CCL3 and CCL4. 
These marker genes have been identified in inflamma-
tory macrophages in other types of cancer such as spinal 
ependymomas and osteosarcoma [100–102]. They play 
a crucial role in inflammatory response through recruit-
ing NK cells and T cells within the TME [103, 104]. On 
the other hand, TAM-AIF1, characterized by the high 
expression of C1QB, C1QA, HLA-DRB1, is likely a type 
of glioma-specific tissue-resident microglia suggested 
by their high expression of microglia markers such as 
P2RY12, TMEM119. In support of this, a group of tis-
sue resident macrophage (C1Q+macrophages) has been 
reported to express similar marker genes (C1q, HLA-DR) 
in several other tumor types. These cells exhibited higher 
M2 signatures and have been associated with T cell 
exhaustion and tumor progression [105, 106]. This indi-
cates that these tissue-resident macrophages transition 
to an immunosuppressive phenotype in the TME. Zhang 
et  al. utilized in  vitro co-culture assays to demonstrate 
that C1q+TAMs impair the antitumor responses of both 
mouse and human CD8+T cells [107]. Moreover, TAM-
SPP1, representing bone marrow-derived macrophages, 
is characterized by high expression of lipid-related genes 
like APOC1, APOE, and TREM2. Existing evidence sug-
gests that SPP1+TAM and TREM2+TAM (also known 
as lipid-associated macrophages) are abundant in vari-
ous types of cancers, such as colon cancer [108], lung 
cancer [63], and hepatocellular carcinoma [109, 110]. 
These macrophages exhibit elevated M2 signatures and 
are often associated with inferior outcomes [106]. These 
macrophages are recognized as key mediators of immu-
nosuppression through the secretion of suppressive 
cytokines [80], upregulation of checkpoint expression 
[110] and enhancement of interactions with T cells [79]. 
Despite evidence showing SPP1+TAM promoting glioma 
cell survival by secreting SPP1 or interacting with tumor 
cells [62, 111, 112], it is unclear how this population is 
regulated or how it affects T cell function in gliomas.

The current study elucidated the regulatory network 
and functional role of TAM-SPP1 in grade 2 and 3 glio-
mas (Fig. 2e, f, h). We found that TAM-SPP1 was meta-
bolically reprogramed towards lipid metabolism and 
oxidative phosphorylation, potentially driven by the 
SREBF1 transcription factor. In addition, TAM-SPP1 is 
strongly associated with T-cell dysfunction and exclu-
sion, as well as poorer patient outcomes, indicating that 
this population could serve as a therapeutic target. This 
hypothesis is supported by previous studies on multiple 
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cancers, which have proposed therapies that target SPP1 
or disrupt the interaction between SPP1+TAM and 
other cells as potential treatment for multiple types of 
cancer. For example, targeting the interaction between 
SPP1+macrophages and fibroblasts can enhance immu-
notherapy response in colorectal cancer [113]. Moreo-
ver, sensitivity to cisplatin was also improved in a mouse 
ovarian tumor model using anti-SPP1 and anti-CD44 
antibodies [114]. Additionally, blockade of SPP1 led to 
enhanced efficacy of immunotherapy in hepatocellular 
carcinoma [115]. The anti-osteopontin monoclonal anti-
body AOM1 (Pfizer Inc) was found to significantly inhibit 
lung tumor growth [116]. On the other hand, depletion of 
TREM2+LAM suppressed tumor growth in breast cancer 
mouse model [117] and improved anti-tumor immunity 
and immunotherapy efficacy [118, 119]. A recent study 
suggested that TREM2 inhibition remodels macrophages 
into an immune-active functional status, increases anti-
PD-1 efficacy and inhibits tumor growth in a glioblas-
toma mouse model [120]. The current analyses indicate 
that targeting SPP1 or TREM2 can inhibit immunosup-
pressive TAMs, thus representing potential therapeu-
tic targets. With the emergence of monoclonal antibody 
targeting TREM2 [119], this avenue of treatment seems 
promising for modulating the immune environment in 
glioma patients.

