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epithelial plasticity of osteosarcoma
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Abstract 

Most osteosarcomas (OSs) develop from mesenchymal cells at the bone with abnormal growth in young patients. OS 
has an annual incidence of 3.4 per million people and a 60–70% 5-year surviving rate. About 20% of OS patients have 
metastasis at diagnosis, and only 27% of patients with metastatic OS survive longer than 5 years. Mutation of tumor 
suppressors RB1, TP53, REQL4 and INK4a and/or deregulation of PI3K/mTOR, TGFβ, RANKL/NF-κB and IGF pathways 
have been linked to OS development. However, the agents targeting these pathways have yielded disappointing 
clinical outcomes. Surgery and chemotherapy remain the main treatments of OS. Recurrent and metastatic OSs are 
commonly resistant to these therapies. Spontaneous canine models, carcinogen-induced rodent models, transgenic 
mouse models, human patient-derived xenograft models, and cell lines from animal and human OSs have been 
developed for studying the initiation, growth and progression of OS and testing candidate drugs of OS. The cell plas-
ticity regulated by epithelial-to-mesenchymal transition transcription factors (EMT-TFs) such as TWIST1, SNAIL, SLUG, 
ZEB1 and ZEB2 plays an important role in maintenance of the mesenchymal status and promotion of cell invasion 
and metastasis of OS cells. Multiple microRNAs including miR-30/9/23b/29c/194/200, proteins including SYT-SSX1/2 
fusion proteins and OVOL2, and other factors that inhibit AMF/PGI and LRP5 can suppress either the expression or 
activity of EMT-TFs to increase epithelial features and inhibit OS metastasis. Further understanding of the molecular 
mechanisms that regulate OS cell plasticity should provide potential targets and therapeutic strategies for improving 
OS treatment.
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Background
Osteosarcoma (OS) is the most common type of cancer 
that initiates at the bone, with a worldwide incidence 
of 3.4 per million people each year [1]. The 5-year sur-
vival rate for classic OS was only 20% during most of 
the twentieth century until the introduction of adjuvant 
chemotherapy in the 1970s [2]. The routine treatment of 
high-grade OS also shifted from amputation to chemo-
therapy and limb salvage by 1990, with a subsequent 
increase in overall survival rate to more than 65% [3, 4].

OS arises from primitively transformed cells with a 
mesenchymal origin [4]. The cancer cells in OS look 
like early forms of bone cells that normally help gener-
ate new bone tissues, but the bone tissues in OS are not 
as strong as that of normal bones [5]. Each year, about 
800 to 900 new cases of OS are diagnosed in the United 
States [5]. Based on patient ages and causes of OS devel-
opment, they can be classified into primary and second-
ary OSs. The primary OS typically develops in young 
patients as a result of abnormal bone development. The 
secondary OS occurs in patients over 65 years old, and 
is usually secondary to malignant conditions of Paget’s 
disease, post-irradiation exposure, severe bone infarct, 
osteochondroma and osteoblastoma [6]. Based on the 
location and appearance, OSs can be classified into 
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intramedullary, juxtacortical, and extraskeletal OSs, and 
each of these OS types can be further divided into several 
subtypes [6]. Intramedullary OS is the most common and 
the fastest growing type, which accounts for nearly 80% 
of all OSs. Intramedullary OS develops in the medullary 
cavity of a long bone, such as femur and tibia. Further-
more, there are a number of subtypes of intramedullary 
OS according to the tumor cell types. The common sub-
types include osteoblastic, chondroblastic, fibroblastic, 
small-cell, and epithelioid OSs. Juxtacortical OS is the 
second most common type, and they account for 10 to 
15% of all OSs. This type of OS develops on the outer sur-
face of the bone, or periosteum that is the dense layer of 
connective tissue covering the bone. Extraskeletal OS is 
rare and grows slowly, accounting for fewer than 5% of all 
OSs. Extraskeletal OS does not touch the bone and often 
arises from soft tissues that have experienced prior radia-
tion therapy (Fig. 1a).

