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REVIEW

Extracellular matrix: an important 
regulator of cell functions and skeletal muscle 
development
Weiya Zhang1*  , Yuan Liu2 and Hong Zhang1 

Abstract 

Extracellular matrix (ECM) is a kind of connective tissue in the cell microenvironment, which is of great significance 
to tissue development. ECM in muscle fiber niche consists of three layers: the epimysium, the perimysium, and the 
endomysium (basal lamina). These three layers of connective tissue structure can not only maintain the morphology 
of skeletal muscle, but also play an important role in the physiological functions of muscle cells, such as the transmis-
sion of mechanical force, the regeneration of muscle fiber, and the formation of neuromuscular junction. In this paper, 
detailed discussions are made for the structure and key components of ECM in skeletal muscle tissue, the role of ECM 
in skeletal muscle development, and the application of ECM in biomedical engineering. This review will provide the 
reader with a comprehensive overview of ECM, as well as a comprehensive understanding of the structure, physi-
ological function, and application of ECM in skeletal muscle tissue.
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Introduction
Skeletal muscle is an important organ of locomotion and 
metabolism in the body, which plays a very important 
role in maintaining the exercise balance, glucose metabo-
lism [1], and energy metabolism [2] of the body. Muscle 
fibers and muscle progenitor cells (satellite cells) reside 
in the skeletal muscle microenvironment. The micro-
environment, in which muscle fibers and satellite cells 
inhabit, also known as niche, has important effects on 
the growth of muscle fibers and myogenic differentiation 
of satellite cells. Extracellular matrix (ECM) presents in 
the muscle niche and is composed of proteins, polysac-
charides [3], and RNA [4] etc., which plays an important 

role in maintaining homeostasis and regulating the devel-
opment of skeletal muscle [5]. The ECM of skeletal mus-
cle tissue contains three layers. The innermost structure 
is called the basal membrane (basal lamina), which sup-
ports and wraps a single muscle fiber. A number of mus-
cle fibers form muscle bundles, which are wrapped by 
the perimysium. Moreover, a plurality of fasciculus form 
muscle mass, which are wrapped by the epimysium.

ECM is involved in skeletal muscle development from 
embryonic stage [6] to senescence [7]. Study showed that 
the excessive accumulation of ECM in the cell microenvi-
ronment of aging muscle inhibited the myogenic differ-
entiation ability of satellite cells [8]. Researches indicated 
that the protein components in ECM participated in the 
myogenesis process of skeletal muscle progenitor cells, 
and the collagen secreted by satellite cells could main-
tain the quiescence of satellite cells [9–11]. Recently, Liu 
et al. confirmed that collagen I, a major ECM component, 
could promote the activation of focal adhesion kinase to 
regulate the nuclear translocation of NF-κB, and then 
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enhanced the migration of myoblast [12]. Thus, it can be 
concluded that ECM plays a very important role in the 
maintenance of the physiological function of satellite 
cells and the development of skeletal muscle.

With the further understanding of the mechanism of 
proliferation and differentiation of muscle cells, more 
and more attention has been paid to the important role 
of cell niche in development. ECM has also been widely 
used in the fields of developmental biology, regenerative 
medicine, and bioengineering due to its important role in 
regulating cell physiological functions and its unique bio-
logical characteristics. Although there have been numer-
ous studies demonstrating the important role of ECM in 
skeletal muscle development, it is not very systematic. To 
provide a more comprehensive and systematic concept of 
the function of the extracellular matrix of skeletal muscle, 
we provide an overview over the current state of knowl-
edge concerning the structure, composition, function, 
and application of ECM in skeletal muscle tissue.

The structure and key components of ECM 
in skeletal muscle tissue
Origination and structure of skeletal muscle ECM
Multilayer ECM is a common feature of vertebrates. In 
2011, Charvet et  al. demonstrated the genesis of ECM 
during muscle fiber development using zebrafish as a 
module. They emphasize that the development of myo-
comma originates from the segmentation period formed 
by sparse and loosely arranged collagen fibers [13]. 
During the incubation period of zebrafish, the linkage 
between actin filaments and sarcolemma was estab-
lished, followed by the formation of the extracellular 
basal lamina and the orthogonal arrangement of collagen 
fibers. Subsequently, fibroblast invaded into the space of 
myofiber, and a dense network of collagen fibers gradu-
ally formed to anchor the myoepithelium or fibroblasts to 
the basal lamina. An accurate cognition of the structure 
and genesis of ECM contributes to a deeper understand-
ing of its functions in skeletal muscle development.

To study the structure of ECM visually, researchers 
have developed a number of tools. Recently, Mayorca-
guiliani et al. developed a method to visualize the struc-
ture of ECM in detail, called in  situ decellularization of 
tissue (ISDOT). They isolated natural 3D ECM scaffold 
from tissues with ECM structure and components, and 
then the structure of ECM could be determined by map-
ping the protein [14]. In addition, Biela et al. developed a 
low-molecular fluorescent probe, called COL-F, that pen-
etrates living cells and binds collagen and elastin through 
non-covalent bonds to image the extracellular matrix 
without phototoxicity to cells [15].