Histological and genetic anomalies are currently con-
sidered the standard for diagnosing and stratifying the 
risk of glioma patients. Despite the importance of TAMs 
in glioma progression, there is a lack of risk models that 
incorporate composition of TAMs. In this study, we not 
only unravelled the TAM landscape and dissected TAM 
functional heterogeneity in glioma, but also constructed a 
prognostic model based on differentially expressed genes 
found in two glioma molecular subtypes with disparate 
TAMs-related signatures and clinical outcomes. Methods 
including univariate Cox, LASSO regression, and ran-
dom forest were used to develop the model, which suc-
cessfully controlled confounding variables. The model 
encompasses four crucial genes (APOBEC3C, EMP3, 
IGF2BP2, TGIF1) and demonstrates robust capability in 
predicting patient outcomes, as evidenced by its strong 
prognostic accuracy in two independent cohorts. Impor-
tantly, our model offers an enhanced level of prognos-
tic accuracy particularly for patients harboring the IDH 
mutation, who are typically considered to have a favora-
ble prognosis. This refinement enables the identification 
of individuals who may require closer observation due 
to an elevated risk of adverse prognosis. Furthermore, 
the risk score calculated based on the model correlates 
strongly with high levels of TAM-SPP1, T cell dysfunc-
tion, exclusion, and impaired T cell response. This indi-
cates that the model can be applied to predict anti-tumor 

immune responses. Taken together, with the prognostic 
model’s capability of predicting T cell functional status, it 
could potentially serve as a useful tool for predicting both 
patient risk and immunotherapy response.

Specific genomic alterations such as amplification and 
activating mutations in the EGFR have been identified as 
one of the causes of initiating glioma [121]. However, the 
mechanisms by which genetic alterations influence the 
glioma TME remain largely unexplored. Beyond EGFR’s 
classical role in promoting glioma cell proliferation and 
survival through the activation of oncogenic PI3K, AKT 
and RAS/MAPK pathways, EGFR overexpression has 
been linked with macrophages recruitment in GBM and 
breast cancer [88, 89]. Moreover, EGFR has been asso-
ciated with high TREM2+TAM infiltration, advanced 
tumor progression and inferior prognosis in lung cancer 
patients [63]. EGFR-targeted therapy has been shown to 
reduce M2 macrophage levels by diminishing chemokine 
expression [88, 89]. On the other hand, TAMs can secrete 
EGF, which stimulates EGFR in glioblastoma cells, 
thereby reinforcing the oncogenic circuit [122]. Here 
we demonstrated that patients with EGFR amplification 
predominantly exhibit elevated levels of TAM-SPP1. 
Importantly, we observed that EGFR-amplified patients 
with lower levels of TAM-SPP1 show significantly bet-
ter survival compared to those with high levels of TAM-
SPP1. This indicates that targeting TAM-SPP1 may help 
reverse disease progression in EGFR-amplified patients. 
Although IDH mutation is considered as a marker of 
longer overall survival time and better therapeutic 
response [123], patient prognosis varies widely. Our 
prognostic model allows for a more precise risk assess-
ment, particularly for patients harboring IDH mutations 
and lacking EGFR amplification.

The current study provides prognostic value by con-
structing a risk-prediction model and reveals potential 
targets for combined therapies. Nonetheless, several 
limitations were acknowledged in this study. First, the 
identification of cell type from single-cell analysis relied 
on publicly available resources with limited number of 
patients. It limits the capability of detecting rare cell sub-
types and dissecting highly heterogeneous cell clusters, or 
depicting the heterogeneity and dynamic differentiation 
status of tumor-infiltrating T cells. In the future, stud-
ies with larger datasets will be beneficial to gain a better 
understanding of disease-related rare cell subtypes and 
their associations with clinical phenotypes. The develop-
ment of more robust models could be achieved by focus-
ing on more precisely defined immune cell types. Second, 
the current analyses primarily focused on data mining 
and were validated by existing literature. Additional stud-
ies may be necessary to determine the functional util-
ity of the identified pathways in targeted treatment in 
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the future. Third, the current study observed the asso-
ciation between EGFR amplification, CCL2 upregulation 
and accumulation of TAM subtypes, which is supported 
by studies in GBM and breast cancer. However, future 
in  vitro or in  vivo studies are necessary to fully under-
stand their mechanistic linkage.