Most OSs occur in children and young adults at ages 
from 10 to 30 years old, with the peak incidence in the 
second decade of life; however, people at any ages can 
develop OS [7]. OS is the third most common cancer in 
adolescence, accounting for approximately 3% of all ado-
lescent cancers, with only lymphoma and brain tumor 
being more prevalent [1]. Adolescent OS usually devel-
ops in a region where the bone grows rapidly, such as 
the end region of the long leg or arm bones [8]. In some 
cases, OS occurs in the humerus, ulna, radius, fibula or 
pelvis (Fig. 1b) [9]. OS occurs slightly more common in 
boys versus girls, which may be related to the taller body 
height correlated with faster bone growth in boys on 
average. However, girls tend to develop OS slightly ear-
lier, which may be related to their earlier growth spurt on 
average. The incidence of OS is higher in black popula-
tion compared with white and other populations [10]. 
In the United States, more than 50% of all OS arising in 

patients over the age of 60 are the secondary OSs. Unlike 
OSs in children and young patients, OSs in elder patients 
more commonly develop at axial locations and in tissue 
areas that have previously received irradiation or have 
existing bone abnormalities [11]. OS patients older than 
60 years are associated with a higher risk of metastatic 
disease [8]. Elder men are also associated with higher 
risks to develop OS than elder women do. In contrast 
to the OS disparity in black children, OS is more fre-
quently observed in white elder adults compared with 
black and other elder adults [10]. The incidences of OS 
among 24-year-old and younger individuals are generally 
consistent in different countries in the world, with most 
cases diagnosed during puberty. However, the incidences 
of OS among elder men are higher in some countries 
including United Kingdom, Australia, and Canada com-
pared with other countries [12].

Most OSs occur sporadically, and the exact causes for 
OS development are still not fully understood. Especially, 
the vast majority of OS cases in adolescents and young 
adults are sporadic with no known familial genetic or 
environmental causes [13–15]. However, it has been 
noticed that most OS cases occur in patients with cer-
tain rare inherited types of cancers or diseases such 
as retinoblastoma, Li–Fraumeni syndrome, and Roth-
mund–Thomson syndrome, which involve chromosomal 
abnormalities of the tumor-suppressors RB1 and TP53, 
as well as the DNA helicase REQL4 genes, respectively 
[6, 11, 16]. Individuals carrying germline RB1 mutations 
have approximately 1000-fold increased risk to develop 
OS [17]. Abnormalities in the CDKN2A gene, which 
codes for p16INK4a, a CDK4 inhibitor, and p14ARF, a 
p53 stabilizer, also increase the risk of OS development 
[6]. OS occurs more commonly at the regions of bone 
growth, which is presumably attributed to the genomic 
mutations acquired from the active cell proliferation. 
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Fig. 1  The types and subtypes (a) as well as the skeletal distribution (b) of osteosarcomas
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People receiving radiation therapies for treating other 
types of cancers may have a higher risk to develop OS 
later from the treated tissue sites. Indeed, people treated 
with radiotherapies at younger ages or received high irra-
diation doses have increased risks to develop OS [11]. 
In addition, people with certain non-cancerous bone 
diseases such as Paget’s disease and hereditary multiple 
osteochondromas also have increased risks to develop 
OS. Specifically, about 1% of Paget’s disease patients 
actually develop OS [11].

About 20% of OS have disseminated to the lung, brain 
or other organs at the time of diagnosis [18]. Chemo-
therapy and surgery are the most common treatments for 
most OS patients [1, 19]. Chemotherapies given before 
and/or after the surgery significantly reduce the risk of 
recurrence. The most commonly used chemotherapy 
drugs include methotrexate, doxorubicin and cisplatin, 
and two or more of these drugs are usually administrated 
in combination [19]. The 5-year survival rate of all-stage 
OSs is about 60%. However, if metastasis has happened 
at the time of diagnosis, the 5-year survival rate drops 
significantly to only 27%, which has not been improved 
significantly over the last four decades [16]. Recurrent or 
metastatic OSs are usually resistant to currently available 
standard treatments. Therefore, it is necessary to under-
stand the detailed mechanisms responsible for OS devel-
opment, progression and metastasis in order to identify 
novel therapeutic targets for treating OS.

