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Abstract 

Oxidative stress is mainly caused by intracellular reactive oxygen species (ROS) production, which is highly associated 
with normal physiological homeostasis and the pathogenesis of diseases, particularly ocular diseases. Autophagy 
is a self-clearance pathway that removes oxidized cellular components and regulates cellular ROS levels. ROS can 
modulate autophagy activity through transcriptional and posttranslational mechanisms. Autophagy further triggers 
transcription factor activation and degrades impaired organelles and proteins to eliminate excessive ROS in cells. 
Thus, autophagy may play an antioxidant role in protecting ocular cells from oxidative stress. Nevertheless, excessive 
autophagy may cause autophagic cell death. In this review, we summarize the mechanisms of interaction between 
ROS and autophagy and their roles in the pathogenesis of several ocular diseases, including glaucoma, age-related 
macular degeneration (AMD), diabetic retinopathy (DR), and optic nerve atrophy, which are major causes of blindness. 
The autophagy modulators used to treat ocular diseases are further discussed. The findings of the studies reviewed 
here might shed light on the development and use of autophagy modulators for the future treatment of ocular 
diseases.
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Background
Christian de Duve, a Nobel Prize winner in 1974, 
observed cellular autophagic structures by electron 
microscopy sixty years ago due to the discovery of per-
oxisomes and lysosomes [1, 2]. In the early 1990s, the 
Japanese scientist Yoshinori Ohsumi identified the 
autophagy-related (ATG) genes required for autophago-
some formation and explained how eukaryotic cells 
recycle their components [3–6]. Autophagy can recruit 
damaged proteins/organelles to lysosomes through 

selective adaptors or non-selective bulk degradation to 
generate different substrates, such as nucleotides, sug-
ars, fatty acids, and amino acids, for new synthesis [6, 
7]. Oshumi’s findings opened up research on the role 
of autophagy in the physiology of normal cells and the 
pathogenesis of various diseases and conditions, includ-
ing neurodegenerative diseases, infections, and cancer. 
Therefore, Yoshinori Ohsumi was awarded the Nobel 
Prize in Physiology or Medicine in 2016.

There are three major types of autophagy: macro-
autophagy, microautophagy, and chaperone-mediated 
autophagy (CMA). Although crosstalk may occur among 
the three pathways, and all three pathways deliver com-
ponents to lysosomes for degradation, the mechanisms of 
delivery are quite different among them.
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Macroautophagy
Since macroautophagy is the most common form of 
autophagy, autophagy usually means macroautophagy. 
Macroautophagy requires autophagosome formation to 
pack abnormal proteins and organelles into autophago-
somes and fusion with lysosomes to digest the contents 
[8]. Most forms of macroautophagy are selective because 
specific cargos or adaptors are essential for the recruit-
ment of targets to autophagosomes, such as in mitophagy 
and pexophagy for the degradation of mitochondria and 
peroxisomes, respectively [8–11]. Several adapters for 
selective autophagy, such as squestome (SQSTM1, also 
known as p62) and NBR1, associate with ubiquitinated 
cargo proteins and autophagosomal protein LC3 via 
ubiquitin-associated (UBA) and LC3-interacting region 
(LIR) motif, respectively [12].

CMA
CMA is a chaperone (HSC70)-dependent degradation 
pathway. HSC70 recognizes cytosolic unfolded pro-
teins containing KFERQ pentapeptide and delivers it to 
lysosomes by binding with the transmembrane recep-
tor LAMP-2A [13, 14]. HSP90 then associates with the 
LAMP-2A complex to assist translocated substrate pro-
teins into lysosomes for degradation [15]. The LAMP-2A 
complex is further disassembled to a monomer and even-
tually degraded by cathepsin A and a metalloproteinase 
in the lipid microdomain [16].

Microautophagy
Microautophagy was defined as micro portion of lyso-
somal membrane to engulf autophagic cargos, including 
proteins and organelles, in cells [17]. Microautophagy 
can be classified into three types according to the mor-
phology of membrane deformation: type 1, lysosomal 
protrusion; type 2, lysosomal invagination; and type 3, 
endosomal invagination [18]. Some ATG proteins or 
HSC70 or ESCRT proteins are involved in the mem-
brane deformation process [19, 20]. Therefore, crosstalk 
may occur among microautophagy and macroautophagy, 
CMA and endocytosis. Thus, further studies are required 
to elucidate the potential mechanisms through which this 
crosstalk would occur.

Autophagy‑related proteins
There are more than 40 Atg proteins involved in macro-
autophagy signaling in yeast cells. Most of the proteins 
have been found to have ATG homologous proteins in 
mammalian cells, in which about 20 ATG proteins play 
crucial roles in autophagy progression, including pre-
autophagosomal structure (PAS) formation, autophago-
some maturation and fusion with lysosomes. The ATG 

proteins can be clustered into four complexes as listed 
in Table  1 [21–25] and their functions are described as 
below. The involvement of these complexes in autophagy 
machinery is also shown in Fig. 1.

i)	 ULK1/2-containing complex- ULK1/2 is the only 
ATG kinase that binds and phosphorylates FIP200 
(mammalian Atg17 homologous), ATG13 and 
ATG101 for autophagosome nucleation and forma-
tion [26, 27]. ULK1/2 also phosphorylates several 
ATG proteins, such as ATG9 at Ser14, ATG4B at 
Ser316, BECN1 at Ser14 and ATG14L at Ser29 [28]. 
Moreover, AMPK directly phosphorylates ULK1, 
particularly in S317 and S777, to activate its kinase 
activity, whereas MTORC1 directly phosphorylates 
ULK1 at S757 to block the binding between AMPK 
and ULK1 [29]. Interestingly, ULK1 can phospho-
rylate and negatively regulate both AMPK and 
MTORC1 activity, suggesting the regulation loop of 
AMPK-MTORC1-ULK1 are important to control 
autophagic activity for maintaining energy homeo-
stasis.

ii)	 BECN1-containing complex- BECN1 attaches to 
VPS15 and VPS34, which is a lipid kinase class III 
phosphatidylinositol 3 kinase (PI3K) that triggers the 
phosphorylation of phosphatidylinositol and results 
in phosphatidylinositol 3-phosphate (PI3P) forma-
tion [30, 31]. ATG14L/Barkor (mammalian Atg14 
homologous) recruits the complex to the PAS site. 
UV radiation resistance-associated (UVRAG) protein 
associates with the BECN1 complex for autophago-
some formation and maturation [32, 33]. In addi-
tion, AMPK phosphorylates BECN1 to activate 
VPS34 activity and induce autophagy [34], whereas 
Run domain Beclin-1 interacting and cysteine-rich 
containing (Rubicon) binds to BECN1 and inacti-
vate class III PI3K complex 2 for blocking fusion step 
between autophagosome and lysosome [35].