Methods
Preprocessing, dimension reduction and clustering 
of scRNA‑seq data
The human glioma scRNA-seq datasets [26, 91, 124] were 
downloaded from GEO (GSE182109, GSE200984) and 
cellxgene (https://​cellx​gene.​czisc​ience.​com). The mouse 
glioma scRNA-seq datasets were downloaded from 
GEO (GSE221440) [49]. All datasets used in this study 
were summarized in Additional file 8: Table  S8. For the 
reanalysis of human glioma datasets, cells with less than 
500 or more than 20,000 UMIs, over 20% mitochondrial 
genes and more than 0.1% hemoglobin genes were fil-
tered out. “Seurat” (Version 4.3.0) was applied for data 
normalization, finding variable genes, scaling (Normal-
izeData, FindVariableFeatures and ScaleData functions), 
principal component analysis (RunPCA), dimension 
reduction (RunUMAP) and unsupervised graph-based 
clustering (FindNeighbors & FindClusters). “Harmony” 
(Version 0.1) was used to remove batch effect (RunHar-
mony) [125]. Differentially expressed genes (DEGs) for 
each cluster were identified (FindAllMarkers) and visu-
alized via UMAP plots, heatmaps, violin plots and vol-
cano plots. “scRNAtoolVis” (Version 0.0.4) was used to 
plot markers in each cluster (jjVolcano) with an absolute 
cutoff value of 0.5 for log2 fold change and a threshold 
of 0.01 for adjusted p-value. DEGs between the speci-
fied clusters were identified (FindMarkers). Gene set 
enrichment analysis of DEGs with an adjusted p-value 
less than 0.05 was conducted for each cluster using the 
fgsea package (Version 1.24.0) [126]. The analysis uti-
lized the MSigDB hallmark gene sets (h.all.v2023.1.Hs.
symbols.gmt) to identify significant enrichment patterns. 
The automated cell type annotation was conducted using 
ScType (Version 1.0) [46], targeting “Brain” as the tis-
sue of interest. The inference of large-scale copy number 
alterations was performed using inferCNVpy, tumor cells 
were defined by CNV score over 0.01 (Version 0.4.3).

Cell–cell communication network construction
“CellChat” (Version 1.5.0) [47] was applied to construct 
and visualize intercellular communication networks. 
CellChat database for humans was used which includes 
1,939 validated interactions. Downstream analysis 
included inferring cell–cell communication probability 
(computeCommunProb and filterCommunication), and 
communication probability at both signaling pathway 

and gene levels (computeCommunProbPathway). Sig-
nificant signaling pathways and ligand-receptor pairs 
were visualized as circle plots (netVisual_individual), 
heatmaps (netVisual_heatmap, netAnalysis_signaling-
Role_heatmap) and chord plots (netVisual_aggregate, 
netVisual_chord_gene).

Single‑cell regulatory network inference
“SCENIC” (Version 0.12.1) was used for the inference on 
TF regulatory networks at the single-cell level [66]. The 
expression data of TAMs were used as input and poten-
tial TFs were identified (GENIE3). Known human TF 
motif databases annotated at 500  bp and 10  kb of tran-
scriptional start sites were used for TF-motif enrichment 
and TF’s direct targets identification (CisTarget). The 
activity of regulons on single cells were scored (AUCell). 
The AUC thresholds were computed (get_regulon_
thresholds). Cell type-specific TFs and regulons were vis-
ualized using heatmaps, violin plots and UMAP.

Processing bulk RNA‑seq data
The clinical and RNA-seq data of low-grade glioma 
patients from The Cancer Genome Atlas (TCGA) and 
the Chinese Glioma Genome Atlas (CGGA) were down-
loaded from the NCI Genomic Data Commons (GDC) 
repository and http://​www.​cgga.​org.​cn/, respectively. 
For each patient, the signature scores of each TAM clus-
ter’s marker genes and immune checkpoints were cal-
culated based on the transcripts per million (TPM) of 
gene expression using the calculate_sig_score function 
of IOBR package with parameter “method = PCA” [127]. 
TIDE, T cell dysfunction and T cell exclusion scores were 
calculated using the TIDE algorithm (http://​tide.​dfci.​
harva​rd.​edu/).