In morphology, the ECM of skeletal muscle tissue can 
be divided into three independent and interconnected 

layers: the epimysium is a dense connective tissue that 
wraps the whole muscle; the perimysium originates 
from the epimysium and wraps the muscle bundles; 
the endomysium, also known as basal lamina, is a kind 
of sophisticated membrane around each muscle fiber 
[16]. The epimysium contains typeI collagen, undulin, 
tenascin, and fibronectin etc. [17]; the perimysium con-
tains collagen (I, III, V, and VI etc.), dermatan sulfate, 
decorin, fibronectin etc. [18–20]; and the endomysium 
contains type IV collagen, laminin, fibronectin, PGs, 
growth factor, nidogen etc. (Fig. 1) [21–25].

The basal lamina is a supramolecular ECM structure, 
including the inner layer (adjacent to the sarcolemma) 
and the outer mesh layer (Fig. 2) [26–28]. The integrity 
of basal lamina is the basis of regeneration of damaged 
muscle fibers. Li et  al. observed the ultrastructure of 
substrates and found that abnormal basement mem-
brane would lead to limb band muscular dystrophy 
(LGMD) [29]. During the embryonic skeletal muscle 
development, Laminin, type IV collagen, and nidogen 
punctate concentrated in the limb bud of myogenic 
region, participate in the assembly of basal lamina [25]. 
Vinculin, perlecan, and dystrophin-glycoprotein com-
plex (DGC) etc. exists between sarcolemma and basal 
membrane, which are connected by microfilaments 
[3, 30, 31]. Merosin is a key extracellular matrix pro-
tein that forms a mechanical connection between the 
sarcolemma and collagen. Merosin deficiency can lead 
to impaired muscle contraction and transmission of 
force [32]. Plasminogen activator inhibitor-1 also acts 
as a link between the cell surface and ECM by forming 
multimolecular compounds containing integrinα5β3 in 
myogenic cells [33]. The connection between basal lam-
ina is mainly made up of the strut of collagen I, which 
contain collagen fibers, elastin fibers, and microfibrils, 
the rest is filled with a polyanionic lattice of unit col-
lagen fibers, microfilaments, and particles [34]. Fur-
thermore, the basal lamina contains a variety of growth 
factors, which directly participate in the physiological 
activities of muscle fibers and play an important role 
in maintaining the physiological functions of skeletal 
muscle [35–38].

Extracellular matrix is composed of three main pro-
teins, namely, collagen, non-collagen and proteoglycan. 
Collagen is the largest component of ECM protein in 
skeletal muscle. In addition, there are receptors and 
regulators present in extracellular matrix, such as inte-
grin [39] and matrix metalloproteinase (MMP) [40, 
41]. Different components of ECM have different dis-
tribution and different functions, but all of them are 
important for maintaining the physiological activities 
of skeletal muscle.
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Collagen
Collagen is the most abundant component of ECM in 
skeletal muscle tissue. There are three types of cells 
that can produce and secrete collagen in mouse skel-
etal muscle, namely fibroblasts, fibro/adipogenic 

progenitor cells, and skeletal muscle progenitor cells 
(MPCs) [42]. Gillies et  al. used multiple imaging 
modalities and quantitative stereology and found that 
collagen presents large bundles of fibers in the ECM 
[43]. In addition, collagen can be divided into several 

Fig. 1  Skeletal muscle ECM three-layer structure diagram

Fig. 2  Ultrastructural diagram of basal lamina
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subtypes. Type I, III, V, and XI belong to collagen fiber 
classes that form collagen fiber in the skeletal muscle, 
and have a good biomechanical performance. Type VI 
is microfibril protein that form filamentous grid [44]. 
Type IV and VIII [45] are important components of 
basal lamina. Type XXII is localized at tissue junctions, 
and contribute to stabilize the connecting and skel-
etal muscle tendon adhesion [46]. Researches showed 
that increased collagen concentration could result 
in increased skeletal muscle stiffness and decreased 
mechanical performance but protects smaller muscle 
fibers from damage [47–49].

TypeI collagen can significantly inhibit myogenic dif-
ferentiation. Myoblasts and myotubes can synthesize 
CTGF in the presence of TGFβ and lysophosphatidic 
acid, thereby inhibiting myoblast over-differentiation 
by promoting the expression of a variety of ECM com-
ponents, such as typeI collagen and integrin [50]. Alexa-
kis et al. demonstrated that the expression level of typeI 
collagen was down-regulated during myoblast differen-
tiation, while the addition of exogenous typeI collagen 
could significantly inhibit myoblast differentiation [51]. 
However, studies have shown that typeI collagen could 
contribute to the proliferation and migration of myoblast 
[12, 52, 53].

