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REVIEW

Novel insights into non‑alcoholic fatty 
liver disease and dementia: insulin resistance, 
hyperammonemia, gut dysbiosis, vascular 
impairment, and inflammation
So Yeong Cheon1 and Juhyun Song2*    

Abstract 

Non-alcoholic fatty liver disease (NAFLD) is a metabolic disease characterized by multiple pathologies. The progres-
sion of dementia with NAFLD may be affected by various risk factors, including brain insulin resistance, cerebro-
vascular dysfunction, gut dysbiosis, and neuroinflammation. Many recent studies have focused on the increasing 
prevalence of dementia in patients with NAFLD. Dementia is characterized by cognitive and memory deficits and has 
diverse subtypes, including vascular dementia, Alzheimer’s dementia, and diabetes mellitus-induced dementia. Con-
sidering the common pathological features of NAFLD and dementia, further studies on the association between them 
are needed to find appropriate therapeutic solutions for diseases. This review summarizes the common pathological 
characteristics and mechanisms of NAFLD and dementia. Additionally, it describes recent evidence on association 
between NAFLD and dementia progression and provides novel perspectives with regard to the treatment of patients 
with dementia secondary to NAFLD.
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Background
Non-alcoholic fatty liver disease (NAFLD), one of the 
most common causes of liver disorders worldwide, is a 
progressive chronic disease and a metabolic-associated 
fatty liver disease [1]. It ranges from fatty liver to liver 
cirrhosis, which can ultimately lead to hepatocellular 
carcinoma [2]. Non-alcoholic fatty liver often progresses 
to severe non-alcoholic steatohepatitis (NASH), liver 
fibrosis, and liver cirrhosis [2]. Lifestyle, eating habits, 
and genetic background all contribute to the morbidity 
and mortality of NAFLD [3, 4]. In particular, metabolic 

disturbances (e.g., abnormal uptake of hepatic fatty acid, 
imbalanced lipid synthesis, and obesity) are known to 
contribute to fatty liver via excessive triglyceride accu-
mulation in hepatocytes [5]. NAFLD is affected by com-
mon risk factors as other metabolic disorders, such as 
type 2 diabetes mellitus (T2DM), chronic kidney disease 
(CKD), and cardiovascular disease (CVD) [6, 7]. Moreo-
ver, NAFLD is a risk factor itself for other metabolic dis-
eases [6, 8]. According to an epidemiological study, the 
prevalence of NAFLD in patients with diabetes is esti-
mated to be > 50% [3]. Patients with fatty liver showed a 
high occurrence of coronary artery disease [9] and a high 
risk for CVD [10]. In addition, patients with NAFLD had 
a high prevalence of CKD compared with patients with-
out NAFLD [8].
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Recently, NAFLD has emerged as an important dis-
ease associated with the development of cognitive 
impairment and dementia [7, 11] (Fig. 1). Insulin resist-
ance [12], hyperammonemia [13], vascular dysfunction, 
disruption of the gut microbiota, and inflammation 
[14], which are observed in patients with NAFLD, may 
be involved in neurological problems, such as cognitive 
impairment and memory loss [15–17]. For instance, 
NAFLD leads to cognitive impairment through insulin 
resistance and inflammation accompanied by excessive 
cytokine secretion [18]. The combination of hyperam-
monemia and inflammation induces cognitive dysfunc-
tion in patients with liver disease [19]. Even without 
liver disease, the interaction between hyperammone-
mia and inflammatory response results in cognitive 
impairment [19]. Furthermore, some studies have 
reported that patients with NAFLD have vascular dys-
function and impairment, such as decreased cerebral 
blood oxygen supply [20] and an alteration in the mid-
dle cerebral arteries [21], which can induce cognitive 
impairment [22]. Microbial dysbiosis is also positively 
correlated with recurrent hepatic encephalopathy (HE), 

and microbiota transplantation results in improved 
symptoms of HE [23].

Although many studies have investigated the asso-
ciation of NAFLD with cognitive dysfunction, the rela-
tionship between NAFLD and dementia remains to be 
completely elucidated. In this review, we summarize 
the recent evidence on the association between NAFLD 
and dementia with respect to common risk factors and 
pathologies.