Cell abundance calculation in bulk RNA‑seq data
Gene expression counts from cells in TAM-CCL3, TAM-
AIF1, TAM-SPP1, endothelial cells, glioma cells, oligo-
dendrocytes and lymphocytes from the single cell dataset 
were used to generate the reference matrix with “CIBER-
SORTx” [78]. The minimum expression parameter was 
set to 0.25 for the reference matrix generation. Decon-
volution was then performed on the TCGA and CGGA 
bulk RNA-seq data (fragments per kilobase per million 
mapped reads (FPKM)) using S-mode batch correlation 
and absolute mode as previously described [128].

Survival analysis
The patients’ overall survival between different levels of 
TAMs and risk score, as well as patients in different Clus-
ters were evaluated by Mantel-Cox Log-Rank tests using 
the “survival” (Version 3.5.3), and survival curves were 

https://cellxgene.cziscience.com
http://www.cgga.org.cn/
http://tide.dfci.harvard.edu/
http://tide.dfci.harvard.edu/
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visualized using Kaplan–Meier plots by the “survminer” 
(Version 0.4.9).

Prognostic model construction
Consensus clustering was performed to identify molec-
ular subtypes associated with different immune contex-
ture-related signatures via the “ConcensusClusterPlus” 
(Version 1.62.0). The maximum cluster number was set to 
6. Differential gene expression analysis between Cluster 1 
and Cluster 2 patients was calculated using the “limma” 
(Version 3.54.0). 1959 differentially expressed genes with 
|log2FoldChange|  > 0.6 and FDR < 0.05 were identified. 
1311 genes with univariate Cox regression p < 0.05 were 
further selected for LASSO Cox regression analysis using 
the “glmnet” (Version 4.1.2). Finally, four genes were 
selected according to their variable importance rankings 
by the “randomforest” (Version 4.7_1.1). The four genes 
were weighted by relative coefficient in the multivariate 
Cox-PH regression and the risk score was calculated as 
follows: risk score = (0.013778009) × APOBEC3C + (0.003
622016) × EMP3 + (0.009527270) × IGF2BP2 + (0.0563283
48) × TGIF1.

Somatic alterations analysis
Mutation information including SNV and CNV derived 
from whole-exome sequencing (WES) and SNP array 
(Affymetrix Genome-Wide Human SNP Array 6.0) as 
well as corresponding clinical data of primary low grade 
glioma tumors were obtained from the TCGA database. 
The somatic variant profiles were visualized and summa-
rized using the package “maftools” (Version 2.14.0) [129] 
and “GISTIC2.0” [82].

Statistical analysis
Data were analyzed using the R software (Version: 4.1.3) 
for all the statistical analyses. Kaplan–Meier analysis with 
log-rank test was used for survival difference between 
groups. Statistical comparison between two groups was 
evaluated by two-tailed and unpaired Student’s t test. 
Correlation analysis was assessed by Spearman’s cor-
relation. The relationship between two categorical vari-
ables was computed by Chi-square test. Significance was 
defined as p value < 0.05.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s13578-​024-​01218-4.

Additional file 1: Figure S1. Illustration of cellular communication 
network between TAMs and tumor cells in the glioma microenvironment. 
a UMAP plots showing expression patterns of microglia and macrophage 
markers in glioma single cells. b Percentage of cell populations as identi-
fied in (Fig. 1a). c Chord plot and heatmap showing significantly interact-
ing pathways and communication probability of the PDGF pathway 
between TAMs and tumor cells in the glioma TME. d Circle plot and violin 

plot displaying the ligand-receptor pair in the PDGF pathway and their 
expression patterns across cell clusters.

Additional file 2: Figure S2. Expression of marker genes in each TAM 
cluster within the glioma single-cell dataset and their correlation to 
patient survival. a Violin plots representing the expression levels of 
CCL3L1, P2RY12 and TREM2 across different clusters. b Kaplan-Meier 
curves delineating the survival based on the gene expression levels of 
markers associated with the three subtypes of TAMs in TCGA glioma 
patients. Statistical significance was assessed by two-sided log-rank test 
for (b).