Type IV collagen is one of the main components of 
basal lamina that can promote the IGF1 mediated migra-
tion, differentiation, and fusion of myoblasts, thus pro-
moting the regeneration of skeletal muscle [54]. Col4α1 
gene mutation can lead to decreased exocrine secretion 
of Col4α1, α2, and α3 trimers, resulting in ultrastruc-
tural abnormalities and damage of basal lamina, central 
nucleus concentration, local inflammatory infiltration, 
and ECM abnormal deposition, thus leading to muscle 
fiber atrophy [55, 56].

Type VI collagen play an important role in maintain-
ing the physiological function of skeletal muscle. Type 
VI collagen expressed and secreted by fibroblasts, almost 
no expression in the muscle cells [57]. However, the 
enhancer essential for the transcription of Col6α1 gene 
is induced by the signal factor released by muscle cells, 
lacking of muscle cell can reduce the deposition of type 
VI collagen in connective tissue [58]. Moreover, type VI 
collagen is a key component of satellite cell niche, and 
the knockout of Col6α1 can reduce the activity and self-
renewal ability of satellite cell, thereby weakening the 
regeneration ability of skeletal muscle [59]. In addition, 
type VI collagen deficiency could severely damage the 
components of ECM [60, 61], which cause muscle func-
tion disorder, protein function disorder, mitochondrial 
dysfunction, autophagy dysfunction and microtubule 
associated protein esterification, leading to premature 
senility and serious myopathy of skeletal muscle [62–64].

Laminin
Laminin is located in the basal lamina of muscle fibers 
[17, 65], which can promote the expression and activa-
tion of integrin as well as the proliferation, differentia-
tion, and adhesion of cell [66]. Laminin deficiency will 
lead to ECM component abnormalities [67], thus affect-
ing the physiological function of skeletal muscle. Goody 
et  al. confirmed that the activation of NAD+ -paxillin 
(PXN) pathway could enhance Laminin organization and 
maintain the stability of basal lamina, thus contributing 
to improve the muscular dystrophy phenotype [68].

The canonical expression of different subtypes of 
laminin protein chains is conducive to regeneration of 
damaged skeletal muscles. Laminin-1 can maintain the 
adhesion of muscle fibers on basal lamina, improve mus-
cle performance of mdx mice, relieve degeneration and 
inflammation of skeletal muscles, shorten regeneration 
cycle, and promote proliferation and migration of myo-
blast cells [69–71]. Injection of exogenous Laminin-111 
in muscular dystrophy mice can promote the expres-
sion of Integrin 7, stabilize the basal lamina, and protect 
skeletal muscles from sports injury [72]. Moreover, the 
activation of satellite cells is accompanied by up-regu-
lation expression and deposition of Laminin in the pro-
cess of regeneration of muscle fiber, and knocking out 
Laminin-α1 can inhibit the proliferation and self-renewal 
of satellite cells [73]. In addition, Laminin-α2 mutations 
can result in loss of function of laminin protein [74] and 
dissociation of muscle fibers from the basal lamina [75], 
leading to severe atrophy and abnormal development of 
muscle fibers, and finally induce the pathological reac-
tions of skeletal muscles [76].

Fibronectin
Fibronectin is localized in epimysium, perimysium, and 
endomysium. In addition, fibronectin protein also co-
locates with tenascin-C at the tendon junction [17]. 
Fibronectin is secreted by fibroblasts and activates the 
integrin proteins through FAK/Src pathway, thereby ini-
tiating the peripheral nuclear localization of muscle fib-
ers [77]. The connective tissue hyperplasia of skeletal 
muscle is mainly composed of fibronectin and collagen 
[19]. TGFβ can promote the expression of collagen and 
fibronectin, thereby promoting ECM accumulation and 
tissue fibrosis [78, 79].

Fibronectin can promote the adhesion and differen-
tiation of myoblasts but inhibit the migration and divi-
sion [66, 80]. Fibronectin facilitates the fusion and linear 
alignment of myoblast tubes during myoblast differen-
tiation [81]. Fibronectin deficiency can lead to abnor-
malities in ECM and muscle tubule formation, leading to 
skeletal muscle dysfunction [82, 83]. Study showed that 
the focal adhesion kinase (FAK) pathway can regulate 
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integrin-mediated adhesion and migration of myocytes 
to fibronectin [84]. Lukjanenko et al. found that fibronec-
tin could be used as the preferred adhesion matrix of 
satellite cell through ECM Library Screen and Pathway 
analysis, but due to insufficient adhesion of satellite cell 
in aging skeletal muscle, integrin-mediated signals could 
not be transmitted through FAK and P38 /MAPK path-
ways, resulting in decreased regeneration ability of skel-
etal muscle, while the reconstruction of fibronectin in 
aging skeletal muscle could restore its regeneration abil-
ity [85]. Moreover, the expression level of fibronectin can 
affect the remodeling of satellite cell niche, thus affect-
ing the activation and proliferation of satellite cells [86]. 
Bentzinger et  al. showed that fibronectin could bind to 
Syndecan-4 to promote the expression of Wnt7a, thereby 
inducing the symmetrical division of satellite cells, and 
activated satellite cells can also reconstruct niche by 
autocrine fibronectin [87].