NAFLD and dementia
NAFLD is diagnosed based on imaging or liver biopsy 
assessments [24]. Additionally, changes in serum liver 
enzyme activity, such as altered serum alanine ami-
notransferase (ALT) and aspartate aminotransferase 
(AST) levels indicate abnormal liver function [24]. Liver 
function abnormalities negatively affect energy metabo-
lism because the liver plays an key role in metabolism, 
and abnormal energy metabolism contributes to abnor-
mal energy storage [24]. A variety of metabolic processes, 
such as glycolysis, lipogenesis, and gluconeogenesis are 
impaired, which ultimately leads to systemic metabolic 

Fig. 1  NAFLD as an important disease associated with the development of dementia. NAFLD is an important disease related to the development of 
dementia. It is associated with insulin resistance, hyperammonemia, gut dysbiosis, impaired cerebrovascular function, and inflammatory responses, 
leading to dementia
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disturbances, including insulin resistance and elevated 
serum free fatty acid and serum pyruvate concentra-
tions [25]. Circulation of these metabolites can affect the 
brain [26]. Metabolic diseases such as NAFLD are shown 
to be significantly associated with an increased risk of 
dementia [27]. The pathogenetic mechanism underlying 
dementia is complex; dementia may occur as a complica-
tion of multiple diseases [28], and accurate history taking 
is important. Notably, NAFLD and dementia are shown 
to share many risk factors. In contrast, some studies 
have shown no association between NAFLD and cogni-
tive impairment or between NAFLD and dementia [29, 
30]. For example, a study has reported that diabetes or 
hypertension accompanied by chronic liver disease was 
not associated with cognitive impairment [29]. Patients 
with NAFLD who underwent liver biopsy did not show 
an increased risk of dementia [30]. Despite these reports, 
patients with NAFLD have an approximately four times 
greater risk of experiencing cognitive dysfunctions than 
control individuals [31]. Patients with NAFLD aged 
over 60  years exhibited lower cognitive function than 
did individuals of the same age without NAFLD [32]. A 
recent nationwide cohort study suggested an association 
between NAFLD and the risk of dementia [33]. A system-
atic review reported that patients with NAFLD showed a 
tendency to develop a decline in cognitive function and 
that multiple cognitive domains associated with general 
cognitive function, mental speed, attention, and mental 
flexibility were affected [34]. Anatomically, NAFLD man-
ifests abnormal white matter integrity, reduced cerebral 
brain volume, and aberrant vascular changes leading to 
poor cognitive performance, which is considered the 
main feature of dementia [31, 35]. Magnetic resonance 
imaging (MRI) technique has revealed that patients with 
NAFLD display total brain atrophy [35], while a near-
infrared spectroscopy tool has shown that the brain 
activity is decreased in these patients [20]. Similarly, 
Patient with NAFLD showed lower total cerebral blood 
flow and total brain tissue volume on MRI [36], difficulty 
in performing daily living activities [37], and lower cogni-
tive function in the Symbol-Digit Substitution Test and 
Serial Digit Learning Test [38]. Visuospatial and execu-
tive dysfunctions were also observed [39]. NAFLD is 
associated with mental symptoms, such as anxiety and 
depression [40, 41]. An NAFLD animal model displayed 
neuronal loss in the frontal cortex [42], while a high-
fat-diet-induced NAFLD model showed dopaminergic 
neuronal damage [43]. Similarly, studies using NAFLD 
animal models have reported changes in synaptic plas-
ticity, which eventually led to cognitive dysfunction in 
the experimental animals [44]. Further, an NASH animal 
model showed decreased metabolic activities in multi-
ple brain regions, such as the hippocampus, prefrontal 

cortex, thalamus, and amygdala [45], as well as cognitive 
deficits, including an impairment in social recognition 
and spatial working memory [45]. Hence, many studies 
have shown the association between NAFLD and cogni-
tive deficits.

Dementia
Dementia is a common health problem worldwide that 
affects approximately 50 million individuals, and this 
number is expected to increase every year [46]. It is 
characterized by mental and cognitive degeneration, 
which results in progressive memory and cognitive loss 
[47]. Its subtypes are Alzheimer’s disease (AD), Lewy 
body dementia, vascular dementia, and frontotempo-
ral dementia [47]. All dementia types are influenced by 
various risk factors. We summarize the characteristics of 
these dementia types below before discussing the rela-
tionship between dementia and NAFLD  (Fig.  2). In this 
section, we attempted to explain how NAFLD is related 
to the risk factors for dementia.

Alzheimer’s dementia
AD is the most common type of dementia [48]. Accord-
ing to a recent report, Alzheimer’s dementia progresses 
slowly and affects an estimated 6.2 million individuals 
aged ≥ 65 years in the United States [49]. In addition, the 
susceptibility to AD is affected by sex differences, aging, 
environmental risk factors, and lifestyle [50]. The typical 
hallmark symptoms of AD are memory loss and impair-
ment in new learning ability [51]. Patients with AD show 
attention and working memory impairments [51] as well 
as general cognitive impairments, including language and 
problem-solving difficulties [49]. Moreover, AD brains 
show poor short-term plasticity and long-term potentia-
tion (LTP) processes compared with normal brains [52].

