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EIF5A2 controls ovarian tumor growth 
and metastasis by promoting epithelial 
to mesenchymal transition via the TGFβ 
pathway
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Abstract 

Background:  Epithelial to mesenchymal transition (EMT) contributes to tumor metastasis and chemoresistance. 
Eukaryotic initiation factor 5A2 (EIF5A2) is highly expressed in a variety of human cancers but rarely expressed in 
normal tissues. While EIF5A2 has oncogenic activity in several cancers and contributes to tumor metastasis, its role in 
ovarian cancer is unknown. In this study, we investigate whether EIF5A2 contributes to ovarian tumor metastasis by 
promoting EMT.

Methods:  To investigate the role of EIF5A2, we knocked out (KO) EIF5A2 using lentiviral CRISPR/Cas9 nickase in high 
invasive SKOV3 and OVCAR8 cells and overexpressed EIF5A2 in low invasive OVCAR3 cells using lentiviral vector. Cell 
proliferation, migration and invasion was examined in vitro ovarian cancer cells and tumor metastasis was evaluated 
in vivo using orthotopic ovarian cancer mouse models.

Results:  Here we report that EIF5A2 is highly expressed in ovarian cancers and associated with patient poor survival. 
Lentiviral CRISPR/Cas9 nickase vector mediated knockout (KO) of EIF5A2 inhibits epithelial to mesenchymal transi-
tion (EMT) in SKOV3 and OVCAR8 ovarian cancer cells that express high levels of EIF5A2. In contrast, overexpression 
of EIF5A2 promotes EMT in OVCAR3 epithelial adenocarcinoma cells that express relatively low EIF5A2 levels. KO of 
EIF5A2 in SKOV3 and OVCAR8 cells inhibits ovarian cancer cell migration and invasion, while its overexpression pro-
motes cell migration and invasion in OVCAR3 adenocarcinoma cells. We further demonstrate that EIF5A2 promotes 
EMT by activating the TGFβ pathway and KO of EIF5A2 inhibits ovarian tumor growth and metastasis in orthotopic 
ovarian cancer mouse models.

Conclusion:  Our results indicate that EIF5A2 is an important controller of ovarian tumor growth and metastasis by 
promoting EMT and activating the TGFβ pathway.

Keywords:  EIF5A2, CRISPR, Cas9 nickase, Lentiviral vector, Ovarian cancer, Epithelial to mesenchymal transition, 
Orthotopic ovarian cancer mouse model
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Background
Ovarian cancer (OC) has the highest mortality rate 
among gynecological malignancies [1]. Early stage OC 
patients have no obvious symptoms and are often diag-
nosed only at later stages III and IV, when tumors have 
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already metastasized to the peritoneal cavity or other 
abdominal organs. Early stage OC patients respond 
to chemotherapy, but eventually become resistant to 
chemotherapy. Although multi-modality treatment 
approaches applied in OC therapy include debulking 
surgery, chemotherapy, targeted therapy, and immuno-
therapy, the five-year survival rate remains poor at 35 
to 40% [2–5]. The molecular mechanisms driving OC 
metastasis and chemoresistance remain unclear. Thus, 
it is of great importance to identify new predictive bio-
markers for early diagnosis and develop new drugs to 
improve OC therapy.