Additional file 3: Figure S3. Expression of TFs in the TAM subsets and 
the validation of the TAM subsets within a mouse cohort. a Analysis 
of TIDE, T cell dysfunction and T cell exclusion scores in TCGA glioma 
patients with high and low marker scores for TAM-CCL3. b Heatmap 
displaying the expression of top three TFs in each cluster. c, d UMAP 
projection of 9,512 myeloid cells from non-tumor bearing, LGG and 
HGG mice; coloured by sample (c) and cell types (d). e UMAP plots 
showing expression patterns of Aif1, Ccl3 and Spp1 in mouse single 
cells. f UMAP plots showing the distribution of SPP1+TAM in non-tumor 
bearing, LGG and HGG mice. Statistical significance was determined by 
unpaired two-tailed Student’s t-test for (a).

Additional file 4: Figure S4. Deconvolution of major cell types in 
glioma patients using bulk RNA-seq data. a Relative abundance of 
seven cell types in glioma patients from the TCGA and CGGA datasets, 
estimated by the CIBERSORTx algorithm. b Kaplan-Meier curves of 
overall survival according to the proportions of TAM-AIF1 in TCGA and 
CGGA datasets. Statistical significance was assessed by two-sided log-
rank (Mantel-Cox) test for (b)

Additional file 5: Figure S5. Workflow of the construction for the 
prognostic model. a Workflow for the establishment of the prognostic 
model predicting survival outcomes in glioma patients. b Visualization 
of LASSO coefficients based on results from univariate Cox regression 
analysis. c Variable importance ranking as determined by random forest 
algorithm. The rank is based on the mean decrease Gini value. d, e 
Univariate (d) and multivariate (e) Cox regression analyses assessing the 
relationship between clinical indicators, risk scores, and the overall sur-
vival of glioma patients. f, g Spearman correlation between risk scores 
and the signature score of immune checkpoint markers in the TCGA (f) 
and CGGA (g) glioma dataset.

Additional file 6: Figure S6. Somatic variation profiles of distinct gli-
oma clusters. a, b The variant classification and counts, variant type and 
SNV class in Cluster 1 (n = 241) (a) and Cluster 2 (n = 266) (b) patients. 
c, d Detailed information of the top 20 mutated genes among Cluster 
1 (c) and Cluster 2 (d) patients. The percentage and mutation class of 
each gene are shown on the right side. e, f GISTIC2.0 results plotted as 
gene numbers and mutated samples in altered cytobands in Cluster 1 
(e) and Cluster 2 (f) patients. The size of each bubble indicating -log10 
transformed q values.

Additional file 7: Figure S7. Association between EGFR amplifica-
tion and prognostic markers. a Violin plot representing the differential 
EGFR mRNA levels (log2(TPM + 1)) in TCGA glioma patients with or 
without EGFR amplification. b Kaplan-Meier curve of overall survival 
according to EGFR CNV status in TCGA glioma patients. c UMAP plot of 
EGFR expression pattern in glioma single cells. d UMAP projection of 
92,102 single cells from grade 4 GBM tissues, coloured by graph-based 
cell clusters and annotated cell types (TAM-BDM: TAM-bone marrow 
derived macrophage; TAM-MG: TAM-microglia). Bar chart comparing 
the number of cells across four different cell types between patients 
with normal EGFR and amplified EGFR. e Ridgeline plot showing the 
expression levels of SPP1 and CCL4 across four different cell types. f–i 
Violin plots representing differential expression levels of prognostic 
markers in TCGA glioma patients with or without EGFR amplification. 
Statistical significance was assessed by unpaired two-tailed Student’s 
t-test for (a, f–i) and by two-sided log-rank test for (b). ****p < 0.0001.

Additional file 8: Table S1. Marker genes for the seven major clusters 
from the two low-grade patients. Table S2. Details of cell type annota-
tion by ScType. Table S3. Marker genes for the 13 clusters from the 
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low-grade patients. Table S4. Marker genes for each TAM cluster and lym-
phocyte cluster from the 17 cross-grade glioma patients. Table S5. Patient 
characteristics of the TCGA cohort. Table S6. Patient characteristics of 
the CGGA cohort. Table S7. Signature markers of the three TAM subsets. 
Table S8. Summary of public single cell datasets used in this study.
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