The common pathological features of AD are mutation 
of the amyloid precursor gene (APP), excessive amyloid 
beta deposition, senile plaque and neurofibrillary tangle 
formation, tau protein hyperphosphorylation, oxidative 
stress, blood–brain barrier (BBB) disruption, neuroin-
flammation, and gut dysbiosis [53–58] (Fig. 2). The onset 
and development of AD are affected by mutations in sev-
eral genes, such as the APP, presenilin 1 (PSEN1), and 
ApoE-ε4 [55]. Deposition of amyloid beta (Aβ42) plaque 
due to impairment of the clearance system is found in 
AD brains, which can induce hyperphosphorylated tau 
and tau deposition, resulting in neuritic dystrophy [53]. 
AD brains exhibit mitochondrial dysfunction, such as 
oxidative stress caused by reactive oxygen species (ROS) 
accumulation [56]. Changes in vascular territories, such 
as loss of vascular integrity, vascular malfunction, and 
BBB disruption, are observed in patients with AD [57]. 
AD brains also exhibit increased neuroinflammation with 
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synaptic loss [59], poor inflammasome complex assem-
bly due to lysosome disruption [60], hypometabolism, 
and microglial activation [61]. Moreover, an increase in 
the production of harmful substances owing to changes 
in the gut microbiota composition is associated with AD 
pathology [58].

Many studies have proven that a positive correlation 
exists between NAFLD and AD [62–64]. In protein–pro-
tein interaction analyses, NAFLD and AD share common 
genes and pathways [e.g., long-chain fatty acid signaling 
pathway, carbohydrate metabolism signaling pathway, 
interleukin (IL)-6, serine/threonine kinase 1 (AKT1), 
and vascular endothelial growth factor A] [62]. NLFLD 
increases the incidence of AD by triggering liver inflam-
mation, neuroinflammation, and neuronal cell death 
[63]. Liver dysfunction observed in NAFLD reduces 
the hepatic expression of low-density lipoprotein (LDL) 
receptor-related protein 1, which is important for the 
clearance of circulating amyloid beta protein [64]. Simi-
larly, hepatic dysfunction contributes to reduced clear-
ance of peripheral amyloid beta [65]. AD with NAFLD 

displays several genes related to inflammatory response, 
senescence, and oxidative stress, which are likely to 
induce vascular dysfunctions and cerebral hypoperfu-
sion [66]. In addition, AD  patients with NAFLD show 
cognitive dysfunctions, including deficits in spatial work-
ing memory [66]. Liver enzymes are associated with the 
progression of AD [67]. In a previous cohort study, lower 
ALT levels resulted in elevated amyloid beta deposition, 
decreased cerebral glucose metabolism, and brain atro-
phy, ultimately leading to cognitive impairments [67]. 
Taken together, AD shares multiple pathological mecha-
nistic processes and pathological factors with NAFLD.

Diabetes induced dementia
Diabetes mellitus (DM), particularly T2DM, is a common 
chronic metabolic disease worldwide, characterized by 
hyperglycemia and insulin resistance [68]. Because global 
metabolic dysfunction causes DM, patients with DM 
have higher risks for other metabolic diseases, such as 
cardiovascular, renal, and central nervous system (CNS) 
diseases [69]. Metabolic disturbances, such as DM and 

Fig. 2  Common pathological features of dementia: Alzheimer’s dementia, diabetes-induced dementia, and vascular dementia. Dementia is 
classified into various types, including Alzheimer’s disease, diabetes mellitus-induced dementia, and vascular dementia. The major features are 
slightly different between the dementia types
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obesity, increase the risk for mild cognitive impairment 
and dementia [70, 71]. Recent studies also suggest that 
DM is a crucial risk factor for mild cognitive impairment 
or dementia [72, 73]. For this reason, diabetes-induced 
dementia is also called type 3 DM [74]. In particular, the 
prevalence of DM and dementia in elderly population is 
increasing [75], and patients with DM have an approxi-
mately 50% higher risk of developing dementia [76]. 
Patients with T2DM display brain changes, such as brain 
atrophy and cerebral lesions, on MRI [76]. They also 
show morphological changes, including reduced total 
white and gray matter and hippocampus volume, accom-
panied by impaired planning, visual memory, and visuos-
patial construction [77].