Eukaryotic initiation factor 5A (EIF5A) is a eukaryotic 
translation initiation factor that participates in the initia-
tion and elongation process in protein synthesis. EIF5A 
is the only known protein that undergoes hypusination 
through posttranslational modification. Deoxyhypusine 
synthase (DHPS) cleaves the polyamine spermidine and 
the 4-aminobutyl group is transferred to lysine residue 50 
of EIF5A, which is subsequently hydroxylated by deoxy-
hypusine hydroxylase (DOHH) to facilitate EIF5A matu-
ration [6–9]. There are two isoforms of EIF5A, EIF5A1 
and EIF5A2, which share sequence similarity of 84% in 
mRNA and 94% protein [10]. EIF5A1 is expressed in the 
majority of cell types and required for embryonic devel-
opment, while EIF5A2 is expressed only in specific cell 
types and is not required for embryonic development 
[11, 12]. Interestingly, EIF5A2 is aberrantly amplified or 
upregulated in various cancers including ovarian can-
cer, lung, pancreatic cancer, and hepatocellular carci-
noma, and contributes to tumor growth and metastasis 
[7, 10, 13, 14]. Therefore, EIF5A2 is an attractive drug 
target for cancer therapy based on its aberrant expres-
sion in various cancer types. Although EIF5A2 is upregu-
lated in ovarian cancer, its functional role has not been 
characterized at the mechanistic level. Previous stud-
ies demonstrated that EIF5A2 contributed to epithelial 
to mesenchymal transition (EMT) in colorectal, gastric, 
and breast cancer [15–17]. It is well known that EMT 
contributes to tumor initiation, progression, invasion, 
metastasis, EMT is regulated by multiple signaling path-
ways including ERK1/2, AKT, WNT in different cancers 
[18–20]. Although EMT contributes to tumor metastasis, 
the role of EMT in ovarian cancer is somewhat contro-
versial due to the same expression levels of E-cadherin in 
the ovary and other distant metastatic organs [21]. How-
ever, accumulating evidence indicates that EMT plays 
an important role in ovarian tumor metastasis [22–26], 
Our previous studies showed that TGFβ promoted EMT 
in ovarian cancer cells [27], and BIRC5 (survivin) expres-
sion activates the TGFβ pathway and promotes EMT and 
ovarian tumor metastasis in orthotopic ovarian cancer 
mouse models [28].

In the present study we provide evidence that EIF5A2 
contributes to ovarian tumor growth and metastasis by 
promoting EMT via activation of the TGFβ pathway.

Materials and methods
Cell culture
Ovarian cancer cell line SKOV3 was purchased from 
ATCC and cultured in Dulbecco’s Modified Eagle 
Medium (DMEM) supplemented with 10% FBS (Hyclone; 
Logan, UT), 100 U/ml penicillin/streptomycin (Invit-
rogen; Carlsbad, CA). OVCAR3 and OVCAR8 cell lines 
were purchased from National Cancer Institute and cul-
tured in RPMI 1640 with 10% FBS (Hyclone; Logan, UT), 
1% penicillin/streptomycin (Invitrogen; Carlsbad, CA). 
All cell lines were grown at 37 °C with 5% CO2. Cell lines 
were authenticated using Short Tandem Repeat (STR) 
analysis by ATCC and tested negative for mycoplasma 
using the luciferase assay (Lonza, Allendale, NJ).

Lentiviral vector production
The lentiviral CRISPR/Cas9 nickase-mediated EIF5A2 
gene editing vectors were constructed by annealing two 
gRNA oligonucleotide pairs and subcloning them into 
BsmII site of lentiviral vector Lentiguide-puro vector 
(#52,963, Addgene), and gRNAs were driven by human 
U6 promoter. Two gRNA sequences, 5′ AAC​GGC​TTC​
GTG​GTG​CTC​AA and 5′ CGC​AAG​GCC​GAG​CAC​
TGC​AT were designed to target exon 1 of EIF5A2 gene. 
TGFβR2 Knockdown (KD) CRISPR/Cas9 nickase vectors 
were constructed as described previously [28]. EIF5A2 
lentiviral overexpression vector was purchased from 
Applied Biological Materials Inc. (Richmond, Canada). 
Lentivirus was produced by packaging in 293FT cells as 
we reported previously [29]. EIF5A2 KO and TGFβR2 KD 
stable cell lines were established by transducing SKOV3 
and OVCAR8 ovarian cancer cells with the lentiviral 
CRISPR/Cas9 nickase vector and selected with 2  μg/ml 
puromycin and 10 μg/ml blasticidin. LentiCas9-blast was 
used as the control vector without gRNAs. The EIF5A2 
stable expression and control cells were established by 
transducing OVCAR3 with lentiviral EIF5A2 and empty 
control vectors and selected with 2 μg/ml puromycin.

MTT cell proliferation assay
SKOV3, OVCAR8 EIF5A2 KO or OVCAR3 expressing 
and corresponding control cells (3000/well) were plated 
into 96-well plates. Cell proliferation was measured at 24, 
48 and 72 h using the MTT proliferation assay kit from 
ATCC (Manassas, VA) according to the instruction of the 
manufacturer.
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Clonogenic cell survival assay
6-well plates were seeded with 400 EIF5A2 KO SKOV3, 
EIF5A2 KO OVCAR8, EIF5A2 overexpressing (OE) 
OVCAR3 cells, and appropriate control cells. Plates 
were cultured for 2 weeks, fixed with 70% ethanol, and 
stained with crystal violet. Colonies were counted from 
three different wells and compared to corresponding 
controls.