iii)	ATG9-containing complex- ATG9 is only one trans-
membrane protein among ATG proteins. ATG9A 
forms a homotrimer to form a pore to translocate 
ATG2-delivered phospholipids for PAS formation 
and phagophore nucleation [36]. ATG9 also coordi-
nates with the ATG9 receptor and ATG11 to recruit 
ATG2, WIPI1/2 (mammalian Atg18 homologous) 
and LC3 for lipid transfer, which is important for 
autophagosome expansion [37, 38].

iv)	ATG12 and LC3 ubiquitin-like conjugation com-
plexes- ATG12 conjugated to ATG5 and LC3/
GABARAP conjugated to phosphatidylethanolamine 
(PE) (LC3-II/GABARAP-II) are two ubiquitin-like 
complexes are essential for autophagosome elon-
gation and maturation in mammalian cells  [39, 40]. 
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LC3 and GABARAP are activated by ATG4 fam-
ily proteases (including ATG4A, ATG4B, ATG4C 
and ATG4D) before conjugation [41]. All the con-
jugation requires the E1-like enzyme ATG7 and 
the E2-like enzyme ATG10 (for ATG12-ATG5) or 
ATG3 (for LC3-II/GABARAP-II) [42]. ATG16L sta-
bilizes ATG12-ATG5 conjugates to form a complex 
of approximately 800  kDa and serves as an E3-like 
enzyme for the conjugation.

In addition to autophagosome maturation, LC3 and 
ATG12 ubiquitin-like proteins are also involved in the 
tethering complex. The tethering complex for the fusion 
step between autophagosomes and lysosomes consists 
of the homotypic fusion and protein sorting (HOPS) 
complex, Rab7, adaptors and receptors (LC3-II/ATG12-
ATG5) [43]. The HOPS complex consists of Vps16, 
Vps18, Vps33, Vps39, and Vps41 and connects to syn-
taxin 17 by binding with oligomeric ATG14L to mediate 
fusion [44, 45]. PLEKHM1 and TECPR1 are adaptor pro-
teins that connect autophagosomal LC3-II and ATG12-
ATG5 with lysosomal Rab7 to ensure fusion specificity 
[43].

Reactive oxygen species (ROS) and autophagy
Oxidative stress is highly associated with elevated 
intracellular reactive oxygen species (ROS), which are 
involved in cellular physiological regulation and the 
pathogenesis of diseases, such as neuronal, ocular and 
cardiovascular diseases [46–48]. Intracellular ROS are 
mainly (approximately 90%) generated by the electron 
transport chain in the inner membrane of mitochondria 
and consist of H2O2, superoxide (O2·−) and hydroxyl 
radicals (OH·) [49, 50]. ROS can oxidize organelles, 
nucleic acids, proteins and lipids, which results in cel-
lular damage [51]. ROS not only trigger the autophagy 
pathway to maintain redox homeostasis and remove 
oxidized organelles and other components [52] but also 
inhibit autophagy, likely directly oxidizes ATG proteins 
(ATG7 and ATG10) or inactivating autophagy modula-
tors (TFEB and PTEN) [53–55]. Conversely, autophagy 
can modulate ROS levels through several mechanisms. 
The reciprocal regulation of ROS and autophagy are 
discussed below.

Table 1  The functions of each component in the autophagy complex involved in the autophagy machinery

Complex Components Functions

Yeast Mammals

Atg1/ULK1/2 complex Atg1 ULK1/2 It is the only ATG protein with kinase activity and phosphorylates several other ATG proteins (ATG9, 
BECN1, ATG14L) for the PAS, autophagosome elongation and maturation

Atg13 ATG13 It serves as a linker among ULK1/2, FIP200 and ATG101

Atg17 RB1CC1/FIP200 It is a scaffold protein for ULK1/2 and ATG13 and serves as a scaffold protein for the ULK1/2 com‑
plex

– ATG101 It interacts with ATG13

BECN1 complex Atg6 Beclin1 It is a core component in class III PI3KI/II and binds lipids. It also associates with UVRAG for 
autophagosome elongation and maturation

VPS34 It is a catalytic subunit of class III PI3K to generate PI3P

VPS15 It is a protein kinase involved in the PI3P pathway

Atg14 ATG14L
(Barkor)

It associates with the BECN1 complex for membrane targeting

ATG9A complex ATG9A It is the only transmembrane protein among ATG proteins and forms homotrimer for the PAS, 
nucleation and autophagosome formation

Atg18 WIPI1/2 It attaches to PI3P for the transportation of ATG9

Atg2 ATG2A It attaches to WIPW1/2

Ubiquitin-like complex Atg8 LC3A-C, GABARAP It is a ubiquitin-like protein and ligates with PE for autophagosome elongation and sealing

Atg12 ATG12 It is another ubiquitin-like protein and ligates with ATG5 to form an E3-like ligase with ATG16

Atg4 ATG4A-D It is a protease required for the cleavage and activation of proLC3/GABARAP at the C-terminus for 
conjugation and further deconjugation of LC3/GABARAP-PE

Atg7 ATG7 It serves as an E1-like enzyme for LC3 and ATG12 conjugation

Atg3 ATG3 It serves as an E2-like enzyme for LC3/GABARAP conjugation with PE

Atg10 ATG10 It serves as an E2-like enzyme for ATG12 conjugation with Atg5

Atg5 ATG5 It covalently binds to ATG12 and associates with ATG16 to form the E3-like enzyme complex

Atg16 ATG16L1 It is a part of the E3-like enzyme complex along with ATG12 and ATG5
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The regulation of autophagy by ROS
ROS induce autophagy
Autophagy can be induced by ROS through transcrip-
tional (HIF-1α, NRF2, p53 and FOXO3) and posttrans-
lational regulation (oxidation and phosphorylation) 
(Fig. 2).

ROS production has been reported to activate hypoxia-
inducible factor-1α  (HIF-1α), nuclear factor erythroid 
2–related factor 2 (NRF2), p53 and forkhead box O-3 
(FoxO3). These transcription factors drive the expression 
of the genes required for autophagy induction, includ-
ing BECN1, LC3, SQSTM1 and the mitophagy-associated 
genes BNIP3 and NIX [56, 57].

Sestrins (SESNs) are another antioxidant cytoplasmic 
protein and consist of three members, SESN1, SESN2, 
and SESN3, in mammalian cells. ROS oxidize nucleic 
acids and cause DNA damage. The severe DNA dam-
age may increase p53 transcriptional activity. The SESN1 
and SESN2 genes are targets of p53; therefore, SESNs are 
induced in cells under oxidative stress [58]. Several other 
transcription factors are also reported to drive SESNs 
gene expression, such as NRF2 [59], HIF-1α [60], and 
the NH(2)-terminal kinase (JNK)/c-Jun pathway [61]. 
SESNs contain motifs required for the removal of ROS, 

including an N-terminal cysteine (C125) with an active 
site for oxidoreductase activity to reduce alkyl hydroper-
oxide radicals and a C-terminal aspartate-aspartate motif 
for mTORC1 suppression [62, 63]. Moreover, SESN2 
interacts with KEAP1 to mediate its degradation with 
autophagy for further NRF2 activation and antioxidant 
gene expression, as mentioned above [64].