The pathological factors of diabetes, particularly 
T2DM, are insulin resistance, tau hyperphosphoryla-
tion, hyperglycemia, vascular dysfunction, inflammatory 
responses, BBB breakdown, and gut dysbiosis [78–82] 
(Fig.  2). Insulin resistance, defined as poor insulin sen-
sitivity and deficient insulin signaling, is a well-known 
risk factor for DM [78]. Abnormally increased hyper-
phosphorylation of tau protein has been observed in DM 
[79]. Impaired insulin action contributes to poor glucose 
metabolism, neuronal damage, and impaired neuro-
transmitter secretion in the brain [83, 84]. Brain insulin 
resistance contributes to impaired hippocampal synaptic 
plasticity and impaired learning and memory function 
[85]. Insulin signaling results in hyperphosphorylation 
of tau through activation of glycogen synthase kinase 3 
beta (GSK-3β) [86]. As a T2DM model, mice with high-
fat-diet-induced hyperglycemia showed reduced learning 
and memory function [87]. Notably, high serum glucose 
levels, which are commonly observed in patients with 
diabetes, result in serious complications [88]. Vascular 
endothelial cells are highly vulnerable to glucose toxic-
ity [88]. Hyperglycemia contributes to abnormal repli-
cation, aberrant cell cycle progression, and cell death in 
vascular endothelial cells, which can result in functional 
and structural abnormalities [89]. Furthermore, hyper-
glycemia alters the distribution of tight junction proteins 
and transporters of nutrients across the BBB, which com-
promises BBB permeability and function [90]. Therefore, 
patients with diabetes tend to develop vascular complica-
tions including retinopathy and neuropathy [88]. In addi-
tion, patients with T2DM exhibit increased oxidized LDL 
and C-reactive protein levels, which indicate oxidative 
stress and inflammation [80]. This interplay between oxi-
dative stress and inflammation contributes to endothelial 
dysfunction [80]. MRI reveals the  increased  permeabil-
ity of the BBB in patients with T2DM [91]. Additionally, 
the genera of Blautia, Fusobacterium, and Ruminococcus 
have been found in patients with T2DM, which have an 

impact on gut permeability, inflammatory response, and 
glucose metabolism [82].

A growing number of studies have reported that 
NAFLD is linked with DM [92, 93]. The conditions of 
patients with T2DM (70–80%) and type 1 DM (T1DM) 
(30–40%) are influenced by NAFLD [93]. Conversely, 
T2DM is also a risk factor for NAFLD to develop NASH 
to cirrhosis [92]. NAFLD contributes to insulin resist-
ance, lipid dysmetabolism, and systemic inflammation, 
which also lead to T2DM [92]. NAFLD is closely related 
to macrovascular and microvascular complications 
observed in DM [93]. In T1DM and T2DM mice mod-
els, hyperglycemia promotes memory loss via high BBB 
permeability and microvessel dysfunction due to inflam-
mation [94]. In gut microbial composition analyses, 
Enterobacter, Romboutsia, and Clostridium sensu stricto 
are relatively abundant in patients with T2DM dur-
ing NAFLD progression [95]. Importantly, patients with 
both NAFLD and T2DM show cognitive impairments, 
including poor working memory or attention and delayed 
processing speed [96]. The combination of gamma-glu-
tamyltransferase (γ-GT), whose levels are elevated in 
NAFLD and DM, results in the development of dementia 
[97]. Based on previous findings, DM and NAFLD share 
various pathological factors.

Vascular dementia
Vascular dementia is the second most common type of 
dementia and is characterized by global cognitive dys-
function caused by altered vascular factors and vascular 
injury [98, 99]. It can be classified into four major sub-
types: poststroke dementia, mixed dementia, multi-
infarct dementia, and subcortical ischemic vascular 
dementia [100]. Vascular pathologies, including cer-
ebral microbleeds, atherosclerosis, amyloid angiopa-
thy, and vessel disease, cause mild cognitive dysfunction 
and dementia [98, 101]. Patients with preclinical vascu-
lar dementia display lacunar infarcts detected in brain 
regions, including the striatum, internal capsule, and 
corona radiata, which govern language and memory 
[102]. Moreover, loss of gray matter density in the left 
hippocampus and right posterior putamen is observed 
in these patients [102]. Vascular brain injury can con-
tribute to loss of brain connectivity, leading to impaired 
functional network in the brain [103]. Therefore, a large 
infarct volume and many small cortical infarctions are 
closely related to poor cognitive performance [103]. 
Patients with poststroke dementia display progressive 
decline of cognitive functions, impairments of executive 
functions, and delays in the processing speed [103].

The risk factors of vascular cognitive impairment, rang-
ing from mild cognitive dysfunction to dementia, are 
vascular injury, chronic hypoperfusion, hypertension, 
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hyperglycemia, BBB permeability, inflammation, and gut 
dysbiosis [103–107] (Fig. 2). Vascular damage, leading to 
vascular dementia, is known to result in brain endothelial 
dysfunction, increased BBB permeability, excessive ROS 
production, and hypertension [108]. Brain endothelial 
cell dysfunction, chronic hypoperfusion, BBB disruption, 
and impaired cerebrovascular reactivity lead to white 
matter lesions [109]. In addition, metabolic disturbances, 
such as DM and hyperglycemia, are risk factors for vas-
cular dementia; therefore, patients with DM have a 2.4-
fold higher risk for vascular dementia than individuals 
without DM [110]. Based on previous evidence, vascular 
cognitive impairment may be accompanied by an inflam-
matory process with BBB leakage [107], and the com-
position of the gut microbiota can induce inflammatory 
responses and increase the permeability of the intestinal 
epithelium, which can lead to the progression of vascu-
lar cognitive impairment [105]. Further, Helicobacter 
pylori-positive patients with vascular dementia display 
increased levels of inflammatory markers compared 
with Helicobacter pylori-negative patients with vascular 
dementia [106].