Cell migration assay
The cell migration assay was performed using the Tran-
swell chambers from BD Falcon™ (San Jose, CA) as 
described previously [30]. Briefly, EIF5A2 KO SKOV3, 
EIF5A2 KO OVCAR8, EIF5A2 OE OVCAR3 cells, and 
corresponding control cells (5 × 104) in 300  µl serum-
free culture media were added into the upper chamber 
with 10% FBS in the lower chamber inserted in 24-well 
plates and cultured for 8  h. The migrated cells on the 
lower side of the membranes were fixed with methanol 
and then stained with crystal violet and counted.

Cell invasion assay
Cell invasion assay was performed as described previ-
ously [30]. Briefly, EIF5A2 KO SKOV3, EIF5A2 KO 
OVCAR8, EIF5A2 OE OVCAR3, and the appropriate 
control cells (3 × 105) were seeded in 300 µl serum-free 
culture medium onto transwell plates precoated with 
Matrigel (BD BioSciences, San Jose, CA). The invaded 
cells were stained for 10  min with hematoxylin and 
eosin (H&E) following methanol fixation for 20  min 
and at least three different fields were counted.

SMAD dependent reporter gene assay
The EIF5A2 KO SKOV3, EIF5A2 KO OVCAR8 cells, 
EIF5A2 OE OVCAR3, and the corresponding control 
cells were transduced with the lentiviral vector pGF-
SMAD2/3/4-mCMV-Luciferase-EF1a-puro (System 
Biosciences, CA) containing SMAD2/3/4 transcrip-
tional response elements (TRE) and treated with 6 ng/
ml TGFβ for 12 h. The luciferase activity was measured 
and normalized by comparing to control cells.

Immunofluorescence staining
Formalin-fixed paraffin-embedded (FFPE) sec-
tions of de-identified ovarian serous carcinoma were 
obtained from the Tissue Services Core of the Uni-
versity of Tennessee Health Science Center (UTHSC). 
H&E staining was performed by Histology Core of 
UTHSC. Immunofluorescent staining was carried out 
as described previously [30]. The primary antibodies 
EIF5A2, Cytokeratin-7 (1:200) were purchased from 
Abcam and Vimentin (1:200 dilution) were purchased 
from Cell Signaling (Danvers, MA). Alexa 488- or 

594- conjugated goat anti-rabbit or anti-mouse anti-
bodies were purchased from Invitrogen (Carlsbad, CA). 
Cell nuclei were counterstained with DAPI (Vector 
Laboratories, Inc.; Burlingame, CA). Images were cap-
tured with the Nikon NIS Element software.

Western blot
Western blot (WB) was performed as described previ-
ously [30]. Briefly, ovarian cancer cells were collected in 
RIPA buffer (Thermo Scientific; Rockford, IL) contain-
ing 1% Halt Proteinase Inhibitor Cocktail (Thermo Sci-
entific; Rockford, IL). Equal amounts of protein (100 μg/
lane) were loaded onto 10% SDS-PAGE gels and trans-
ferred onto nitrocellulose membranes. The membranes 
were blocked with 5% nonfat milk for 1 h and incubated 
with primary antibodies against EIF5A2, Cytokeratin-
7(Abcam), GAPDH (Santa Cruz; St. Louis, MO), Vimen-
tin, Ecadherin, β-catenin, snail2, SMAD2 or p-SMAD2 
(Cell Signaling).

Orthotopic ovarian cancer mouse model
To examine whether EIF5A2 contributes to primary 
ovarian tumor growth and metastasis, we injected 
intrabursally 5 × 105 EIF5A2 KO and control SKOV3 cells 
transduced with lentiviral luciferase reporter vector and 
into 2  month–old immunocompromised NOD.Cg Prk-
dcscid Il2rgtm1Wjl/SzJ (NSG) female mice (n = 5/group). 
Ovarian tumor growth and metastasis was monitored 
using a Xenogen live animal imaging system once a week. 
Mice were sacrificed at 5  weeks after cell injection, and 
primary ovarian tumors and metastatic organs were har-
vested for histology and immunostaining.