In terms of the effects of posttranslational modifica-
tion of ROS on autophagy, SESN2 also binds to ULK1 
and SQSTM1 to increase SQSTM1 phosphorylation 
at the UBA domain (S405/409), indicating that SESN2 
recruits ULK1 to phosphorylate SQSTM1 and promotes 
autophagy [65]. In addition, SESN2 sustains AMPK acti-
vation to inhibit mTORC1 [66]. These observations pro-
vide links to the role of SESNs in autophagy in response 
to oxidative stress. In addition, starvation-induced H2O2 
oxidizes ATG4 at Cys78 to spatiotemporally inactivate 
ATG4 and ensure that lipidated LC3-II can facilitate 
autophagosome formation before deconjugation [67]. In 
addition, ROS elevate AMPK phosphorylation and activ-
ity to inhibit mTORC1 [68]. Alternatively, ROS down-
regulate PI3K-AKT signaling to reduce mTORC1 activity 
for autophagy induction [69, 70]. As mentioned above, 
AMPK and mTORC1 are positive and negative regulators 

Fig. 1  Schematic diagram for components of each ATG-mediated complex and their involvement in autophagy steps. ULK1/2, BECN1, ATG9 and 
ubiquitin-like (LC3 and ATG12)-mediated complexes are the four major complexes involved in the core machinery of autophagy, from the PAS to 
autophagosome maturation/fusion. Many complexes are involved in several stages of autophagy, such as the ULK1/2-mediated complex involved 
in the PAS, autophagosome nucleation and elongation, since ULK1/2 can phosphorylate and activate many components of the other complexes. 
AMPK and MTORC are positive and negative regulators of ULK1/2, respectively. Moreover, LC3 and ATG12 are also involved in tethering complexes 
for the specificity of autophagosomal fusion with lysosomes
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of ULK1, respectively. Thus, ROS can initiate autophagy 
through AMPK activation and mTORC1 inactivation.

ROS inhibit autophagy
In contrast, the autophagy core protein E1-like enzyme 
ATG7 and E2-like enzymes ATG10 and ATG3 consist 
of sulfhydryl groups, which are sensitive to ROS oxida-
tion and inactivate enzyme activity (Fig.  2) [53]. The 
inactivation of these core enzymes of autophagy leads to 
autophagy reduction. ROS also inactivate PTEN, a phos-
phatase that negatively regulates PI3K-AKT-mTORC1, to 
diminish autophagy [54]. Moreover, Transcription Factor 
EB (TFEB) is a mater regulator to drive gene expression 
required for biogenesis of autophagosome and lysosome 
[71]. Low concentration (100 or 200  µM) of H2O2 acti-
vates TFEB and has no effects on cell viability, whereas 
high concentration (400 or 800 µM) of H2O2 inactivates 
TFEB and leads to neuron cell death [55]. Thus, ROS may 
initially oxidize and inactivate essential autophagy genes 
and then induce several pathways to reactivate autophagy 
and compensate for the redox status. Alternatively, ROS-
modulated autophagy might rely on the context of cell 
types and the timing or conditions of stress for ROS 
generation.

Regulation of ROS by autophagy
ROS stimulation accumulates impaired organelles and 
enhances cellular ROS in autophagy-deficient cells lack-
ing BECN1, ATG5 or ATG7 [72, 73]. ROS-oxidized 

organelles and proteins can be removed by autophagy to 
protect cells [74, 75]. Autophagy is a form of quality con-
trol for cellular components, particularly for mitochon-
dria, peroxisomes and proteins that are involved in ROS 
generation [10, 76]. Thus, although autophagy is modu-
lated by ROS, autophagy also has a feedback loop to 
regulate ROS levels through transcription factor (NRF2, 
p53) activation or the degradation of damaged compo-
nents, such as mitochondria, peroxisomes and unfolded 
proteins, as discussed below (Fig. 3).

Clearance of impaired organelles
Mitochondria and peroxisome are major ROS-producing 
organelles in cells. Mitophagy and pexophagy are types 
of selective autophagy to degrade impaired mitochon-
dria and peroxisome, respectively. As mentioned above, 
cellular ROS are mainly produced from mitochondria, 
which are so-called mitoROS. MitoROS can be limited 
to regular oxidative phosphorylation reactions in the 
inner membrane of mitochondria in cells under normal 
conditions. In contrast, mitochondria also contain ROS 
scavenger systems, such as the superoxide dismutase 
(SOD) family of proteins [77], to convert O2− into H2O2 
to maintain redox homeostasis and GSH (glutathione) 
redox systems to decompose H2O2 into O2 and H2O [78]. 
Mitochondrial dysfunction leads to cellular ROS eleva-
tion [79]. Mitophagy is a selective autophagy pathway 
that degrades impaired mitochondria. Mitophagy defects 
result in the accumulation of impaired mitochondria 

Fig. 2  Dual role of ROS in autophagy induction and inhibition. ROS trigger the activation of transcription factors, such as p53, HIF1A and 
NRF2, to induce the expression of autophagy-related genes. ROS spatiotemporally oxidize and inactivate ATG4 to maintain lipidated LC3-II and 
autophagosome formation. ROS also block PI3K-AKT-MTORC1 signaling to initiate autophagy signaling. In contrast, ROS oxidize ATG proteins and 
PTEN to suppress autophagy
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and the elevation of cellular ROS and damage [80, 81]. 
Mitophagy is processed mainly via Parkin ubiquitina-
tion and BNIP3-NIX-FUNDC1 mitochondrial adaptor 
pathways.

Parkin is an E3 ubiquitin ligase and is phosphoryl-
ated at S65 by PTEN-putative kinase 1 (PINK1) [82]. 
The phosphorylation of Parkin is fully activated due to 
conformational changes to (i) eliminate autoinhibitory 
effects and (ii) bind charged E2 ligases [83]. Active Par-
kin ubiquitinates many mitochondrial proteins located in 
the outer membrane, matrix and inner membrane, such 
as voltage-dependent anion channel 1 and mitofusins 
(Mfn1 and Mfn2) [84, 85]. Ubiquitinated mitochondrial 
proteins associate with autophagy cargo receptors, such 
as SQSTM1, NDP52 and optineurin, to recruit damaged 
mitochondria to autophagosomes. The Rab signaling 
proteins RABGEF1, RAB5, and RAB7A, located on the 
mitochondrial surface, are also involved in the mitophagy 
recruitment process [86, 87]. Interestingly, Parkin trans-
locates to mitochondria in cells under oxidative stress, 
indicating that Parkin is important for oxidative-stress-
mediated mitophagy [88, 89].