NAFLD is positively correlated with vascular demen-
tia [35]. Patients with NAFLD have a high prevalence 
of all types of dementia, particularly, vascular demen-
tia [97]. As aforementioned above, NAFLD is related to 
metabolic disturbances, such as DM and atherosclerosis, 
and affected patients show reduced blood flow, vascular 
structural and functional changes, including endothelial 
dysfunction, and vascular injury, as observed in vascu-
lar dementia [35]. Also, patients with NAFLD also have 
an increased risk for hypertension, similar to patients 
with vascular dementia [36]. These findings demonstrate 
the close relationship between NAFLD and vascular 
dementia.

Insulin resistance in NAFLD and dementia
Insulin is a peptide hormone generated from the precur-
sor proinsulin through various processes by the beta cells 
of the pancreatic islets [111]. It regulates energy metabo-
lism by controlling glucose uptake in the liver, fat, brain, 
and muscle cells by binding with insulin receptors, such 
as insulin-like growth factor 1 (IGF-1) [112]. Insulin 
receptors are found in diverse brain regions, such as the 
hippocampus, hypothalamus, and cerebral cortex [112]. 
Many molecular signaling pathways are linked to insulin 
signaling pathways, such as the IGF-1/IGF-1 receptor-
induced phosphoinositide 3-kinase (PI3K)/Akt signaling 
pathway, affecting axon development and synaptic forma-
tion [113]. Insulin can influence the hippocampal synap-
tic plasticity and memory formation by modulating LTP 
[113]. However, insulin resistance is defined as reduced 
insulin sensitivity [114] and brain insulin resistance as 

a failure of neurons and glia to respond to insulin [115]. 
The lack of insulin sensitivity arises from the reduced 
expression of insulin receptors, inability of the insulin 
receptor to bind insulin, and impairment of insulin sign-
aling [112, 115]. Insulin resistance causes imbalanced 
secretion of neurotransmitters, such as acetylcholine, as 
well as impaired synapse remodeling, poor memory for-
mation, and cognitive dysfunction [113, 116, 117].

Insulin resistance is considered a common risk factor 
for NAFLD and dementia [27, 118] (Fig. 1). Insulin resist-
ance and poor insulin sensitivity are hallmark features of 
T2DM and NAFLD [119]. A defect in insulin signaling 
causes intrahepatocellular lipid accumulation and altered 
free fatty acid degradation by the hepatic pathway, lead-
ing to NAFLD [120]. Insulin resistance is an important 
sign for the progression of NAFLD including NASH 
[121]. NAFLD is linked to insulin resistance and obesity 
and that DM tends to coexist with NAFLD [122]. Insulin 
resistance in patients with obesity and T2DM ultimately 
leads to liver dysfunction and contributes to the develop-
ment of NAFLD [118]. Brain insulin deficits and hyper-
insulinemia are known to lead to memory loss and the 
development of dementia [123].

According to a large population follow-up clinical 
study, a triglyceride glucose index is positively related to 
high probabilities of dementia progression, including vas-
cular dementia or AD [124]. In addition, a previous study 
has reported that the apolipoprotein E alleles, ApoE-ε4 
allele, a crucial risk factor for the development of demen-
tia [125], was detected in both patients with DM and 
patients with AD [83]. The presence of the ApoE-ε4 allele 
increases the risk of brain insulin resistance, impaired 
glucose metabolism, and tau hyperphosphorylation [83, 
126].

Given these findings on the relationship between insu-
lin resistance, NAFLD, and dementia, insulin resist-
ance may be a therapeutic target for both NAFLD and 
dementia, for which insulin resistance is considered 
an important trigger [27, 118, 127]. The modulation 
of insulin resistance may simultaneously suppress the 
risk of NAFLD development and dementia progression 
[128–130].