Cellular and animal models for studying OS
Canine OS models
Spontaneous OSs are more common in large dogs com-
pared with humans, making dog an attractive model 
to study this disease [20]. Canine OS is similar to that 
of human OS in terms of biological features and clini-
cal symptoms [21, 22]. It is estimated that over 10,000 
cases of canine OS occur annually in the United States. 
The major difference between canine OS and human OS 
is that canine OS is a disease of large breed elder dogs 
(6–12 years of age), which is considered as a limitation to 
use canine OS models to study human OS. The median 
disease-free intervals are 4 months after single surgery 
treatment, and 13 months after combined treatment 
of surgery and chemotherapy [23–25]. Many genomic 
alterations involved in human OS pathogenesis are also 
detected in canine OSs, such as the loss-of-function 
genetic alterations of the TP53 [26–28], RB [29] and 
PTEN [30] tumor suppressor genes in both human and 
canine OSs.

Radiation or chemical carcinogen induced OS models
Historically, rodent OS models began with the exposure 
of rats or mice to chemical and radioactive carcinogens 

[31, 32]. Murine OS models have been induced by expos-
ing animals to radioactive substances such as radium, 
thorium and roentgen [33]. Despite their high inci-
dences, these models probably represent secondary 
OSs developed in human patients who have received 
previous irradiation treatment, which might not share 
molecular mechanisms with primary OSs. Most of 
the chemically induced mouse OS models have been 
developed by injecting different chemical carcinogens 
directly into bones [33]. For example, rats treated with 
P32-orthophosphate have been shown to develop OS 
tumors that histologically resemble human OS [31, 34]. 
However, the carcinogen-induced murine model is more 
representative of a therapy-induced disease, while most 
human OSs are sporadic [35].

Animal OS‑derived cell lines
Along with the rapid development of cancer immuno-
therapy, cancer cell lines isolated from spontaneously 
developed animal tumors have become important syn-
geneic models for studying immune suppression and 
activation, as well as interactions between immune and 
cancer cells in the same strain animals with identical 
genetic background (Table 1). The first batch of success-
fully established metastatic OS cell lines including K7, 
K8, K12, K14 and K37 were derived from a spontaneous 
OS in the distal femur of an 895-day-old female BALB/c 
mouse [34, 36–40]. These lines were metastatic in  vivo 
and have been used for years to study the process of OS 
metastasis [41]. The Dunn cell line is another murine OS 
cell line derived from a spontaneous OS in the tail of a 
C3H/HeN mouse. This cell line is metastatic in vivo, and 
its xenograft tumors commonly metastasize to lung and 
liver in mice [42]. Multiple sublines derived from Dunn 
cell line have been used as OS angiogenesis and metas-
tasis models in screening new compounds and testing 
candidate drugs [43–46]. The UMR 106-01 cell line was 
developed from a 32P-induced OS tumor in a Sprague-
Dawley rat [32, 47]. This cell line has been well adopted to 
OS research due to its phenotypical similarities to human 
OS cells and rapid formation of pulmonary metastasis 
[48–51]. Besides murine, a number of cell lines have been 
derived from spontaneous canine OSs. Among these 
canine OS cell lines, the D-17 cell line was isolated from 
the lung metastasis of an 11-year-old female poodle. 
D-17 cells have been widely used in finding therapeutics 
for bone cancers in dogs [52, 53] (Table 1).