Moreover, several other cargo adaptors are induced 
by oxidative stress to facilitate mitophagy, such as 

FUNDC1, NIX and BNIP3. These mitochondrial cargo 
adaptors include the LC3-interacting region, which con-
nects mitochondria and autophagosomes to promote 
mitophagy [90]. FUNDC1-mediated mitophagy is posi-
tively and negatively regulated by ULK1 and Src kinase, 
respectively [90, 91].

Peroxisomes are organelles that undergo many meta-
bolic pathways in cells, particularly pathways involved 
in lipid metabolism, such as the α- and β-oxidation of 
fatty acids, ketogenesis, and the metabolism of isopre-
noids and cholesterol [92]. In addition to mitochondria, 
peroxisomes are another main organelle that produces 
intracellular ROS by releasing free electrons from sev-
eral oxidases [93, 94]. Peroxisomes also contain many 
antioxidant enzymes to remove excessive ROS, includ-
ing GPX, catalase, and SOD [95]. Defects or damage to 
peroxisomes may lead to intracellular ROS elevation, 
while damaged peroxisomes can be eliminated by pex-
ophagy. Pexophagy starts with ataxia-telangiectasia 
mutated kinase (ATM) activation through ROS-medi-
ated disulfide bond formation of ATM to dimerize and 
become its active form [96–98]. Active ATM promotes 
AMPK activation, which in turn phosphorylates ULK1 
kinase for autophagy initiation [99, 100]. Additionally, 

Fig. 3  Pathways involved in ROS elimination by autophagy in cells under oxidative stress. Autophagy can degrade ROS-generating organelles, 
including mitochondria (mitophagy) and peroxisomes (pexophagy), by binding ubiquitinated proteins to autophagy receptors (SQSTM1, NBR1 and 
NDP52). Autophagy also removes unfolded proteins through chaperone-mediated autophagy. In addition, autophagy activates NRF2 to induce 
antioxidant gene expression to eliminate excessive ROS in cells
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ATM phosphorylates peroxisomal protein Pex5 at Ser141 
to trigger Pex5 ubiquitination [101]. Ubiquitinated Pex5 
then interacts with the autophagy receptors SQSTM1 
and NBR1 to degrade damaged peroxisomes through 
pexophagy [7]. In addition, ROS are elevated in patients 
with ATM mutations and ATM-deficient mice [102, 103], 
supporting the notion that pexophagy can eliminate 
excessive ROS to maintain redox homeostasis and keep 
cells healthy.

Clearance of unfolded proteins by CMA
CMA is a specific type of autophagy that delivers 
unfolded proteins into lysosomes and degrades them in 
a chaperone-dependent manner. In contrast to proteaso-
mal degradation, CMA requires a KFERQ pentapeptide 
sequence as a degradation signal in substrate proteins 
(approximately 30% soluble proteins) instead of ubiquit-
ination [104]. When cells are under oxidative stress, pro-
teins containing the pentapeptide sequence are unfolded 
to expose the sequence for binding with constitutive 
heat shock protein 70 (HSC70) [105]. A recent study also 
showed that some of pentapeptide non-existing proteins 

may create a KFERQ-like structure for HSC70 recogni-
tion in cells under oxidative stress [106]. The chaperone-
associated complex is then translocated to lysosomes 
and imported by LAMP-2A for degradation. Moreover, 
LAMP-2A gene expression is induced in cells during 
oxidative stress [105, 107]. Silencing LAMP-2A impairs 
CMA and increases ROS-induced ferroptosis in retinal 
pigment epithelial ARPE-19 cells, while cysteine and glu-
tamine supplementation rescue ROS-induced cell death 
[108]. Interestingly, increased macroautophagy is not 
able to restore ROS-induced damage in CMA-defective 
cells [109], suggesting that CMA is essential for cytopro-
tection in response to ROS.

Expression of antioxidant and autophagic pathways
NRF2 is the major transcription factor involved in 
autophagy-mediated antioxidant mechanisms. NRF2 is 
normally ubiquitinated by the E3 ligase Kelch-like ECH-
associated protein 1 (KEAP1) and results in degradation 
[110]. KEAP1 can be eliminated by autophagy, specifi-
cally through interruption by SQSTM1 (Fig. 4).

Fig. 4  The mechanisms of NRF2 activation and antioxidation. KEAP1, an E3 ligase of NRF2, can be directly oxidized and recruited by SQSTM1 to 
autophagosomes for degradation. Liberated NRF2 can induce the gene expression of the antioxidant genes Sqstm1, Sesn2 and Pink. The induced 
SQSTM1 is phosphorylated to interrupt the binding between KEAP1 and NRF2 for further positive feedback activation of NRF2. The released KEAP1 
and induced SESN2 and PINK promote mitophagy to remove damaged mitochondria



Page 8 of 20Chang et al. Cell & Bioscience            (2022) 12:1 

Cysteine residues of KEAP1 are oxidized to form 
disulfide bonds and lead to conformational changes to 
release NRF2 [111]. NRF2 can enter the nucleus and 
bind to the promoter with an antioxidant-response ele-
ment (ARE, 5′-TGACXXXGC-3′) to turn on the expres-
sion of several antioxidant, detoxification enzymes and 
autophagy genes, including NADPH quinone dehydro-
genase 1 (NQO1), glutathione S-transferase (GST) genes 
and SQSTM1 [110, 112–117]. SQSTM1 is phosphoryl-
ated by mTORC1 to compete for the interaction between 
KEAP1 and NRF2, thereby preventing NRF2 degradation 
[118, 119]. ATG8-defective mice accumulate SQSTM1, 
resulting in the hyperactivation of NRF2 and limiting oxi-
dative stress [119], whereas Nrf2-knockout mice exhibit 
elevated oxidative stress [120]. Thus, NRF2 and SQSTM1 
are parts of a positive feedback loop to reduce oxida-
tive stress. Moreover, NRF2 induces the gene expression 
of SESN2 and PINK1 to promote macroautophagy and 
mitophagy in the cell response to oxidative stress, respec-
tively [121, 122]. In addition to the Parkin E3 ubiquitin 
ligase, SQSTM1 triggers the translocation of KEAP1, an 
E3 ubiquitin ligase, to mitochondria for mitophagy acti-
vation [123].