Inflammation in NAFLD and dementia
Inflammation is a common characteristic of patients 
with NAFLD, which is considered a chronic inflamma-
tory disease [131]. After inflammatory injury, circulat-
ing immune cells secrete excessive proinflammatory 
chemokines and cytokines and transmigrate into the 
brain through the BBB [132]. The infiltrated immune 
cells activate periventricular resident microglia near the 
blood vessels [132]. The interplay between the recruited 
and resident immune cells results in neuroinflammation, 
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subsequently leading to neurological diseases [132]. A 
previous study has shown that inflammatory liver injury-
induced hepatic inflammation drives cerebral inflamma-
tion and sickness behavior [132]. Neuroinflammation can 
impair axons and myelin sheaths, induce abnormal lev-
els of inflammatory cytokines, including tumor necrosis 
factor-α, IL-1β, and IL-6, and lead to neurotoxic effects 
[133]. Although immune cells are important for tissue 
regeneration and repair [134], chronic inflammatory 
responses result in mental illness, cognitive impairment, 
and dementia [135, 136].

Inflammation is positively correlated with NAFLD 
and dementia [136–139]. In NAFLD, the excessive pro-
duction of proinflammatory cytokines and chemokines 
is triggered by hepatic fat accumulation and hepato-
cyte damage [137]. Excessive hepatic lipid accumulation 
triggers macrophage activation, hepatic inflammation, 
and liver fibrogenesis [137]. Subsequently, this exces-
sive secretion of proinflammatory mediators accelerates 
the progression of NAFLD into NASH [137]. Increased 
liver inflammation in NAFLD induces microglia acti-
vation and neuronal cell death, ultimately resulting in 
AD dementia, indicating that systemic inflammation in 
NAFLD contributes to the progression of severe cogni-
tive dysfunction [63]. Moreover, the activation of the 
nuclear factor-kappa B (NF-κB) pathway, an inflamma-
tory regulatory signaling pathway, leads to the chronic 
secretion of proinflammatory cytokines and impairment 
of both hepatic and systemic insulin sensitivities [140]. 
Immune cells, such as macrophages and natural killer 
T cells, induce the progression of NAFLD [137, 141]. 
Chronic neuroinflammation by the activated microglia 
and cytokines is observed in the brain of patients with 
AD [136], and elevated systemic inflammation results in 
increased risk for diabetes dementia [139].

Thereby, chronic or systemic inflammation induces the 
secretion of inflammatory cytokines in the microglia and 
immune cells and ultimately the development of both 
NAFLD and dementia [136, 137, 139]. The modulation 
of systemic inflammation and neuroinflammation is an 
important strategy in attenuating the pathological prob-
lems associated with NAFLD and dementia.

Hyperammonemia in NAFLD and dementia
Ammonia is the end-product of body metabolism; how-
ever, high ammonia levels are neurotoxic [142, 143]. Cell 
death signaling pathways, including the NF-κB signal-
ing pathway, apoptosis markers, nitric oxide activity, and 
superoxide in glial cells, are promoted by high ammonia 
levels [144, 145]. In the CNS, ammonia is known to cross 
the BBB and is controlled by astrocytes; thus, the ammo-
nia level is important in the pathogenesis of liver diseases 
[146]. Hyperammonemia, the excessive accumulation of 

ammonia, causes liver damage and fibrosis and acceler-
ates the progression of NASH [13]. In addition, it also 
aggravates the inflammatory response, brain edema, and 
cognitive impairment [143, 147].

Abnormal ammonia levels are detected in NAFLD and 
dementia [13, 142, 148]. NAFLD is characterized by urea 
cycle impairment, leading to a hyperammonemia state 
caused by an impaired ammonia–nitrogen conversion 
cycle [13]. Hyperammonemia triggers neuronal damage, 
astrocyte swelling, and poor synaptic plasticity, leading 
to memory loss in NAFLD [143, 149]. Further, hyper-
ammonemia and neuropsychiatric problems, including 
personality, cognition, and consciousness problems, are 
observed in these patients [19]. A recent study reported 
that NASH is accompanied by hyperammonemia and 
imbalanced neurotransmitter secretion in the brain, lead-
ing to memory deficits [45]. Elevated ammonia levels 
and abnormal ammonia metabolism were observed in 
AD, and hyperammonemia was associated with the pro-
gression of AD [142, 148]. High levels of ammonia cause 
mitochondrial dysfunction, increased activity of poly 
(ADP-ribose) polymerase (considered a cell death index), 
and excessive ROS production in the AD brain [142]. 
Additionally, hyperammonemia increases the secretion 
of gamma-aminobutyric acid (GABA), an inhibitory neu-
rotransmitter, and causes memory deficits in AD [142]. 
In AD, excessive deposits of amyloid beta alter the glu-
tamate synthetase enzyme that detoxifies ammonia, 
and the resulting increase in the ammonia levels conse-
quently results in a neurotoxic condition [150]. Increased 
release of ammonia is also observed in patients with 
T2DM [151].

Given these previous findings, elevated ammonia lev-
els contribute to the progression to a more severe form 
of NAFLD, followed by memory loss, eventually leading 
to dementia. Controlling the ammonia level in the brain 
may be a good approach for both NAFLD and dementia.