Dystrophin and dystroglycan
Dystrophin and dystroglycan are important links 
between cytoskeleton and extracellular matrix, which 
can maintain the integrity of cell membrane. The N-ter-
minal of dystrophin protein binds to actin through two 
major actin binding sites (actin binding domain, ABD), 
and each ABD consists of two calmodulin homologous 
domains [88]. There are three missense mutations in the 
ABD structure of skeletal muscle with Duchenne mus-
cular dystrophy (DMD), which leads to the wrong fold-
ing of ABD, thus hindering the binding of dystrophin to 
actin, destroying the connection between muscle fiber 
membrane and ECM, and leading to pathological reac-
tions [89]. Dystroglycan is localized in the basal side of 
the outer surface of muscle fiber membrane and involved 
in connecting the basal lamina and muscle cells [41, 90]. 
Cullen et al. found that dystroglycan closer to the periph-
erally of muscle fibers than dystrophin by ultrastructural 
localization analysis [91]. The last 20 amino acids in the 
C-terminus of β-dystroglycan bind to the cysteine-rich 
region of dystrophin, and a chain of dystroglycan extends 
to the basal lamina to interact with laminin, thus bond-
ing the sarcolemma to the basal lamina [92, 93]. How-
ever, phosphorylation of the C-terminal 15th tyrosine of 
β-dystroglycan can disrupt its binding with dystrophin, 
thus inducing pathological reactions in skeletal muscle 
[94].

Dystrophin forms dystrophin-glycoprotein complex 
(DGC) along with dystroglycan and other proteins, such 
as dystrobrevin and utrophin [95–97]. DGC is the G pro-
tein coupled receptor of laminin in ECM [98]. Abnormal 
peptide chain [99], glycosylation [100], or binding activ-
ity with laminin will cause muscular dystrophy. DGC 
can also participate in the lateral transmission of force 

between muscle fibers, while the structure and function 
disorder of DGC will destroy the lateral transmission, 
causing instability of power and increasing the sensitiv-
ity of muscle fiber to contractile damage [101]. As an 
important component of DGC, dystrophin is necessary 
for the formation of stable muscle fiber attachment dur-
ing skeletal muscle development. Mice lacking dystro-
phin have severe muscle atrophy, abnormal expression 
of laminin-α2 chain [102], and impaired vesicle transport 
[103]. Dystroglycan is a widely glycosylated extracellular 
protein containing α and β subunits. The inhibition of 
dystroglycan in skeletal muscle can lead to the damage 
of cytoskeleton, the decrease of titin, and the increased 
sensitivity of muscle fibers to contractile damage, thus 
leading to different types of muscular dystrophy [104]. In 
addition, α-dystrobrevin (α-DB) as another component 
of DGC is required for postsynaptic maturation, and a 
combination of α-DB and DGC provides enhanced post-
synaptic stabilization. It follows that DGC is necessary 
for the physiological function of skeletal muscle.

Proteoglycan (PGs)
Proteoglycan is an important component in the ECM 
of skeletal muscle, including glycosaminoglycans, fibro-
modulin, and heparin sulfate glycosaminoglycan (HSPG) 
etc. Proteoglycan is involved in connecting the internal 
cytoskeleton and ECM, while mice with proteoglycan 
deficiency will exhibit muscle degeneration and muscular 
dystrophy [105].

Glycosaminoglycans combine with fibrous proteins to 
improve myoblast proliferation and differentiation [106]. 
Fibromodulin (FMOD) is a regulator of MSTN, which 
inhibit the function of Myostatin protein by preventing 
the correct folding of protein as well as binding to the 
activin receptor and, thus promoting the recruitment of 
satellite cells and muscle fiber regeneration [107]. Hepa-
rin sulfate proteoglycan, as ECM receptor, is located in 
the endomysium [24, 108]. For the first time, Brandan 
et al. identified the presence of HSPGs in basal lamina of 
mammal skeletal muscle using biochemical indicators, 
and confirmed that the glycosaminoglycan side chain was 
only composed of heparin sulfate [109]. HSPGs family 
contains multiple members, including perlecan, synde-
can, glypican etc. Among which perlecan and glypican 
are mainly connected to ECM structure and syndecan is 
connected to muscle fiber [110].

The roles of ECM in skeletal muscle
Interaction between ECM and muscle cells
ECM is a highly nonlinear elastic material whereas 
muscle fibers are linear and elastic [111]. ECM serves 
as a scaffold for cells-matrix interaction that is essen-
tial for many physiological activities within the muscle 



Page 6 of 13Zhang et al. Cell Biosci           (2021) 11:65 

tissue. In skeletal muscle tissue, ECM provides a stable 
microenvironment that supports the adhesion, migra-
tion, proliferation, and differentiation of cell. However, 
the physiological activity of skeletal muscle also affects 
the characteristics of ECM. Therefore, the interaction 
between ECM and muscle cells is beneficial for the adap-
tation of muscle cells to their microenvironment, thus 
promoting the development of skeletal muscle.