The effects of ROS‑mediated autophagy on survival 
and death
Autophagy acts as a recycling pathway to eliminate 
impaired proteins, organelles or pathogens to maintain 
cell health. Intracellular oxidative stress significantly 
regulates autophagy. In addition, autophagy regulates 
ROS levels in cells via mitophagy, pexophagy, protea-
somal, and CMA pathways. Furthermore, autophagy can 
directly regulate antioxidant pathways (i.e., NRF2 and 
SESN molecules) to modulate redox homeostasis and 
cell survival. Thus, autophagy is thought to be a cytopro-
tective mechanism in cells under starvation or stressed 
conditions. However, excessive stress-induced autophagy 
may lead to cell death, which is called autophagic cell 
death [124]. Autophagic cell death meets the criteria 
that i) autophagic flux is increased and ii) the ablation of 
autophagy inhibits cell death to ensure that cell death is 
caused by autophagy rather than dying cells with protec-
tive autophagy. Autophagic cell death is observed under 
certain stresses, particularly oxidative stress. Hydrogen 
peroxide (H2O2) exposure or reactive oxygen species 
(ROS) generation through the disruption of mitochon-
drial function induces autophagic cell death [125, 126]. 
Genetic or pharmacological ablation of autophagy 
diminishes cell death, whereas the apoptosis inhibitor 
Z-VAD has no effects on cell death. The mechanisms 
of autophagic cell death can depend on certain cells in 
response to different conditions. For example, glyco-
gen synthase kinase 3-beta, ryanodine receptor 3, and 

PARKIN are involved in mitophagy and autophagic cell 
death in hippocampal neural stem cells during insulin 
withdrawal [127]. Notably, the ryanodine receptor, which 
controls calcium release from the ER, is activated and 
leads to autophagic cell death in a variety of apoptosis-
resistant cancer cells when exposed to neferine [128]. 
These observations suggest that excess autophagy may 
require lots of autophagy components, such as lipids, 
ATG proteins and signaling factors, and cause cellular 
burden/stress and death.

Autophagy and oxidative stress 
in the pathogenesis of retinal diseases
The roles of autophagy and oxidative stress in different 
ocular diseases are shown as schematic diagram (Fig. 5) 
and described below:

Glaucoma and optic neuropathies
Glaucoma is the second leading cause of blindness world-
wide and was estimated to affect ~ 80 million people in 
2020 [129]. Retinal ganglion cell (RGC) loss and extensive 
axon degeneration are the main signs of glaucoma. The 
elevation of intraocular pressure (IOP), one of the main 
causes of glaucoma, induces axonal degradation and RGC 
death, and this phenomenon is exacerbated with aging 
[130]. RGCs have long axons with a high density of mito-
chondria, which makes them more sensitive to oxida-
tive stress [131]. In addition, growing evidence indicates 
that reactive oxygen species (ROS) play a key role in the 
pathogenesis of primary open angle glaucoma (POAG) 
by attacking trabecular meshwork (TM) cells [132, 133]. 
A recent study demonstrated that autophagy activation 
can be triggered by IOP elevation and mechanical stretch 
in TM cells, and primary cilia are critical for IOP homeo-
stasis and autophagy activation [134].

In the optic nerve, oxidative stress is elevated after 
nerve crush injury [135], which triggers autophagy in 
RGCs, Müller cells [131, 136] and the primary visual cor-
tex [137]. In addition, retinal hypoxia and axonal damage 
of the optic nerve also induce autophagy [138, 139]. Phar-
macological induction of autophagy by rapamycin pro-
motes RGC survival and after optic nerve axotomy in a 
mouse model [140]. The dysregulation of autophagy con-
tributes to neurodegeneration in glaucoma [141]. SIRT1 
activation enhances axonal protection in TNF-α-induced 
optic nerve degradation by elevating the autophagy path-
way [142]. In addition, BNIP3L-mediated mitophagy is 
required for optic nerve oligodendrocyte differentiation 
[143]. Autophagy is enhanced after optic nerve crush 
(ONC) damage in zebrafish RGC axons, somas, and 
growth cones [144].

In a transgenic animal model, Atg4b-/- mice were more 
susceptible to stress, as optic nerve axotomy resulted in 
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reduced RGC survival in these animals compared with 
WT mice, suggesting that autophagy levels can alter the 
capability of RGCs to respond to axonal stress [145]. In 
a mouse model, retinae with Atg5 deletion by intravitre-
ally injected with adeno-associated virus (AAV)2-ATG5fl/

fl were more vulnerable to optic nerve axotomy than con-
trol mice [140]. Cells from autophagy-deficient animals 
show increased levels of ROS [131]. In addition, muta-
tions of optineurin (OPTN) were known to associated 
with normal tension glaucoma [146]. Genetic mutation of 
OPTN at residue E50K was reported to affect autophagy 
and cause the apoptosis of RGCs. The disruption of 
OPTNE50K induced autophagy affected the degradation 
of TDP-43, which led to glaucomatous retinal neurode-
generation [147].

MTOR, the mammalian target of rapamycin, plays an 
important role in RGCs and glial cells for retinal devel-
opment and axonal survival after ON injury [148]. Many 
studies have reported that the mTOR inhibitor rapamy-
cin is used to induce autophagy and treat glaucoma in 

rodent models [149], showing the promotion of RGC 
survival in the ischemia/reperfusion injury model caused 
by IOP elevation [150]. Autophagy decreases with aging 
in the retina, and the induction of autophagy shows neu-
roprotective effects in a glaucoma animal model [151]. 
Although most evidence shows that autophagy is pro-
tective in glaucoma, an opposing result showed that the 
inhibition of autophagy by 3-methyladenine (MA) alle-
viates acute axonal degeneration in a rat model [139]. 
Another study in a zebrafish model showed that the inhi-
bition of autophagy promotes axonal regrowth [144].

Age‑related macular degeneration
There are two main types of age-related macular degen-
eration (AMD), dry AMD (geographic atrophy) and 
wet AMD (choroidal neovascularization, CNV). In 
dry AMD, patients develop yellow deposits, called 
drusen, in their macula. Without appropriate treat-
ment, drusen become increasingly numerous, causing 
light-sensitive cell death in the macula and leading to 

Fig. 5  The potential involvement of autophagy in different ocular diseases. Autophagy is involved in several ocular diseases, including age-related 
macular degeneration (AMD), glaucoma, optic neuropathy, and diabetic retinopathy (DR). In general, autophagic flux protects retinal cells from 
oxidative-induced insult. However, excess autophagic flux may cause cell death and lead to retinal degeneration, such as in cells of the retinal 
pigment epithelium (RPE) in AMD and pericytes in DR. This figure was created partially with BioRender.com and Smart.Servier.com
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multiple blind spots in the central vision. Once AMD 
reaches an advanced stage, blood vessels grow from 
underneath the macula and leak blood and fluid into 
the retina, eventually forming a scar and leading to 
permanent loss of central vision [152]. Among various 
factors, oxidative stress is strongly implicated in AMD 
[153, 154]. Aging [155] and oxidative stress [156] were 
reported to be involved in retinal neovascularization, 
which is an advanced progression of AMD. However, 
a study reported that oxidative stress-induced nuclear 
factor kappa B (NF-κB) signaling promotes retinal pig-
mented epithelial (RPE) cell survival through increased 
autophagy [157]. In addition, the catalytic subunit of 
human telomerase (hTERT) is known to be associated 
with AMD by interacting with mTORC1 (mechanistic 
target of rapamycin complex 1) and PINK1 (PTEN-
induced kinase 1), which activates macroautophagy and 
mitophagy, respectively [158]. A decrease in autophagic 
activity with age observed in many tissues has been 
proposed to contribute to the aggravation of age-
related diseases [159].