Gut dysbiosis and impaired gut barrier integrity in NAFLD 
and dementia
The gut microbiota controls multiple metabolic and phys-
iological homeostasis processes in the body [152]. Nutri-
ents can change the composition and function of the gut 
microbiota [152], as well as contribute to brain function-
ing and many mechanisms in the CNS [153]. The compo-
sition of the gut microbiota contributes to the regulation 
of hormone secretion, gene expression, neurotransmitter 
secretion, and immune function [154, 155]. The micro-
biota affects neuronal activity, neuronal gene expression, 
and synaptic dendritic spine remodeling [156]. Gut dys-
biosis results in neurological diseases including depres-
sion, anxiety, and autism [157]. In addition, gut barrier 
homeostasis is maintained by various tight junction 
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proteins within the epithelium and is an excellent barrier 
to bacteria and toxic metabolic products [158]. Increased 
gut permeability caused by damage to the intestinal bar-
rier allows toxic metabolites and bacterial fragments to 
enter the liver and triggers hepatic inflammation and 
liver fibrogenesis [158, 159]. Gut permeability triggers 
systemic inflammation, followed by neuroinflammation, 
leading to cognitive dysfunction [160].

Gut dysbiosis is closely associated with NAFLD 
and dementia [161–164]. The brain–gut–liver axis is 
impaired in patients with NAFLD [165]. During the 
development of NAFLD, patients show gut microbiota 
changes, low bacterial diversity, and increased Firmi-
cutes/Bacteroidetes ratio [161]. In patients with NAFLD, 
gut dysbiosis enhances insulin resistance and gut intes-
tinal permeability, involving a chronic immune response 
[159, 166]. Similarly, a recent clinical study highlights 
that increased gut permeability and impaired gut home-
ostasis occur in metabolic disorders, such as NAFLD 
[167]. One study observed a leaky gut and found reduced 
ZO-1 tight junction proteins in the small intestines of 
patients with NAFLD [168]. Abundant numbers of Pro-
teobacteria [169], Bacteroides [170], Gammaproteobac-
teria, and Prevotella [171] were found in patients with 
NAFLD compared with those in their normal counter-
parts. During the progression of liver failure, increased 
Proteobacteria phylum and decreased Firmicutes phylum 
were observed in patients with NAFLD [172]. Adminis-
tration of probiotics enhances the gut–liver–brain axis 
and suppresses the development of NAFLD by reducing 
insulin resistance and, the levels of total cholesterol, ALT, 
AST, and inflammatory mediators [166]. The adminis-
tration of a mixture of six probiotics or administration 
of Akkermansia muciniphila suppressed hepatic fat, 
increased the level of glucagon-like peptide 1 (GLP-1), 
and improved the gut barrier integrity, thereby leading 
to improved haptic status in patients with liver disease 
[173–175]. Administration of probiotics (Lactobacillus 
plantarum) improved cognitive impairment by modu-
lating hippocampal TLR4/BDNF signaling in an NASH 
model [176]. Importantly, gut dysbiosis is associated with 
the development of dementia, and gut inflammation and 
reduced gut microbial diversity are strongly linked to AD 
[162–164]. One study found that the gene expression of 
amyloid beta protein affected the gut microbiome com-
position in an AD animal model [177]. Gut dysbiosis 
occurs in patients with dementia and causes dysregula-
tion of anti-inflammatory pathways [178]. A reduced 
microbial diversity aggravates dyslipidemia, inflamma-
tion, and insulin resistance, leading to metabolic syn-
dromes, such as DM and obesity [179, 180].

As mentioned above, gut dysbiosis and increased gut 
permeability are important factors in accelerating both 

NAFLD progression and cognitive dysfunction, leading 
to dementia. The manipulation of the gut microbiome 
may be beneficial in NAFLD and dementia. The finding 
of common microbiome species between NAFLD and 
dementia may provide a basis for developing treatments 
for the pathologies associated with these two diseases.

Impaired cerebrovascular function in NAFLD and dementia
The neurovascular unit is formed by diverse cell types, 
such as astrocytes, endothelial cells, pericytes, smooth 
muscle cells, and neurons [181]. Neurovascular coupling 
is a structural and functional term related to neural activ-
ity and cerebrovascular blood flow [181]. Neurovascular 
decoupling accelerates the development of neurodegen-
eration by inducing brain dysfunction/injury and pro-
moting the release of various metabolites and chemical 
mediators [181]. Vascular disturbance results in chronic 
hypoperfusion, BBB disruption, neurotoxic molecule 
accumulations, and amyloid beta accumulation, ulti-
mately leading to dementia and AD [182].