Studies showed that the supportive and regulatory role 
of ECM is essential for the formation of muscle tube, and 
this effect occurs in the early stages of myogenic differen-
tiation [11, 112]. Liu, Yi-Xiao et al. confirmed that ECM 
could act on skeletal muscle progenitor cells and par-
ticipate in their proliferation and differentiation through 
analyzed the protein interaction signals between cells 
using the Silico Canal-Ligand pairing screen method 
[9]. Zhang et al. also demonstrated that each kind of cell 
exhibited better proliferation and differentiation ability 
in culture media containing ECM extracted from its own 
original tissue, using decellularize ECM coating [113]. In 
addition, Stern et al. developed a method to extract ECM 
from adult rat leg muscles and use it as a surface coating 
to culture myoblasts, demonstrating that myoblasts cul-
tured on ECM extract have enhanced proliferation and 
differentiation ability [114]. In the absence of ECM, the 
expression of myogenic differentiation factors is insuffi-
cient to successfully initiate skeletal muscle differentia-
tion. Osses et al. showed that inhibiting of the deposition 
and assembly of ECM components can effectively inhibit 
myogenesis, but doesn’t affect the expression of MyoD, 
Myogenin, and MEF2A, while the addition of exogenous 
ECM can reverse these effects [115].

Likewise, the physical activity of muscle cells also 
affects the composition of the ECM. Kaasik et  al. have 
shown that muscular unloading and reloading could 
influence the composition of the ECM. Unloading could 
down-regulate the expression level of typeI, III, and IV 
collagen, while reloading could strengthen the expres-
sion of collagen, MMP-2, and tissue inhibitor of metal-
loproteinase-2 (TIMP2) in the fast muscle fibers [116]. 
In serum-free medium, myoblasts can rapidly secrete 
and organize their own matrix proteins to create a local 
ECM microenvironment to support its survival [117]. In 
addition, satellite cells can negatively regulate the expres-
sion of ECM-related genes in fibroblasts in vitro, and the 
absence of satellite cells in skeletal muscle will lead to 
excessive accumulation of ECM and increase of muscle 
fibrosis [118, 119].

These studies indicated that myogenic differentiation 
can regulate muscle microenvironment, which in turn 
regulates the cell behavior during skeletal muscle devel-
opment. The ultimate purpose of the interaction between 
cells and their niche is to better “serve” the development 

of tissues. In this process, the cell is the functional actor 
and the extracellular matrix acts as a regulation factor.

ECM in physiological function of muscle stem cells
Skeletal muscle stem cells, also known as satellite cells, 
are activated when skeletal muscle development or dam-
aged, and subsequently proliferate, differentiate, and fuse 
to form new muscle fibers. In the development of skeletal 
muscle, ECM provides a stable microenvironment for the 
migration, adhesion, proliferation, and differentiation of 
satellite cells. Overexpression of ECM proteins can lead 
to alteration in niche of satellite cells and weaken the 
differentiation ability of satellite cells, thus affecting the 
development of skeletal muscle [9, 59, 120]. In addition, 
ECM remodeling is a key step in the complete process 
of satellite cells from activation to proliferation and self-
renewal. Study showed that the activation of satellite cells 
is accompanied by local remodeling of ECM, resulting in 
up-regulation expression and deposition of laminin-α1 
and laminin-α5 in the basal lamina. MMPs can activate 
the remodeling of ECM and initiate the activation of sat-
ellite cells. Inhibiting MMPs can effectively inhibit the 
deposition of laminin in satellite cell niche and prevent 
the activation, differentiation and self-renewal of satellite 
cells [73]. Moreover, Moyle et al. confirmed that the syn-
ergistic effect of ECM stiffness and WNT7 could regulate 
the symmetrical division of satellite cells, thus affecting 
the fate of satellite cells [121]. Excessive accumulation 
of ECM in the microenvironment of aging skeletal mus-
cle resulted in increased stiffness, thereby inhibiting the 
myogenic differentiation ability of satellite cells [8].

However, different components of ECM have differ-
ent effects on myoblast behavior. Studies showed that 
the promoting effect on proliferation and differentiation 
of satellite cells of complete ECM and laminin were bet-
ter than collagen and fibronectin, while fibronectin and 
laminin can improve the adhesion and differentiation 
ability of satellite cells but inhibit the proliferation and 
migration of cells [66, 80]. Moreover, Chaturvedi et  al. 
showed that complete ECM and fibronectin could induce 
the formation of ordered myotubes, while the addition 
of collagen led to disordered myotube sequence [117]. In 
addition, the expression of ECM component required to 
maintain satellite cell niche in skeletal muscle of young 
mice was upregulated compared with that of aging mice 
[122].