Human OS‑derived cell lines
U2OS, the first human OS cell line, was established 
in the year of 1964, and has been used extensively in 
many in  vitro studies. One limitation of this cell line is 
that it does not satisfy researchers’ needs for an in vivo 
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metastatic model [54–61]. Unfortunately, this was also 
the case for other several subsequently established 
human OS cell lines such as HOS and SaOS2 cell lines 
[58, 62, 63]. In 2005, the HOS cells were treated with 
carcinogen or virus-mediated oncogene expression to 
induce genetic alterations, and the first metastatic human 
OS cell line 143B, along with several other derivative 
cell lines were established from these treated cells [58, 
64–71]. Thereafter, many metastatic cell lines have been 
established in vitro, which have formed the basis for stud-
ying the cellular and molecular processes of OS (Table 1). 
A recent study characterized a set of 19 OS cell lines by 
profiling their gene expression and epigenetic patterns, 
and by comparing their differentiation, growth, invasion, 
and migration capacities in nude mice [72]. These valua-
ble data should facilitate investigators to select appropri-
ate OS cell lines for their researches.

Genetically engineered OS mouse models
Cell culture models may impose widespread genetic 
changes and loss of phenotypic heterogeneity that 
diverge from the characteristics of the original OSs. Tak-
ing SaOS2 as an example, OS cells maintained in culture 
demonstrate significant changes in phenotype over time 
[73]. In general, higher passage cells exhibit higher pro-
liferation rates and lower alkaline phosphatase activity, 
while mineralization is more pronounced in late passage 
cells. Gene expression profiles may also change in culture 
over time. Genetically engineered mouse (GEM) models 
may help to provide spontaneously developed OS models 
with natural tumor environment for studying OS initia-
tion, growth and metastasis.

The first GEM model of OS is the H2K-fos-tg mouse 
model, where c-fos is overexpressed in osteoblasts to 
induce OS development. The tumors developed in this 
model display similar histopathology to human osteo-
blastic OS, but these tumor cells do not produce distant 
metastasis that frequently occurs in human OSs [74]. 
Many murine OS models have been developed to reca-
pitulate p53 and RB mutations in hereditary and sporadic 
human OSs [75]. Germ-line deletion of p53 results in an 
OS incidence of 4% in homozygous p53 null mice [76] 
and 25% in heterozygous p53 mice [77], indicating the 
importance of p53 loss in OS development. The higher 
OS incidence in heterozygous versus homozygous p53 
knockout mice may be due to the development of other 
types of cancer that results in early death of the homozy-
gous knockout animals. However, homozygous Rb 
knockout mice are lethal before birth, and heterozygous 
Rb knockout mice do not develop OS [78, 79].

The application of conditional gene manipulation 
and tissue specific Cre expression in mice have greatly 
enhanced the ability to induce OS from mesenchymal 

osteogenic cell lineages to model human OSs. Deletion 
of both Tp53 and Rb genes by Osterix-Cre leads to OS 
development with high penetrance [80]. Mice with Prx-1-
Cre mediated deletion of both Tp53 and Rb genes induces 
OS development, and also generated poorly differenti-
ated soft tissue sarcomas [81]. Mice with Osterix-Cre 
activated expression of a transgenic shRNA that targets 
p53 mRNA also develop osteoblastic OS at 100% pene-
trance. Although this model exhibits a longer latency to 
tumor onset, these OSs often develop in long bones and 
are highly metastatic to lung and liver. More importantly, 
this model does not develop any non-OS tumors [82].

In addition to c-fos and p53, other proteins such as 
TWIST1 [83], p14ARF [84], p16INK4a [85], PRKAR1A 
[86], and p21CIP [87] have been implicated in OS patho-
genesis based on findings from human OS samples, and 
their involvements in OS development have also been 
demonstrated in GEM models. Their alterations appear 
to complement the defects in the p53 and Rb pathways. 
Although these models provide further insights into OS 
genetics and biology, the long latency combined with low 
penetrance makes these models less practical.

OS cell‑derived xenograft models
Human or mouse OS cells are routinely inoculated into 
immunocompromised mice to grow xenografts and allo-
grafts as OS models. The injected cells usually develop 
solid tumors within days or weeks. The advantages of 
these models include quick onset, affordable cost, ease 
of handling and maintenance, and high reproducibility. 
Although OS cells are ectopically inoculated under the 
skin in some studies, cell grafts that grow orthotopically 
in or near bones are considered as more relevant preclin-
ical OS models. These OS cell-derived xenograft models 
have been very useful in identification of factors that are 
involved in OS invasion and drug candidates that inhibit 
OS growth [36, 37, 41, 88]. An obvious limitation of these 
xenograft models is that they do not provide information 
about the initiation and etiology of OS since it uses fully 
immortalized OS cells.