Results
EIF5A2 expression is amplified and upregulated in ovarian 
adenocarcinomas and is predictive of patient poor survival
To assess the expression of EIF5A2 in ovarian cancer, 
we analyzed 607 serous ovarian carcinomas and 561 
normal tissues including 130 ovaries, plus 431 blood 
samples in the Oncomine database [31]. EIF5A2 copy 
numbers were significantly amplified in ovarian tumors 
as compared to normal tissues (p = 1.94E-197) (Fig. 1a). 
We also analyzed EIF5A2 expression in multiple cancer 
types from TCGA database, and EIF5A2 was amplified 
across multiple cancer types with the highest percent-
age found in specimens from lung and ovarian cancer 
patients (Fig.  1b). We further examined the correla-
tion of EIF5A2 copy number and mRNA expression in 
two different datasets of TCGA database including 629 
serous carcinomas from Firehose Legacy and 608 from 
PanCancer Atlas. The copy number alteration of EIF5A2 
correlated with mRNA expression based on RNA-seq 
data (Fig.  1c). We also examined EIF5A2 expression 
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from Clinical Proteomic Tumor Analysis Consortium 
(CPTAC) database including 100 specimens from ovar-
ian cancer patients and 25 normal ovaries that also 
showed significantly higher protein expression in ovar-
ian cancer tissues than that in normal ovaries (Fig. 1d). 
We then examined the expression of EIF5A2 in highly-
invasive SKOV3 and OVCAR8 ovarian cancer cells, and 
low-invasive OVCAR3 cells using WB blot. EIF5A2 
expression was significantly higher (p  <  0.001) in both 
SKOV3 and OVCAR8 cells than that in OVCAR3 cells 
(Additional file 1: Fig. S1A). To verify the expression of 
EIF5A2 in ovarian cancer tissues, we performed immu-
nofluorescent staining on sections from three ovarian 
serous carcinoma patients that had been verified by 
H&E staining. EIF5A2 staining was strong in the cyto-
plasm of tumor cells but remained weak in the adjacent 
normal tissues (Additional file 1: Fig. S1B). To determine 
whether EIF5A2 expression is associated with patient 
overall survival (OS), we examined the correlation of 
EIF5A2 expression with ovarian cancer patient survival 

based on the Kaplan Meier Plotter database of 655 ovar-
ian cancer samples including 383 with high EIF5A2 and 
272 with low expression [32]. The OS was significantly 
reduced in patients with EIF5A2 high expression as 
compared to low expression patients (Fig. 1e). We also 
examined an additional 415 ovarian carcinoma includ-
ing 207 EIF5A2 high and 208 low in the SurvExpress 
database [33]. EIF5A2 expression was analyzed based 
on risk groups. We found that EIF5A2 expression was 
significantly higher in the high-risk group than that in 
low-risk group (Additional file  1:Fig. S1c), whereas the 
OS was significantly reduced in high-risk compared to 
low-risk group (Fig.  1f ). Thus, EIF5A2 expression cor-
related well with poor ovarian patient survival indicat-
ing a potential predictive biomarker for ovarian cancer 
diagnosis.

EIF5A2 promotes EMT in ovarian cancer cells
Based on the expression level of EIF5A2 in these 
three lines, we set out to determine whether EIF5A2 

Fig. 1  EIF5A2 expression is upregulated or amplified in ovarian cancer and associated with patient poor survival. a EIF5A2 copy numbers in normal 
and cancer tissues. 1: normal ovaries (N = 130); 2: normal blood (n = 431). 3: OC (n = 607). b EIF5A2 is amplified in majority of cancer types from in 
TCGA database. c EIF5A2 copy number is correlated with EIF5A2 mRNA expression from RNA-seq in two different datasets including TCGA PanCan 
and firehose legacy. d Protein expression of EIF5A2 in normal and ovarian cancer tissues. Normal ovaries (N = 25), Ovarian cancer (N = 100). e 
EIF5A2 expression is associated with overall survival of ovarian cancer patients in Kaplan Meier Plotter database f Ovarian cancer patients displayed 
significantly reduced patient survival in the high-risk compared to the low-risk group
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contributes to EMT phenotypic switch by knocking 
out EIF5A2 in highly invasive SKOV3 and OVCAR8 
cells using lentiviral CRISPR/Cas9 nickase vector, and 
conversely overexpressing it in low-invasive OVCAR3 
cells using lentiviral vector under the control of EF1α 
promoter. EIF5A2 was undetectable in both SKOV3 
and OVCAR8 KO cells, while EIF5A2 expression was 
substantially elevated in EIF5A2 OE OVCAR3 cells 
compared to control cells. The EMT markers including 
the epithelial cell marker cytokeratin-7 and E-cadherin 
were upregulated, whereas the mesenchymal mark-
ers β-catenin, vimentin, and snail2 were downregu-
lated in both SKOV3 KO and OVCAR8 KO compared 
to control cells (Fig. 2a). In contrast, overexpression of 
EIF5A2 in OVCAR3 cells resulted in the downregula-
tion of epithelial cell markers cytokeratin-7 and E-cad-
herin, whereas the mesenchymal markers β-catenin, 
vimentin, and snail2 were increased compared to con-
trol cells (Fig. 2b).