The RPE is responsible for the phagocytosis of pho-
toreceptor outer segments (POSs) [155] and is consid-
ered one of the most important retinal cells involved 
in AMD [160]. With increasing age, lipofuscin accu-
mulates in the RPE and contributes to the pathogen-
esis of AMD [155]. Autophagy regulates the death 
of RPE cells in AMD [161]. Impairing autophagy in 
RPE leads to inflammasome activation and enhances 
macrophage-mediated angiogenesis. In  vitro inhibi-
tion of rotenone-induced autophagy in RPE cells elic-
its caspase-3-mediated cell death [162]. The autophagy 
marker ATG5 was observed in the  drusen of human 
normal old eyes and was even more in AMD eyes, sug-
gesting that autophagy contributes to the formation 
of drusen in aged RPE [163]. The deletion of ATG5 
leads to apoptosis in the outer nuclear layer (ONL) of 
the mouse retina [164]. Compared with normal eyes, 
the RPE from human donor AMD eyes shows more 
autophagosome expression and is more susceptible 
to oxidative stress [165], which suggests that dysfunc-
tional autophagy contributes to the pathophysiology 
of AMD [166]. The dying RPE triggered by autophagic 
pathway would be engulfed by human macrophages 
and dendritic cells (DCs), and a failure of engulfment in 
the retina may result in the accumulation of debris and 
the progression of AMD [167]. Oxidative stress was 
reported to induces autophagy and cell death in RPE 
cells [167, 168]. Silencing autophagy essential genes 
(ATG5/ATG7) diminishes cell death in ARPE-19 cells 
treated with H2O2 [169], suggesting that autophagic 
cell death is involved in RPE cell death when cells are 
exposed to excessive oxidative stress.

Diabetic retinopathy
Diabetic retinopathy (DR) is a severe ocular complication 
of diabetes and accounts for ~ 5% of all cases of blindness 
worldwide. Hyperglycemia, the common symptom of dia-
betes, is known to induce oxidative stress in retinal cells 
[170]. The early stage of DR is usually termed nonprolif-
erative diabetic retinopathy (NPDR). In NPDR, the blood 
vessels in the retina close off, and blood cannot reach the 
macula, which is also called  macular ischemia. DR that 
progresses to an advanced stage is termed proliferative 
diabetic retinopathy (PDR). In eyes with PDR, the retina 
begins to grow new blood vessels, called neovasculariza-
tion. These new vessels often cause blood leakage into the 
vitreous and block vision. To test the correlation between 
diabetes and autophagy, a study conducted using a RPE 
cell culture exposed to hyperglycemic conditions showed 
that high glucose (HG) induces the autophagosome for-
mation regulated by ROS-mediated ER stress signaling 
[171]. In a diabetic mouse model, autophagosome and 
autophagic proteins (Beclin-1 and Atg5) were elevated in 
the diabetic retina, leading to a loss of rod photorecep-
tors and a reduction in the thickness of the outer and 
inner synaptic layers [172]. In addition, HG promotes 
advanced glycation end product (AGE) formation, caus-
ing oxidative stress and inflammatory responses that 
alter vascular function in the diabetic retina, resulting in 
diabetic complications [173, 174]. Strong evidence indi-
cates that autophagy plays a protective role in suppress-
ing inflammasome activation [175]. On the other hand, 
an increase in autophagy through the inhibition of mTOR 
signaling promotes endothelial cell survival in diabetic 
retinas, which can alleviate the progression of DR [176]. 
Conversely, a long-term increase in autophagy induces 
pericyte cell death, which may result in the pathogenesis 
of DR [177].

Current therapy for retinal degeneration
Glaucoma
IOP elevation is one of the main causes of glaucoma. In 
the clinic, glaucoma is often treated with prescription 
eyedrops. A variety of eyedrops are used, including pros-
taglandins [178], beta blockers [179], alpha-adrenergic 
agonists [180], carbonic anhydrase inhibitors [181], Rho 
kinase inhibitors [182] and cholinergic agents [183], all 
of which regulate glaucoma through different molecular 
mechanisms. These eyedrops function to decrease eye 
pressure by improving the drainage of fluid from the eye 
or by decreasing the amount of fluid that the eye makes. 
However, some patients complain of side effects unre-
lated to the eyes due to the molecular absorption of eye-
drops into the bloodstream.

In certain patients with advanced glaucoma, eyedrops 
fail to reduce eye pressure to the desired level, whilst 
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patients with acute angle-closure glaucoma  require sur-
gical procedures or alternative treatments, including 
laser therapy [184], filtering surgery [185], drainage tubes 
[186], or minimally invasive glaucoma surgery [187].

RGCs degenerate in glaucoma, which leads to perma-
nent vision loss. Thus, a cell replacement strategy was 
considered a potential therapy to treat RGC loss. In the 
past decade, scientists have been able to differentiate 
human stem cells into RGC-like cells [188–192]. How-
ever, how to scale up donor cells, promote long-term cell 
survival and enhance synaptic integration into the visual 
circuit remains a challenge for stem cell therapy [193].

Optic neuropathies
Optic neuropathies take various forms, including non-
arteritic anterior ischemic optic neuropathy (NAION), 
which damages the optic nerve and results from a change 
in blood flow or optic nerve trauma due to acute injury 
to the optic nerve. However, to date, there is no effec-
tive treatment for NAION. To slow the progression of 
NAION, treatment focuses on controlling blood pres-
sure, reducing the symptoms and preventing NAION 
from damaging the other eye.

On the other hand, arteritic ischemic optic neuropa-
thy treatment also aims to prevent further damage to the 
other eye and typically involves the use of anti-inflamma-
tory drugs. Treatment depends entirely on the underly-
ing condition or problem that causes the neuropathy and 
requires a full evaluation from an eye specialist.

Glaucoma is another main cause of optic neuropathy. 
Axons of RGCs degenerate in optic nerve injury and 
do not regrow; thus, what regulates axon regeneration 
remains a field of interest to scientists. Many studies have 
shown the promotion of axon regeneration by molecular 
therapies [194–198]. However, the length of regenerative 
axons and synaptic reconnection are still limited [199].

Optic glioma, which usually occurs in childhood, also 
leads to optic neuropathy and vision loss [200, 201]. A 
recent study indicated that light plays an important role 
in glioma formation during eye development [202]. Since 
light exposure induces photooxidative stress [203], which 
could induce autophagy, it would be interesting to ask 
whether autophagy regulates the formation of glioma-
induced optic neuropathy in future studies.