Patient‑derived xenograft (PDX) OS models
To establish a PDX line, small pieces of fresh tissue from 
either an incisional (open) biopsy or a percutaneous 
(needle) biopsy of an OS tumor in a patient are trans-
planted into multiple immune-defective mice to grow 
xenograft tumors [89]. In PDX models, the OS tumor 
cells are never cultured in  vitro and always maintained 
in an OS-like tissue environment, and thus, PDX models 
are considered as a much more clinically relevant model 
to represent both the general features and heterogeneity 
of human OSs [90, 91]. The PDX models also allow the 
study of early-stage progression of OS metastasis in vivo. 
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The PDX models have been broadly used for screening 
and testing drugs for developing new therapies [92–94]. 
However, like any other models, the PDX models are not 
perfect. Some initial generations of PDXs may take a long 
time to form tumors, suggesting that these OS cells still 
experience senescence, immortalization, and/or growth 
selection processes before a small population of tumor 
cells grows to form a tumor. Additionally, along with the 
tumor growth, most, if not all, of the stromal cells such 
as fibroblasts, immune cells, vascular cells and fat cells 
in the tumor environment are replaced with mouse cells, 
which means that the human OS tumor cells still grow in 
a mouse tissue and cellular environment.

The mesenchymal and epithelial plasticity in OS 
progression
Epithelial-to-mesenchymal transition (EMT) and its 
reverse process, mesenchymal-to-epithelial transition 
(MET), are required for adapting cell plasticity in many 
physiological and pathophysiological processes, such as 
embryonic development, wound healing, fibrosis and 
cancer metastasis [95]. The cancer cells with an epithelial 
origin such as breast and prostate adenocarcinoma cells 
can undergo EMT to acquire mesenchymal gene mark-
ers and morphologies. Cancer cells at an EMT state are 
highly capable to escape from epithelial tumor cell clus-
ters, invade into the stromal tissue, and disseminate to 
distant organs [96, 97]. Once getting in a distant organ, 
a MET process is thought to help the disseminated can-
cer cells to adapt the new tissue environment for prolif-
eration and establishment of metastasis [96]. Cancer cells 

can have various degrees of EMT or MET statuses, rang-
ing from full epithelial to full mesenchymal states (Fig. 2) 
[95]. Most sarcoma cells including OS cells exhibit an 
epithelial or a hybrid mesenchymal and epithelial phe-
notype. Since sarcoma cells are inherently locked in a 
mesenchymal state, they unlikely reprogram to a full 
epithelial state. However, depending on sarcoma’s histio-
types, they can reprogram their degrees of epithelial and 
mesenchymal states during their growth, progression and 
metastasis. Indeed, although the features of epithelial and 
mesenchymal plasticity are variable across OSs with dif-
ferent histiotypes, EMT and MET events are frequently 
observed and regulated by many molecular players [98].