Loss of EIF5A2 expression inhibits ovarian cancer cell 
proliferation and clonogenicity
To determine the role of EIF5A2 in ovarian cancer cells, 
we examined cell survival in EIF5A2 KO SKOV3 and 
OVCAR8 cells, EIF5A2 OE OVCAR3 cells and control 
cells using cell colony formation assay. KO of EIF5A2 
significantly reduced colony formation in both SKOV3 
(Fig.  3a) and OVCAR8 cells (Fig.  3b), whereas OE of 
EIF5A2 in OVCAR3 cells significantly increased the 
number of colonies (Fig.  3c) compared to control cells. 
We also examined cell proliferation rate of EIF5A2 KO 
SKOV3, EIF5A2 KO OVCAR8 cells, and EIF5A2 OE 
OVCAR3 cells using the MTT assay. KO of EIF5A2 sig-
nificantly reduced the rate of cell proliferation compared 
to controls at all three time points (24, 48, and 72 h) in 
both KO cell lines (Fig. 3d, e). In contrast, OE of EIF5A2 
promoted cell proliferation at 48 and 72 h but no signifi-
cant difference in the cell number relative to control was 
found at 24 h (Fig. 3f ).

Fig. 2  Disruption of EIF5A2 expression using lentiviral CRISPR/Cas9 nickase mediated editing resulted in the inhibition of EMT in ovarian cancer 
cells. a Western blot analysis of EIF5A2 and EMT markers in EIF5A2 KO and control (Con) SKOV3 and OVCAR8 cells. b Western blot analysis of EIF5A2 
and EMT markers in EIF5A2 expression and control OVCAR3 cells. Band intensity was measured using Image J and statistically analyzed. One 
representative western blot was presented from three similar independent experiments. (*p < 0.05, **p < 0.01,*** p < 0.001)
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Fig. 3  Disruption of EIF5A2 expression inhibition of cell proliferation and survival in ovarian cancer cells. a, b Cell colonies in EIF5A2 KO and control 
SKOV3 and OVCAR8 cells. c Cell colonies in EIF5A2 expression and control OVCAR3 cells. d, e Cell proliferation in EIF5A2 KO and control SKOV3 
and OVCAR8 cells was determined by MTT assay. f Cell proliferation in EIF5A2 expressing and control OVCAR3 cells was determined by MTT assay 
(*P < 0.05; **P < 0.01***P < 0.001)

Fig. 4  Disruption of EIF5A2 expression led to the inhibition of cell migration and invasion in ovarian cancer cells. a Cell migration in EIF5A2 KO and 
control SKOV3 or OVCAR8 cells was examined using the Transwell plates, and migrated cells were stained with crystal blue and counted from at 
least three different fields. b Cell invasion in both EIF5A2 KO and control SKOV3 or OVCAR8 cells was examined using Matrigel-coated plates, and 
invaded cells were stained with H&E. and counted from at least three different fields c Cell migration in EIF5A2-expressing and control OVCAR3 
cells was examined using transwell plates, and migrated cells were stained with crystal blue and counted from at least three different fields. d Cell 
invasion in EIF5A2-expressing OVCAR3 and control was examined using Matrigel-coated plates, and invaded cells were stained with H&E. and 
counted from at least three different fields (**P < 0.01; ***P < 0.001)
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Loss of EIF5A2 expression inhibits ovarian cancer cell 
migration and invasion
EMT is an essential step in tumor cell migration and 
invasion. Since we found that EIF5A2 promoted EMT in 
ovarian cancer cells (Fig. 2), we also determine the role of 
EIF5A2 in migration and invasion of ovarian cancer cells 
using Transwell plates. KO of EIF5A2 significantly inhib-
ited migration (Fig. 4a) and invasion (Fig. 4b) in SKOV3 
and OVCAR8 cells, whereas OE of EIF5A2 significantly 
enhanced migration (Fig.  4c) and invasion in OVCAR3 
(Fig. 4d).