Age‑related macular degeneration
To date, there is no cure for macular degeneration. How-
ever, several treatments, mainly anti-vascular endothelial 
growth factor A (VEGFA) class, may slow the progres-
sion of AMD or maintain existing vision. For example, 
the anti-angiogenesis drugs aflibercept (Eylea) [204] 
and  bevacizumab (Avastin) [205] are used to block the 
creation of blood vessels and the subsequent leakage 

from these vessels that cause wet macular degeneration. 
A portion of the lost vision of many AMD patients who 
have taken these drugs has been improved [206]. If AMD 
is advanced, the patient might need to receive this treat-
ment multiple times and such treatment is applied only 
in advanced AMD, which requires multiple injections.

In some patients, ophthalmologists recommend per-
forming laser therapy by applying high-energy laser light 
to destroy abnormal blood vessels growing in the eye 
[207]. Alternatively, the doctor may perform photody-
namic laser therapy by injecting the light-sensitive drug 
verteporfin (Visudyne) into the bloodstream, which is 
absorbed by abnormal blood vessels [208]. In addition, 
there are adjuvant devices such as special lenses or elec-
tronic systems for creating larger images of nearby things, 
which can help those who have vision loss due to macular 
degeneration and maximize their remaining vision [209].

Diabetic retinopathy
Neovascularization is the hallmark of DR. In the clinic, 
intravitreal injection of anti- VEGF agents such as  bev-
acizumab, aflibercept, ranibizumab [210], which we 
described above in the AMD section, is the primary 
procedure to slow the progression of DR. To reduce the 
swelling of the retina, scatter laser surgery might be used 
to help block leaking blood vessels. In addition, laser sur-
gery also helps shrink blood vessels and prevent them 
from proliferation. However, laser treatment is associated 
with a risk of peripheral (side), color, and night vision 
loss.

Once advanced proliferative DR (PDR) develops, an 
ophthalmologist may recommend an alternative surgery 
called vitrectomy [211], a procedure to remove vitreous 
gel containing blood from leaking vessels and scar tissue 
in the back of your eye. However, the procedure is associ-
ated with some risks, including ocular infection, cataract 
formation and retinal detachment.

In the development of a less invasive treatment, phar-
maceutical DR treatment strategies have been explored 
in recent decades. Aldose reductase (AR), the enzyme 
that converts glucose to sorbitol, is involved in a variety 
of diabetic complications, including DR [212]. Many AR 
inhibitors have been developed to alleviate the progres-
sion of diabetic complications and ocular inflammation 
in animal models [213]. However, renal and liver toxicity 
remains a concern in clinical trials [214, 215].

Role of autophagy in current ocular degeneration therapy
In addition to operating the procedures or surgeries men-
tioned above, slowing the onset or progression of such 
diseases still a goal for ocular degeneration therapy. Since 
ROS is one of the main causes of many degenerative 
diseases in the eye and autophagic pathway could clean 
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the cells of all irreversibly oxidized biomolecules [74], 
developing topical drug based on mediating autophagic 
pathway would be a great of interest for scientists and cli-
nicians. Many autophagic inducers were tested in animal 
models or have been used in the clinic. We next explore 
the detail of autophagic inducers or inhibitors in the next 
chapter.

Effects of autophagic inducers and inhibitors 
on retinal degenerative diseases
Steroids
In a rat glaucoma model, neurosteroids induced the 
autophagy pathway to protect retinal neurons via 
GABRs/GABAA receptors [216]. However, another study 
reported that steroid therapy in the eye leads to the dys-
regulation of TMCs and glaucoma pathologies by inhibit-
ing the autophagosome biogenesis pathway [217]. More 
studies are needed to conclude the effect of steroids on 
retinal neurons.

Rho kinase inhibitor
Ripasudil is a rho-associated coiled-coil-containing pro-
tein kinase 1 (ROCK1) inhibitor. In the clinic, ripasudil 
is a key component in ophthalmic solutions for treat-
ing glaucoma by reducing IOP [218]. In a rodent model 
study, ripasudil was shown to enhance intraaxonal 
autophagy and promote axonal protection [219].

mTORC1 inhibitors
Rapamycin
The activation of autophagy, modulated by the rapam-
ycin-induced inhibition of mTORC1 signaling, is able 
to prevent the harmful AMD-related aging of RPE cells 
[220]. The mTOR inhibitor rapamycin ameliorates the 
high glucose-induced inflammatory responses and ROS 
in the RPE [221]. Rapamycin plays a protective role in a 
rodent chronic hypertensive glaucoma model [222] and 
significantly increases RGC survival following optic nerve 
transection [140]. The heteroplasmic mtDNA G11778A 
mutation is the most common cause of Leber’s hereditary 
optic neuropathy. An in vitro study showed that rapamy-
cin treatment induces the colocalization of mitochondria 
with autophagosomes, resulting in less damage from the 
G11778A mutation [223]. The findings of this study sug-
gest the potential of rapamycin as a therapeutic strategy 
to treat Leber’s hereditary optic neuropathy.

Everolimus
Fibroblast-mediated scar formation is a common compli-
cation of glaucoma filtering surgery. A study showed that 
everolimus, another mTORC1 inhibitor, suppresses the 
proliferation of fibroblasts in the eye after surgery [224]. 
In addition, everolimus has been shown to suppress 

angiogenesis [225], which is the onset of wet AMD [226] 
and DR [227]. Everolimus is also a common therapy for 
kidney transplant recipients at a late post-transplant 
stage [228]. However, a clinical case study reported that 
long-term administration of immunosuppressant everoli-
mus or tacrolimus (an analog of everolimus) in a trans-
plant recipient might be a risk factor for the development 
of posterior reversible encephalopathy syndrome or optic 
neuropathy [229, 230].

Temsirolimus
Temsirolimus, an analog of everolimus, inhibits RPE 
and endothelial cell proliferation and migration, and 
decreases VEGF and PDGF expression [231], which can 
be used to alleviate AMD and DR. In addition, sirolimus 
is also considered an antiangiogenic drug for DR progres-
sion [232].

AMPK activator
Metformin is  able to trigger autophagy  through AMPK 
activation and the subsequent inhibition of mTORC1 
signaling [233]. Metformin is used to control blood sugar 
and is considered to reduce the risk of the onset of AMD 
[234], glaucoma [235] and DR [236] in diabetic patients.

mTOR‑independent autophagy inducer
Lithium (LiCl) induces autophagy through an mTOR-
independent pathway [237]. In animal studies, LiCl was 
reported to be an autophagy inducer for alleviating the 
progression of glaucoma [238], DR [239] and optic neu-
ropathy [240].