EMT‑promoting transcription factors (EMT‑TFs) in OS 
and other sarcomas
EMT has been extensively studied in carcinomas in 
which EMT properties are associated with drug resist-
ance, invasion and metastasis [96]. Sarcoma has a mes-
enchymal origin, and its mesenchymal phenotype is 
maintained by the functions of EMT-TFs, including 
TWIST1, SNAIL, SLUG, ZEB1 and ZEB2, and associated 
with more aggressive behaviors. Depending on different 
patient cohorts, variable percentages (32–56%) of human 
OSs have TWIST1 expression. The TWIST1-positve OS 
cells are associated with metastatic phase III OS tissues 
and also with poor clinical outcomes [99, 100]. SNAIL is 
widely expressed in OSs [101]. Knockdown of SNAIL in 
SaOS2 cells increases E-cadherin expression to promote 
MET, which is accompanied with decreased cell migra-
tory and invasive properties. Conversely, overexpression 
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of SNAIL in SaOS2 cells suppresses E-cadherin expres-
sion to promote EMT-like process, which promotes 
invasion and metastasis of these cells [102]. The expres-
sion of SLUG is associated with high-grade cranial bone 
OSs with high metastatic potentials [103]. Knockdown 
of SLUG in canine D-17 and human SaOS2 cells signifi-
cantly decreases the migration and invasion capabilities 
of these OS cells by remodeling their actin cytoskeleton 
organization and disrupting their cellular protrusions. 
Knockdown of SLUG also inhibits the growth of these 
cell-derived xenografts in an in vivo chick chorioallantoic 
membrane (CAM) assay model. Ectopic expression of 
SLUG in these OS cells increases the expression level of 
WNT5A, decreases the expression level of the adhesion 
molecule osteoblast cadherin (OB-Cad), and increases 
cell motility by promoting the formation of actin-rich 
cellular protrusions [104]. The expression levels of ZEB1 
protein in human sarcoma tissues are also positively cor-
related with lung metastasis, which is consistent with the 
finding showing that ZEB1 knockdown in MG-63 cells 
significantly inhibits cell invasive capability [105]. The 
mixed canine benign mammary tumors are composed 
of epithelial cells and cartilage or bone tissue, which is 
a species-specific type. The malignant canine mammary 
tumors include carcinomas, fibrosarcomas and OSs. In 
comparison with canine mammary epithelial cells and 
carcinomas, fibrosarcomas express high and OSs express 
even higher levels of a panel of homeobox genes includ-
ing ZEB2. ZEB2 is an EMT-TF important for craniofacial 
bone formation [106]. Collectively, these studies suggest 
that the EMT-TFs play important roles in maintaining 
the mesenchymal status of sarcomas. Understanding the 
molecular mechanisms underlying these EMT-TFs regu-
lated OS cell growth and metastasis may provide new 
opportunities to identify potential molecular targets for 
treating OSs.

MET in OS and other sarcomas
Since sarcomas have a mesenchymal cellular origin, more 
studies have been carried to understand the role of MET 
in sarcoma progression. Patients with more epithelial-like 
carcinomas tend to have better clinical outcomes com-
pared with patients with more mesenchymal-like carci-
nomas, and a similar trend is also the case for patients 
with sarcomas. E-cadherin is the first epithelial marker 
detected in bone and soft tissue sarcomas [107]. A meta-
analysis of 812 bone and soft tissue sarcoma tumors 
demonstrates that low E-cadherin expression is associ-
ated with poor five-year overall survival [108]. Ewing sar-
coma/primitive neuroectodermal tumor (ES/PNET) cells 
frequently express epithelial markers such as cytokerat-
ins, claudin-1 and ZO-1, and exhibit a partial epithelial 
differentiation state. This study showed evidence for 

expression of tight junction proteins such as claudin-1 
and ZO-1 in over 50% of ES/PNET samples, suggesting 
partial epithelial differentiation in this kind of cancer 
[109]. It is also reported that patients with leiomyosarco-
mas that express high epithelial signature genes includ-
ing E-cadherin also have a better prognosis [110, 111]. In 
OSs, E-cadherin expression levels have been found to be 
inversely correlated with metastasis potential but posi-
tively correlated with good prognosis [99]. However, it 
should be noted that the process of MET in sarcoma is 
characterized by increased expression of epithelial-like 
markers such as E-cadherin, whereas the typical mesen-
chymal markers including vimentin remain abundantly 
expressed in the sarcoma cells [111, 112].