EIF5A2/TGFβ forms a positive feedback loop in promoting 
EMT in ovarian cancer cells
We reported previously that TGFβ promoted EMT in 
ovarian cancer cells [27]. To understand how EIF5A2 
contributed to EMT in ovarian cancer cells, we exam-
ined the potential co-regulation between EIF5A2 and 
TGFβ pathway in ovarian cancer cells by exposing both 
SKOV3 and OVCAR8 cells with 6  ng/ml TGFβ. As 
shown in Fig.  5a, TGFβ induced EIF5A2 expression in 

a time-dependent manner in both cell lines. We also 
treated both SKOV3 and OVCAR8 cells for 24  h with 
different doses of the TGFβR1/2 inhibitor SB431542 and 
found that EIF5A2 expression was inhibited in a dose-
dependent manner in these two cell lines (Fig. 5b).

In addition to the pharmacological approach, we used 
a genetic approach by KD TGFβ receptor 2 (TGFβR2) 
using a lentiviral CRISPR/Cas9 nickase vector and then 
treated both types of cells with 6  ng/ml TGFβ for 24  h 
and determined EIF5A2 expression. KD of TGFβR2 sig-
nificantly reduced EIF5A2 protein levels in both lines of 
cells. In contrast, TGFβ induced EIF5A2 expression in 
control, but not in the KD cells (Fig. 5c), indicating that 
TGFβ promoted EIF5A2 expression.

To examine how EIF5A2 regulates the TGFβ pathway, 
EIF5A2 KO SKOV3, EIF5A2 KO OVCAR8 cells, and 
control cells were treated with 6 ng/ml TGFβ. Phospho- 
and total SMAD2 in EIF5A2 KO and control ovarian 
cancer cells was examined by WB. Loss of EIF5A2 atten-
uated the TGFβ pathway as shown by the reduced level 
of phospho-SMAD2 in both SKOV3- and OVCAR8-KO 

Fig. 5  The association of EIF5A2 with the TGFβ pathway and inhibition of EIF5A2 attenuated TGFβ signaling pathway in ovarian cancer cells. a TGFβ 
induced EIF5A2 expression in SKOV3 and OVCA8 cells at the indicated time points as detected by Western blot. b TGFβR1/2 inhibitor SB431542 
inhibited EIF5A2 expression in SKOV3 and OVCAR8 cells following 24 h treatment as detected by Western blot. c Western blot analysis of EIF5A2 and 
TGFβRII in TGFβR2 KD and control SKOV3 and OVCAR8 cells following 6 ng/ml TGFβ treatment for 24 h, respectively. d, e Western blot analysis of 
phospho- and total SMAD2 in EIF5A2 KO and control SKOV3 and OVCAR8 cells or in EIF5A2 expressing and control OVCAR3 following 6 ng/ml TGFβ 
treatment at the indicated time points. (*p < 0.05; **P < 0.01; ***P < 0.001)
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cells compared to control cells (Fig.  5d). We further 
examined the TGFβ signaling by treating both EIF5A2 
OE and control OVCAR3 cells with 6  ng/ml TGFβ. As 
expected, OE of EIF5A2 activated the TGFβ pathway as 
shown by increased phospho-SMAD2 in OE OVCAR3 
cells compared to control cells (Fig. 5e).

To further examine the interaction of EIF5A2 and 
TGFβ signaling pathway, we transduced EIF5A2 KO, 
OE and control cells with a lentiviral luciferase reporter 
construct containing six SMAD2/3/4 response elements 
upstream of CMV mini-promoter and then treated trans-
duced cells with 6 ng/ml TGFβ for 12 h. Loss of EIF5A2 
significantly inhibited the luciferase activity in both 
SKOV3- and OVCAR8-KO cells while OE of EIF5A2 
enhanced luciferase activity in OVCAR3 cells (Fig.  6). 
Our data indicate that EIF5A2 forms a positive feedback 
loop with TGFβ pathway in ovarian cancer cells.