Inhibitors of autophagosomes and lysosomes
Chloroquine (CQ) and hydroxychloroquine (HCQ) are 
autophagic inhibitors popularly used as antitumor agents 
[241]. Both CQ and HCQ have been reported to cause 
RGC damage [242, 243]. In the clinic, the mean values 
of quantified fundus autofluorescence (QAF, an indirect 
approach to measuring lipofuscin in the RPE in  vivo) 
were significantly higher in patients receiving CQ/HCQ 
than in healthy controls, indicating that CQ/HCQ treat-
ment leads to retinal damage [244]. Another case study 
reported the incidence of blindness in a population of 
rheumatic patients treated with HCQ [245]. In addition, 
CQ completely abolished the antiapoptotic effect of the 
somatostatin analog octreotide in hyperglycemia-treated 
retinal tissue [246], suggesting that CQ might worsen the 
progression of DR.

On the basis of the literature reviewed above, the pro-
motion of the autophagic pathway plays a protective 
role in retinal degenerative diseases. The application of 
autophagic inhibitors in the clinic requires more research 
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Table 2  Effects of FDA-approved autophagy-target drugs on retinal degenerative diseases

RGC: Retinal ganglion cell; AMD: age-related macular degeneration; mTORC1: mammalian target of rapamycin complex 1; RPE: retinal pigment epithelium; VEGF: 
vascular endothelial growth factor; PDGF: platelet-derived growth factor; AMPK: AMP-activated protein kinase; IOP: intraocular pressure; TMC: trabecular meshwork 
cell

Drug Mechanism Role Diseases Physiologic effects References

Chloroquine (CQ) & 
hydroxychloroquine 
(HCQ)

Autophagy inhibition to Autophago‑
some & Lysosome

Harmful Glaucoma Treatment of CQ and HCQ causes RGC 
and retinal damage

[244–246]

Diabetic retinopathy CQ worsens the progression of diabetic 
retinopathy

[248]

Blindness Rheumatic patients treated with HCQ 
leads to blindness

[247]

Rapamycin Autophagy activation by mTORC1 
inhibition

Protective Glaucoma Rapamycin is neuroprotective in a 
chronic hypertensive glaucoma model 
and increases RGC survival following 
optic nerve transection

[142, 224]

AMD Rapamycin prevents AMD-related aging 
of RPE cells

[222]

Diabetic retinopathy Rapamycin ameliorates the high 
glucose-induced ROC in the RPE

[223]

Optic neuropathy Rapamycin-induced autophagy results 
in less damage from G11778A muta‑
tion, the most common cause of Leber’s 
hereditary optic neuropathy

[225]

Everolimus Autophagy activation by mTORC1 
inhibition

Protective Glaucoma Everolimus suppresses the scar forma‑
tion in glaucoma filtering surgery in an 
animal model

[226]

AMD Everolimus suppresses angiogenesis 
molecular pathways in the onset of 
wet AMD

[228]

Diabetic retinopathy Everolimus suppresses angiogenesis 
molecular pathways in the onset of 
diabetic retinopathy

[229]

Harmful Optic neuropathy Long-term administration of everolimus 
may cause reversible encephalopathy 
syndrome and bilateral optic neuropa‑
thy after kidney transplantation

[231, 232]

Temsirolimus Autophagy activation by mTORC1 
inhibition

Protective AMD Temsirolimus inhibits RPE and endothe‑
lial cell proliferation and decreases VEGF 
and PDGF expression

[233]

Diabetic retinopathy Temsirolimus is considered as an antian‑
giogenic drug for diabetic retinopathy 
progression

[234]

Metformin Autophagy activation by AMPK activa‑
tion and subsequent inhibition of 
mTORC1 signaling

Protective Glaucoma Metformin is used to control blood 
sugar and is considered to reduce the 
risk of the onset of glaucoma, AMD, and 
diabetic retinopathy in diabetic patients

[236–238]

AMD

Diabetic retinopathy

Lithium (LiCl) Autophagy activation by mTOR-inde‑
pendent pathway

Protective Glaucoma In animal studies, LiCl was reported as 
an autophagy inducer, which could 
alleviate the progression of glaucoma, 
diabetic retinopathy, and optic neu‑
ropathy

[240–242]

Diabetic retinopathy

Optic neuropathy

Ripasudil Autophagy activation by inhibition of 
rho-associated coiled-coil containing 
protein kinase 1 (ROCK1)

Protective Glaucoma Ripasudil is the key component in oph‑
thalmic solutions for treating glaucoma 
by reducing IOP
Ripasudil promotes axonal protection in 
an animal model

[220, 221]

Steroids Autophagy activation by GABAA recep‑
tor

Protective Retinal degeneration Neurosteroids induces the autophagy 
pathway to protect retinal neurons

[218]

Inhibiting autophagosome biogenesis 
pathway

Harmful Glaucoma Steroid therapy in the eye leads to the 
dysregulation of TMCs and develop 
glaucoma pathology

[219]
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and assessments of the risk of their unfavorable side 
effects, especially in the eyes.

Conclusion
ROS-mediated damage to cellular components is highly 
associated with the pathogenesis of several ocular dis-
eases, as mentioned above. Autophagy is one of the 
main routes to eliminate damaged components in cells 
in response to oxidative stresses. ROS may initially oxi-
dize several enzymes, including ATG proteins, to inhibit 
autophagy. ROS then trigger signaling pathways to acti-
vate autophagy to form a negative feedback loop to 
suppress ROS. Though the role of autophagy in the patho-
genesis of ocular diseases might vary, autophagy should 
be a beneficial pathway for ocular cell survival under 
short-term oxidative stress. As aforementioned (Table 2), 
several autophagy inducers, particularly the AMPK 
inducer and mTORC1 inhibitors, have been shown to 
diminish the severity of ocular diseases in preclinical 
and clinical studies. In contrast, autophagy inhibitors 
CQ or HCQ are harmful in ocular diseases. Addition-
ally, Neurofibromatosis  1 (NF1) mutation was reported 
to develop optic pathway gliomas [202], which leads to 
permeant blindness. Studies showed that activation of 
the mTOR pathway has been identified in benign and 
malignant NF1 tumors [247, 248], suggesting that acti-
vation of autophagy by inhibiting mTOR pathway could 
be a potential therapeutic strategy for optic neuropa-
thy in patients with glioblastoma. However, metformin 
inhibits mitochondrial enzymes to activate AMPK, 
and the effects on cell protection could be AMPK- or 
autophagy-dependent and autophagy-independent [249, 
250]. mTORC1 not only regulates autophagy signaling 
but also modulates cell differentiation, cell proliferation, 
angiogenesis and inflammation [251]. Therefore, more 
research on the role of autophagy in ocular diseases is 
required, particularly in clinical settings. The limitations 
of research on the role of autophagy in clinical ocular dis-
eases are mainly due to the following: (i) the ocular struc-
ture of animals cannot completely reflect that in patients, 
(ii) a precise assay for autophagic flux in patients is lack-
ing, (iii) specific autophagy modulators as clinical drugs 
are lacking, and (iv) the role of autophagy in different 
ocular disease types and stages might vary. Nevertheless, 
this review sheds light on autophagy modulation as an 
intervention for ocular diseases.
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