The signaling pathways and EMT‑TFs that regulate MET
Several signaling pathways can program a MET status of 
OS cells through regulating the transcriptional activities 
of EMT-TFs. These cross-talk regulatory networks are 
depicted in Fig. 3. Specifically, blocking Wnt/LDL recep-
tor related protein 5 (LRP5) signaling by a soluble nega-
tive dominant form of LRP5 mutant in OS cells markedly 
upregulates the expression of E-cadherin, an epithelial 
marker, and downregulates the expression of N-cad-
herin, a mesenchymal marker. Inhibition of the Wnt/
LRP5 signaling also downregulates the activity of EMT-
TFs such as TWIST1 and SLUG [113]. Synovial sarcoma 
translocated-synovial sarcoma X1 and 2 (SYT-SSX1/2) 
interact with SNAIL and SLUG, respectively, to dimin-
ish their transcriptional repression activities on E-cad-
herin expression, resulting in an increase in E-cadherin 
expression and an acquisition of epithelial characteristics 
in synovial sarcoma cells [112]. In OS cells, the autocrine 
motility factor (AMF), also known as phosphoglucose 
isomerase (PGI), enhances SNAIL activity. Accordingly, 
silencing the expression of AMF/PGI can reduce SNAIL 
activity, which induces terminal differentiation of these 
OS cells into mature osteoblasts, resulting in suppression 
of the growth and pulmonary metastasis of these OS cell-
derived xenografts in nude mice [114]. Ovo like zinc fin-
ger 2 (OVOL2) represses ZEB1 expression by binding to 
the ZEB1 promoter, so high OVOL2 expression is associ-
ated with low ZEB1 expression in human OS. In agree-
ment with this finding, overexpression of OVOL2 in OS 
cells can promote MET and suppress cell migration and 
invasion [115]. In addition, miRNAs can directly regu-
late E-cadherin expression to induce MET or indirectly 
regulate E-cadherin expression through targeting EMT-
TFs. For example, miR-30 and miR-9 can target TWIST1, 
SNAIL and ZEB1 mRNAs, and miR-23b, miR-29c, miR-
194 and miR-200 can downregulate TWIST1 and ZEB1 
mRNAs, resulting in upregulation of E-cadherin expres-
sion [116, 117]. It is interesting to notice that, expression 
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of one mesenchymal factor is often sufficient to induce 
EMT in epithelial-derived carcinomas, while expression 
of two epithelial factors such as GRHL2 and miR-200 are 
required to drive MET in human rhabdomyosarcoma 
cells. This may suggest that the expression of epithelial 
genes in mesenchymal cells requires both transcriptional 
de-repression (e.g. via miR-200s) and transcriptional acti-
vation (e.g. via GRHL2) events to happen [118, 119].

Clinical implications and therapeutic opportunities 
of the EMT/MET plasticity of OS cells
The growing body of data on the regulation of sarcoma 
cell EMT/MET plasticity may offer clinical implications 
and therapeutic opportunities to patients. Specifically, 
the MET phenotype with epithelial marker expression 
in sarcomas may serve as prognostic markers. Withaf-
erin-A (WFA), a naturally derived bioactive compound, 
is a vimentin inhibitor, which could be a promising drug 
against vimentin-expressing sarcoma cells. WFA treat-
ment causes vimentin cleavage and induces sarcoma cell 
apoptosis. WFA also significantly inhibits growth, local 
recurrence and metastasis of the soft tissue sarcoma cell-
derived xenografts in  vivo [120]. This finding suggests 
that vimentin may be a good target for inhibiting soft tis-
sue sarcomas.

EMT-TFs may also serve as potential therapeutic tar-
gets in sarcomas. It has been reported that TWIST1 is 
one of the 45 chemoresistant-signature genes that can 
predict OS patients’ response to neoadjuvant chemother-
apy at the time of diagnosis. Knockdown of TWIST1 in 
multiple OS cell lines including HOS, SJSA-1 and 143B 
cells can largely overcome the chemoresistance of these 
cancer cells [121]. However, another study showed that 
TWIST1 can increase the chemosensitivity of SaOS2 and 
MG-63 OS cells to cisplatin treatment by downregulat-
ing endothelin-1 (ET-1) [122], because high ET-1 expres-
sion increases cell invasion and survival against cisplatin 
treatment in OS cells [123]. These different results from 
different studies might be due to the different func-
tions of TWIST1-regulated target genes. Therefore, it 
may depend on specific OS cell context to determine 
whether TWIST1 can serve as a drug target. It has also 
demonstrated that OS cells that survived after cisplatin 
treatment at a sublethal dose exhibit a more mesenchy-
mal phenotype and an elevated capacity to metasta-
size. Under these circumstances, inhibition of SNAIL 
can promote cisplatin sensitivity and prevent cisplatin 
treatment-induced EMT-like process, which results in 
diminished OS cell growth and survival [124]. Therefore, 
targeting these EMT-TFs in OS cells may help to induce 
MET and improve OS cell response to chemotherapy.