Loss of EIF5A2 suppressed primary ovarian tumor growth 
and metastasis by inhibiting EMT and attenuating 
the TGFβ pathway in an orthotopic ovarian mouse model
To determine whether EIF5A2 contributes to primary 
ovarian tumor growth and metastasis in vivo, we injected 
5 × 105 ovarian cancer SKOV3 KO and control cells 
intrabursally into two-month-old immunocompromised 
NSG female mice. The primary ovarian tumors were sig-
nificantly reduced in mice injected with EIF5A2 KO cells 
than control mice as indicated by tumor weight (Fig. 7a). 
We then examined EIF5A2, EMT markers and pSMAD2 
expression in primary ovarian tumors by WB. We found 
that EIF5A2, and the mesenchymal markers β-catenin, 
snail2, and vimentin and pSMAD2 were downregu-
lated, whereas the epithelial markers cytokeratin-7 and 

E-cadherin were upregulated in ovarian tumors of mice 
implanted with EIF5A2 KO SKOV3 compared to con-
trol cells (Fig.  7b). Ovarian tumors were also evaluated 
by H&E staining (Fig. 7c). Ovarian tumor sections were 
immunostained with EIF5A2, vimentin, and cytokera-
tin-7 antibodies. EIF5A2 and vimentin showed weak 
staining, whereas cytokerain-7 staining was strong in 
tumors from mice xenografted with KO cells compared 
with control cells (Additional file 1: Fig. S2a–c). Further-
more, we found metastatic tumors in multiple peritoneal 
organs including the liver and spleen of mice injected 
with control cells, but fewer metastasis was found in 
mice implanted with EIF5A2 KO cells as shown by bio-
luminescence and verified using H&E staining (Fig.  8a, 
b). Our results indicated that loss of EIF5A2 suppressed 
primary ovarian tumor growth and tumor metastasis by 
inhibiting EMT and attenuating the TGFβ pathway in 
orthotopic ovarian cancer mouse models.

Discussion
Lack of effective predictive biomarkers is a major 
issue in early diagnosis of ovarian cancer patients. We 
report that EIF5A2 is a potential predictive biomarker 
for early diagnosis of OC and prognosis following 
chemotherapy. In particular, EIF5A2 is correlated with 
the poor survival of ovarian cancer patients. For the 
first time, we demonstrated in this study that EIF5A2 
contributes to ovarian tumor metastasis by promot-
ing EMT via activation of the TGFβ pathway. EIF5A2 
was shown to associate with metastasis, developmental 
stages, histological types and poor patient survival in 
gall bladder cancer [34], oral squamous cell carcinoma 
[35], prostate cancer [36], cervical cancer [37], and 

Fig. 6  SMAD dependent reporter gene luciferase activity. Luciferase activity in EIF5A2 KO and control SKOV3 and OVCAR8 cells or EIF5A2 
expressing and control OVCAR3 cells transduced with pGreenFire1-SMAD2/3/4-GF-EF1-puro lentiviral vector following 6 ng/ml TGFβ treatment for 
12 h (*p < 0.05, *** p < 0.001)
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hepatocellular carcinoma [38]. In the present study, we 
analyzed the expression of EIF5A2 in high grade serous 
ovarian carcinoma from several databases, and found 
EIF5A2 was associated with tumor metastasis and poor 
patient survival. However, it remains to be further ana-
lyzed whether there is correlation between EIF5A2 
expression level and the different stages and/or grades 
in other types of OC including clear cell, endometri-
oid, and mucinous carcinomas. Our studies indicate 
that EIF5A2 is a potential biomarker for diagnosis and 
prognosis and also an attractive drug target due to its 
low expression in normal tissues and high expression in 
ovarian tumors.