ECM in regeneration of muscle
Intact ECM can support regeneration of muscle fibers in 
damaged skeletal muscles. Zhang et al. produced d-ECM 
from porcine skeletal muscle, liver and kidney, and modi-
fied with heparin hyaluronic acid hydrogel (ECM-HA-
HP), studies have shown that satellite cells show stronger 
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ability of proliferation, differentiation, and fusion on 
muscle ECM-HA-HP (mECM-HA-HP) substrate, which 
can be used for cell therapy of skeletal muscle dysfunc-
tion [123]. Also note that the successful regeneration of 
damaged muscle fibers begins with the migration and 
activation of satellite cells. Webster et al. found a residual 
extracellular matrix, called "Ghostfibers", in the impaired 
skeletal muscle fibers using 3D time-lapse intravital 
imaging technology, which regulates the behavior of skel-
etal muscle progenitor cells during the process of regen-
eration. Their study showed that satellite cells divided 
and migrated along the longitudinal axis of the "Ghost-
fibers" after activation, and changing the direction of the 
"Ghostfibers" could change the migration path and cleav-
age plane of myogenic progenitors, thus disrupting the 
regeneration process [124].

In the early stage of muscle fiber injury, ECM hyper-
plasia results in increased skeletal muscle tissue stiffness, 
and this orderly deadhesion, and fibrosis is designed to 
protect skeletal muscle from further damage [8, 87, 125]. 
With the differentiation of satellite cells, ECM is remod-
eled (including changes in growth factors, glycosami-
noglycan, and basement membrane structural proteins, 
etc.), accompanied by up-regulation of adhesion protein 
expression [35, 125–127]. In skeletal muscle injury or 
myopathy, genes associated with ECM remodeling are 
up-regulated [128]. Moreover, activation of satellite cells 
induces local remodeling of ECM to repair the damaged 
basal lamina [73]. Furthermore, ECM releases cytokines 
that promote the proliferation of myogenic progenitor 
cells, such as FGF2, HGF, and SDF-1, and then promote 
the regeneration of myofiber by inducing the transcrip-
tion of MeF2, MyoD, Myf5, and Myogenin in progenitor 
cells [36]. Therefore, ECM remodeling is an important 
link in skeletal muscle regeneration.

According to these studies, we can conclude that ECM, 
as an important component of muscle fiber niche, plays 
an important role in muscle fiber regeneration and skel-
etal muscle development. ECM component proteins are 
secreted by a variety of cells surrounding muscle fibers, 
such as fibroblasts, endothelial cells, and skeletal muscle 
connective tissue cells [129–131]. Therefore, studying 
cell-to-cell interactions is helpful for us to understand the 
regulatory mechanism of satellite cell activation, prolif-
eration, and differentiation.

ECM in signal transduction of neuromuscular junction
ECM components are essential for the development 
of neuromuscular junction (NMJ). Study showed that 
ECM proteins could promote the activity of acetyl-
cholinesterase [11]. In addition, local ECM environ-
ment can regulate the synaptogenesis in the process of 
synaptic induction. At the NMJ of skeletal muscle, the 

basal lamina crosses the synaptic cleft, where laminin is 
involved in regulating synaptic localization and signal-
ing [23]. Recent study has shown that ECM-induced PLSs 
(Podosome-like structures) regulated the formation and 
reconstruction of acetylcholine receptor (AchR) clusters 
by regulating local ECM degradation, and PLSs can also 
degrade ECM by mediating the transport and insertion 
of MT1-MMP matrix metalloproteinase to the surface of 
the AchR cluster [132].

In addition, various proteins in the ECM, such as col-
lagen [133], integrin [134], and dystrophin [103], partici-
pate in the development and maturation of NMJ. Sigoillot 
et al. showed that ColQ could regulate the development 
and maturation of postsynaptic domains through regu-
lating the expression of synaptic genes, while ColQ defi-
ciency will lead to the up-regulation of the five subunits 
of nicotinyl acetylcholine receptor, resulting in the mix-
ture of mature and immature AchR in the neuromuscular 
junction [135]. Moreover, type VIII collagen deficiency 
can lead to the imperfect adhesion between presynaptic 
and postsynaptic membrane, resulting in synaptic struc-
ture defects, and thus affect the signal transduction and 
acetylcholine receptor cluster development [136]. Fur-
thermore, study also showed that integrin α3 could be 
involved in the localization of active zone (AZ) compo-
nents and the effective release of synaptic vesicles as well 
as the deposition of synaptic basement membrane [137].

The integrity of the neuromuscular junction and the 
transduction of synaptic signals are the keys to the motor 
function of skeletal muscle, while the abnormal deposi-
tion of ECM protein will lead to the disorder of the con-
nection between motor neurons and muscle fibers [137, 
138]. It can be seen that the composition of ECM is 
closely related to the motor function of skeletal muscle. 
Therefore, researchers should pay more attention to the 
expression of ECM components when studying the exer-
cise physiology of skeletal muscle in the future.