SNAIL SLUG TWIST1 ZEB1

SYT-SSX1/2 LRP5AMF/PGI

VDR TIMP1

OVOL2miR-30
miR-9

miR-23b
miR-29c
miR-194
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miR-9
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E-cadherin MET

Fig. 3  The molecular regulatory mechanisms for MET in OS cells. The EMT-inducing transcription factors including SNAIL, SLUG, TWIST1 and ZEB1 
are expressed in OS cells, which directly or indirectly repress the expression of epithelial genes such as E-cadherin to maintain mesenchymal 
cell features. MET is initiated by inhibiting EMT-TFs through activating upstream signaling pathways such as SYT-SSX1/2, OVOL2 and miRNAs or 
suppressing AMF/PGI or LRP5 in OS cells. Please refer to the text for related references. VDR vitamin D receptor, TIMP1 TIMP metallopeptidase 
inhibitor 1
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Conclusion remarks
Metastasis is the major cause of cancer-related death. 
When compared with numerous metastasis-related 
researches carried out for other cancer types such as 
breast and prostate cancers, much fewer studies of OS 
metastasis have been conducted so far. OS patients 
treated in recent years basically still receive essentially 
unchanged treatments applied in 1970s [16]. These may 
be due to the absence of consistent genetic mutations, 
and the relatively low incidence and high heterogeneity 
of the disease. Furthermore, our limited understanding of 
the biology about what drives OS cell dissemination from 
the primary bony sites and their subsequent proliferation 
at a second tissue environment such as the lung may have 
hindered our ability to develop new therapies for treating 
metastatic OSs. To impact the lives of patients suffering 
from metastatic OSs, it will be necessary to deepen our 
fundamental knowledge about OS metastasis and its spe-
cific vulnerabilities at cellular and molecular levels. The 
cell signaling pathways implicated in OS biology through 
genetic and other preclinical studies mainly include 
PI3K/mTOR [125], TGFβ [126], RANKL/NF-κB [127], 
and IGF [128]. Unfortunately, clinical studies evaluating 
the reagents that target these pathways have yielded dis-
appointing results. Recently, although HER2 expression 
has been detected in certain OSs and tested as a thera-
peutic target in OS, targeting HER2 with trastuzumab, 
an FDA approved antibody drug for breast and gastric 
cancers with HER2 overexpression, is still not very effec-
tive to inhibit OS growth [129]. However, immunother-
apy using HER2 chimeric antigen receptor (CAR) T-cells 
may be developed into a promising therapeutic approach 
for treating HER2-positive OSs [130]. Of note, the role 
of HER2 in the regulation of EMT/MET plasticity in OS 
cells is currently unknown.

It becomes obvious that new targets still need to be 
identified for developing new therapeutic strategies and 
drugs. Further understanding of the cell plasticity in OS 
progression could offer new opportunities to address 
these issues. EMT-TFs, especially TWIST1 and SLUG, 
play important roles in bone development and remod-
eling. These EMT-TFs regulate EMT and MET plastic-
ity of OS cells, which is not identical to their regulations 
in solid tumors of epithelial origin [98]. Further inves-
tigation and deeper understanding of the EMT/MET-
regulatory machineries in OS cells may help to identify 
druggable molecular targets. Furthermore, given the 
complexity of EMT/MET-like regulatory networks and 
the ability of cancer cells to adapt to stress conditions, 
targeting one protein or pathway may not be sufficient 
to completely impede EMT-related process or initiate 
MET. The future druggable targets that can be identified 
from the EMT/MET-like regulatory networks for treating 

metastasis of OS cells may be used in combination with 
the current surgery and chemotherapy treatments to 
achieve better clinical outcomes.
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