Using gain- and loss-of-function approaches through 
lentiviral vector-based gene editing and overexpression, 
we showed for the first time that EIF5A2 promotes EMT 
in ovarian cancer cells, suggesting that it may contrib-
ute to ovarian cell invasion and metastasis. In support 
of this hypothesis, we found that KO of EIF5A2 not only 
inhibited primary ovarian tumor growth and clono-
genicity but also ovarian tumor metastasis in orthotopic 
ovarian cancer mouse models (Figs. 7 and 8). Our find-
ing is consistent with previous studies reporting that 
EIF5A2 promoted EMT and contributed to cell inva-
sion, chemoresistance, and metastasis in several cancer 
types including HCC [39], colorectal cancer [15], bladder 

Fig. 7  Knockout of EIF5A2 using lentiviral CRISPR/Cas9 nickase vector suppressed primary ovarian tumor growth in an orthotopic ovarian mouse 
model. a Primary ovarian tumors at one month following intrabursal injection of EIF5A2 KO and control SKOV3 cells (n = 5). b Western blot and 
densitometry analysis of EIF5A2, p-Smad2 and EMT markers from primary tumor of mice xenografted with EIF5A2 KO and control cells C. Sections of 
primary ovarian tumors were stained with H&E. (*p < 0.05, **p < 0.01, ***p < 0.001)
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cancer [40], and OSCC [35]. Therefore, targeting EIF5A2 
may inhibit tumor metastasis and overcome chemoresist-
ance by reversing EMT in ovarian cancer cells. EIF5A2 
is the only known hypusinated protein and matures 
through processing by a hypusination pathway and via a 
rate -limiting first step by DHS required for EIF5A2 mat-
uration. A small molecular inhibitor of DHS, GC-7 has 
been used to disrupt the hypusination pathway. GC-7 has 
been shown to inhibit EMT in hepatocellular carcinoma 
[41], bladder cancer [40] and breast cancer [17]. We pro-
pose that inhibition of EIF5A2 maturation using GC-7 
may suppress tumor metastasis by reversing EMT [17, 
42]. Therefore, targeting EIF5A2 hypusination using DHS 
inhibitors might be a new approach for therapy of OC.

Although we showed that EIF5A2 promoted EMT 
in ovarian cancer cells, the molecular mechanisms by 
which EIF5A2 regulates EMT remains unclear. We pre-
viously showed that TGFβ promotes EMT in ovarian 
cancer [27]. Interestingly, we found that TGFβ induced 
EIF5A2 expression, whereas inhibition of TGFβR1/2 
using SB431542 or knockdown of TGFβR2 suppressed 

EIF5A2 expression. KO of EIF5A2 attenuated TGFβ 
pathway, while overexpressing EIF5A2 activated TGFβ 
pathways. Our studies indicated a positive feedback 
loop between EIF5A2 and the TGFβ pathway in ovar-
ian cancer cells. Previous studies also showed that 
EIF5A2 is involved in TGFβ pathway [40, 43]. However, 
EIF5A2 is negatively correlated with TGFβ signaling in 
anaplastic thyroid carcinoma [43]. In contrast, EIF5A2 
was correlated positively with TGFβ signaling in blad-
der cancer by stabilizing STAT3 binding to the TGFR1 
promoter [40]. EIF5A2 was also post-transcriptionally 
upregulated by hnRNPE1 through binding 3′ untrans-
lated region in a TGFβ-dependent manner in NMuMG 
cells [44]. Our studies indicate a positive feed-back 
loop between EIF5A2 and TGFβ signaling pathway, 
which may contribute to OC invasion and metasta-
sis by promoting EMT. However, it is still unclear how 
EIF5A2 interacts with TGFβ pathway. Based on the 
results of our luciferase reporter gene assay, it appears 
that SMAD2/3/4 may bind the promoter of EIF5A2 and 
activate EIF5A2 expression indicated by TGFβ-induced 

Fig. 8  Knockout of EIF5A2 using lentiviral CRISPR/Cas9 nickase vector suppressed ovarian tumor metastasis in an orthotopic ovarian mouse model. 
a Metastatic tumors in liver and spleen of mice xenografted with EIF5A2 KO and control (Con) cells. b Sections of metastatic tumors in liver and 
spleen were stained with H&E. Arrow indicates tumor area
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luciferase reporter expression in EIF5A2 expressing 
cells, but not the EIF5A2 KO cells (Fig. 6).

Conclusion
Our study demonstrated that EIF5A2 is highly expressed 
in ovarian HGSC and associated with patient poor sur-
vival. EIF5A2 promotes primary ovary tumor growth and 
metastasis by promoting EMT and activating the TGFβ 
pathway.
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