Vascular abnormalities are risk factors for the pro-
gression of NAFLD and dementia [183, 184]. Previous 
studies have demonstrated that NAFLD is associated 
with vascular disease risk factors, cerebrovascular and 
cardiovascular dysfunctions, and increased risk for DM 
and hypertension [183]. NAFLD is affected by vascu-
lar complications and triggers hypertension and ath-
erosclerosis [185, 186]. It causes CVD by increasing the 
carotid intima–media thickness, arterial stiffness, and 
coronary artery calcification [187]. Patients with NAFLD 
had a reduced cerebral blood flow in the middle cerebral 
artery [21]. Cerebrovascular alterations due to vascular 
deterioration accelerate the progression of NAFLD and 
cognitive deficits by changing the brain structure [36]. 
NAFLD decreases the total cerebral blood flow, induces 
microvascular alteration, and finally triggers cognitive 
dysfunction [36]. Similarly, another recent study found 
that patients with NAFLD simultaneously show cerebro-
vascular dysfunction and memory loss [32]. Neurovascu-
lar dysfunctions, such as neurovascular decoupling and 
abnormal cerebral blood flow, lead to AD [188]. Apoli-
poprotein E4 (APOE4), which is associated with athero-
sclerosis and coronary heart disease, is strongly related 
to an increased risk for AD development [189]. Cerebral 
hypoperfusion and vascular abnormalities contribute to 
cognitive dysfunction and AD, and patients with AD or 
vascular dementia show cerebrovascular lesions [190, 
191]. Microvascular and macrovascular abnormalities, 
including vascular death, are very common in diabetes 
and vascular dementia [98, 101, 192].

Given these relationships between NAFLD and vas-
cular complications, modulation of the cerebrovascular 
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system is needed to treat NAFLD and dementia. Control-
ling the vascular risk factors may be a good approach in 
the treatment of NAFLD and dementia.

Conclusions
In this review, we summarized the dementia-related 
pathological features of NAFLD, such as insulin resist-
ance, neuroinflammation, hyperammonemia, gut dys-
biosis, and cerebrovascular dysfunction (Fig.  3). Insulin 
resistance is a common risk factor for both NAFLD 
and dementia, displaying increased insulin signaling-
mediated cell death, impaired LTP, and imbalanced 
neurotransmitter secretion. Systemic inflammation trig-
gers macrophage secretion of inflammatory cytokines, 
induces immune cell infiltration and microglia activation, 
attenuates synapse formation, and increases neuronal cell 
death. Hyperammonemia results in impaired urea cycle 
and contributes to astrocyte swelling, BBB disruption, 

abnormal energy cycle, excessive ROS production, neu-
ronal cell death, and increased inhibitory neurotrans-
mitter GABA secretion. Gut dysbiosis and increased 
gut permeability enhance insulin resistance and inflam-
matory response and reduce the GLP-1 level. Impaired 
cerebrovascular function contributes to BBB disruption, 
neurotoxic molecule accumulations, excessive amyloid 
beta accumulation, cerebrovascular blood flow disrup-
tion, microvascular infarction, and brain atrophy.

Many etiological factors are known to contribute; 
however, a limited number of prescription drugs are 
approved for dementia by the Food and Drug Adminis-
tration (FDA) [193]. Moreover, owing to the high prev-
alence of Alzheimer’s dementia [193], pharmacological 
management of dementia (using acetylcholinesterase 
inhibitors, N-methyl-d-aspartate [NMDA] receptor 
antagonists, and combination treatment) is primarily 
focused on Alzheimer’s dementia, and this approach 

Fig. 3  NAFLD-caused symptoms, including insulin resistance, neuroinflammation, hyperammonemia, gut dysbiosis, and cerebrovascular 
dysfunction, associated with some dementia. NAFLD can lead to chronic neuroinflammation, brain insulin resistance, hyperammonemia, 
cerebrovascular abnormalities, and gut dysbiosis. Those symptoms are closely associated with some dementia
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may be ineffective in treating or delaying symptoms 
of other types of dementia. Several trials have shown 
that cholinesterase inhibitor therapy is beneficial for 
the management of patients with vascular cognitive 
impairment [194], and memantine (an NMDA receptor 
antagonist) administration improves cognitive function 
in patients with mild-to-moderate vascular dementia 
[195]. However, concomitant adverse effects such as 
dizziness, headache, and nausea have been reported 
[194, 196], and these should not be overlooked. In 
view of an increase in the number of patients with 
NAFLD and the prevalence of dementia in patients 
with NAFLD, further studies are warranted to investi-
gate and gain a deeper understanding of the association 
between NAFLD and dementia. For those reasons, this 
review provides new perspectives on cognitive impair-
ment in patients with NAFLD and suggests potential 
strategies for treating cognitive impairment in such 
patients.
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