ECM in the transmission of force in skeletal muscle
ECM can exert transverse stress on fibers and have 
axial strain [139]. If the connection between ECM 
and muscle cells is insufficient, muscle fibers will lack 
mechanical support and the force transmission path-
way in which ECM is involved will be damaged, result-
ing in the deformation of muscle fibers beyond the 
physiological limit [140]. Dystrophin-glycoprotein 
complex (DGC) is an important linkage between mus-
cle fiber cytoskeleton and extracellular matrix, which 
is involved in the transverse transmission of muscle 
fiber power. In the process of muscle fiber contraction, 
the force generated by skeletal muscle of young mice 
does not decrease when transversely transferred from 
fiber to fiber, while due to the disorder of structure 
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and function of DGC in muscular dystrophy or aging 
mice, the transverse transmission of force is destructed, 
which increases the sensitivity of muscle fibers to con-
tractile injury [101].

After skeletal muscle injury, ECM can improve mus-
cle function to a certain extent by regulating the force 
transmission at the injured site rather than relying on 
skeletal muscle regeneration [141]. The stiffness of ECM 
affects the mechanical force transferred at the end of 
muscle fibers. Study showed that the stiffness and fiber 
arrangement of ECM were important factors affecting 
the force transfer during muscle contraction, which is of 
great significance in the application of engineering skel-
etal muscle [142]. Aging [8], tendon resection [143], and 
myopathy [47, 144] etc. can all lead to ECM hyperplasia 
and stiffness increase. Stearns-Reider et  al. quantita-
tively analyzed the topological structure of ECM and the 
mechanical properties of muscles, showing that with age, 
collagen bending decreases, extracellular matrix stiffness 
increases, and the mechanical properties of skeletal mus-
cle decreases [7]. Therefore, any abnormal state of skel-
etal muscle will affect its mechanical properties, while 
normal assembly of ECM will improve muscle weakness 
to some extent.

In addition, ECM is also the major contributor to the 
passive tension of skeletal muscle [145]. Studies showed 
that the fiber network of ECM can be normalization and 
densification in the direction of force through stress-
induced tension, which is conducive to muscle fiber con-
traction and cell migration [146, 147]. Marcucci et  al. 
obtained the passive tension value of ECM fiber by sub-
tracting the passive tension of muscle bundle and fiber, 
and then compared it with the passive tension of mus-
cle fiber, proving that the modulus and tensile carrying 
capacity of ECM are higher than that of muscle fiber 
[148]. ECM hyperplasia can lead to the increase of stiff-
ness and passive tension in skeletal muscles [149]. Azizi 
et  al. have studied the mechanical interaction between 
contractive muscles and ECM. The results showed that 
with the increase of ECM content in skeletal muscle, the 
ability of muscle to expand radially was impaired, which 
in turn limited the muscle shortening and increased the 
passive tension in the muscle [150]. Resistance training 
can reduce tissue fibrosis and induce ECM remodeling, 
thus improving the mechanical properties of skeletal 
muscle [151–153].

Main conclusion is that excessive accumulation of 
extracellular matrix can significantly impair the mechani-
cal properties of skeletal muscle, including active and 
passive tension. Therefore, the remodeling of extracellu-
lar matrix and the correct expression of each component 
are of great significance in the clinical treatment of mus-
cle weakness.

ECM in muscle pathophysiology
Although the characteristics, components, and function 
of the ECM vary in different tissues, it is common that 
any deficiency in ECM properties can cause pathophysio-
logical responses, such as chondrodysplasia [154], Ehlers-
Danlos syndrome [155], and myodystrophy. In skeletal 
muscle diseases, the degenerative changes of muscle fib-
ers are characterized by the gradual replacement of indi-
vidual muscle fibers by connective tissue. The process 
involves the exfoliation of peripheral cytoplasm into the 
endomysium cavity, resulting in muscle fiber contrac-
tion and collagen fiber fragmentation, and eventually 
the hollow basement membrane sheath is surrounded 
by abundant extracellular matrix [156]. The myopathy 
phenotypes caused by defects in different components 
of ECM are also different. COLQ deficiency leads to 
abnormal development of neuromuscular junctions in 
adult mice, resulting in a myoatrophy phenotype [135]. 
Type VI collagen defects can lead to premature aging and 
dysfunction of skeletal muscle and the morphological 
change of tendon [60, 62]. In addition, abnormal expres-
sion of laminin, fibronectin and proteoglycan can lead to 
severe myopathic phenotypes in skeletal muscle, such as 
DMD syndrome. Therefore, the study on the composition 
and characteristics of ECM has guiding significance for 
the clinical treatment of ECM related diseases.

Application of ECM in biomedical and engineering
ECM is necessary for tissue development, so it has a 
good application prospect. Decellularize ECM (dECM), 
which is derived from in vivo, is widely used in the field 
of bioengineering and regenerative medicine because of 
its excellent histocompatibility and biological proper-
ties. It can be used as a biological scaffold to promote 
the formation of functional tissues. Kao et  al. prepared 
pig bladder matrix hydrogels using Sodium Dodecyl Sul-
fate Decellularization Method, and the results showed 
that the SDS Decellularization Method provides a more 
stable and safer access to the Decellularization bladder 
matrix due to reduced immunogenicity and can be used 
as a potential candidate scaffold for tissue remodeling 
[157]. Nikniaz et al. compared different methods of tissue 
decellularization. The results show that compared with 
other acellular methods, SDS-Triton-Ammonium treat-
ment group has lower DNA residue and better biocom-
patibility [158].

In recent years, researchers have developed dECM 
active materials for clinical treatment using bioengi-
neering techniques. Trevisan et  al. constructed mouse 
decellularized diaphragm ECM, which can promote the 
activation, proliferation and differentiation of skeletal 
muscle progenitor cells to form a powerful three-dimen-
sional skeletal muscle structure, providing a promising 
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tool for clinical application of diaphragm regeneration in 
the future [159]. Lee et  al. used skeletal muscle-derived 
dECM and IGF1 to develop a decellularized muscle-
specific scaffold system, which can better promote cell 
proliferation and differentiation, thus supporting in  situ 
regeneration of muscle tissue [160]. Kim et al. collected 
the decellularized ECM from porcine skeletal muscle by 
using the decellularize technology, then used 3D printing 
technology to construct the dECM-based structure that 
laden myoblast cells to form a functional structure with 
skeletal muscle tissue characteristics, which can be used 
for drug screening and in vitro chip development [161]. 
Zhu et  al. designed ECM scaffolds with parallel micro-
channels, which can closely observe the activity of cells 
in vitro and contribute to the infiltration and angiogen-
esis of transplanted cells in  vivo, and can be applied to 
the development of inducible biomaterials and regenera-
tive medicine [162].

ECM materials can support cell attachment and pro-
liferation in  vitro, and have good anti-inflammatory 
and immunosuppressive properties in  vivo, which can 
improve the success rate of cell transplantation [163]. 
In the clinical treatment of skeletal muscle disease, the 
degradation products of ECM biological scaffolds can 
also promote the alternate activation and polarization 
construction of M2 macrophages, thus promoting the 
migration and myogenesis of skeletal muscle progenitor 
cells [164, 165]. The application of ECM in the clinical 
treatment of diseases is the result of the comprehensive 
application of multidisciplinary such as cell biology, bio-
engineering, and regenerative medicine. Although the 
technology has become increasingly developed, there are 
still many aspects to be improved. Therefore, I think the 
future research direction should focus on the accuracy of 
the effect, the operability of the method, and the control 
of the cost.

Discussion
ECM is a complex and sophisticated structure whose 
components are synthesized and secreted by many 
types of cells. In this paper, the characteristics and 
functions of ECM in skeletal muscle tissue are dis-
cussed in detail. The cytoskeleton forms a close con-
nection with ECM through DGC, laminin, and 
proteoglycan, etc. ECM can not only maintain skel-
etal muscle morphology and contraction as a scaffold, 
but also regulate various physiological functions of 
skeletal muscle, such as signal transmission of motor 
neuron, glucose metabolism, and regeneration after 
injury. Furthermore, decellularized ECM as biomateri-
als is widely used in bioengineering and regenerative 
medicine because of its unique and superior biological 

characteristics. Therefore, the in-depth study of ECM is 
beneficial for researchers to further explore the mecha-
nism of skeletal muscle development, and provide new 
insights for clinical treatment of skeletal muscle dis-
eases and the development of biological materials.

However, ECM does not function independently and 
also requires the involvement of multiple cytokines, 
such as Integrin, MMPs, and TGFβ. Integrin, as recep-
tor of extracellular matrix proteins, coordinate with 
extracellular matrix to regulate the adhesion [166], 
proliferation [73], migration [84], and differentiation 
[167] of myoblasts, as well as the force transmission of 
muscle fibers [168, 169] and development of synapses 
[134, 137]. MMPs are important factors that induce 
ECM remodeling. Skeletal muscle injury [170] or exer-
cise [171] will cause changes in the expression level of 
MMP protein, and thus participate in the regulation of 
muscle fiber repair and hypertrophy by regulating the 
remodeling of ECM. TGFβ promotes ECM deposition 
by promoting the expression of ECM-related proteins. 
Currently, some drugs are widely used to inhibit the 
excessive accumulation of ECM by inhibiting TGFβ 
expression, so as to achieve the purpose of myopathy 
treatment [172–174]. Accordingly, it may be more ben-
eficial for researchers to explore new molecular mecha-
nisms by considering the interactions between cells and 
the regulatory network upstream and downstream of 
ECM.
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