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Abstract 

Mitochondria are the powerhouse of a cell. The structure and function of mitochondria are precisely regulated by 
multiple signaling pathways. Neddylation, a post-translational modification, plays a crucial role in various cellular pro-
cesses including cellular metabolism via modulating the activity, function and subcellular localization of its substrates. 
Recently, accumulated data demonstrated that neddylation is involved in regulation of morphology, trafficking and 
function of mitochondria. Mechanistic elucidation of how mitochondria is modulated by neddylation would further 
our understanding of mitochondrial regulation to a new level. In this review, we first briefly introduce mitochondria, 
then neddylation cascade, and known protein substrates subjected to neddylation modification. Next, we summarize 
current available data of how neddylation enzymes, its substrates (including cullins/Cullin-RING E3 ligases and non-
cullins) and its inhibitor MLN4924 regulate the structure and function of mitochondria. Finally, we propose the future 
perspectives on this emerging and exciting field of mitochondrial research.
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Introduction
Mitochondria, the highly dynamic and semi-autonomous 
organelles wrapped with a double membrane, are deeply 
integrated into cellular signaling pathways and play the 
essential role in regulation of a variety of metabolisms 
such as energy production, calcium homeostasis, and 
reactive oxidative species (ROS) balance [1, 2]. Moreover, 
mitochondria regulate various essential cellular physi-
ological processes such as differentiation, cell pluripo-
tency and cell death [3]. Consequently, dysfunctional 
mitochondria have been observed in many pathological 
conditions including cancer, cardiovascular disorders, 
and metabolic diseases [4–7]. Thus, to maintain struc-
tural and functional integrity, and the well-being of a 
cell, mitochondria are subjected to fine regulations at the 

multiple levels under various physiological and patholog-
ical conditions [8–15].

Protein neddylation is an important posttranslational 
modification in eukaryotes. To date, neddylation modi-
fication has been well-established to tag the extremely 
well conserved neuronal precursor cell-expressed devel-
opmentally down-regulated protein8 (NEDD8) onto the 
substrates to modulate their function, subcellular locali-
zation, and activity [16]. Recently, a study also showed 
that NEDD8 conjugates to SRSF3 on lysine 11 for poly-
neddylation and subsequent proteasome-mediated deg-
radation [17]. Similar to ubiquitylation, NEDD8 is first 
activated in an ATP-dependent manner by one heter-
odimeric E1 NEDD8-activating enzyme (NAE, NAE1/
APPBP1 and NAEβ/UBA3), then transferred to one of 
the two NEDD8 conjugating enzymes (UBE2M/UBC12 
and UBE2F) through a trans-thiolation reaction, and 
finally conjugated to target substrates catalyzed by one of 
dozen E3 neddylation ligases [18] (Fig. 1a).

To date, the best-characterized neddylation sub-
strates are the cullin (CUL) family proteins, including 
CUL1, CUL2, CUL3, CUL4A, CUL4B, CUL5, CUL7, 
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and CUL9. Cullin is the scaffold component, which 
complexes with other components, including an adap-
tor, a substrate receptor and a RING component, to 
form Cullin-RING ligases (CRLs) [16] (Fig.  1b). The 
conjugation of NEDD8 to a cullin activates CRL E3 
ligase, the largest family of E3 ubiquitin ligases, which 
is responsible for the ubiquitylation of about 20% cellu-
lar proteins for targeted degradation through ubiquitin 
proteasome system (UPS) [19]. Therefore, neddylation 
precisely controls many biological processes through 
CRLs-mediated ubiquitylation and degradation upon 
neddylation activation [20, 21]. The overactivation of 
neddylation modification and abnormal expression 
of CRL components have been found in many human 
diseases, particularly human cancers [22]. MLN4924, 

also known as pevonedistat, binds to the active site of 
NAE catalytic subunit and forms a covalent NEDD8-
MLN4924 adduct, which resembles adenylated NEDD8, 
the first intermediate in the NAE reaction cycle, but 
cannot be further utilized in subsequent intraenzyme 
reactions [23]. Therefore, MLN4924 directly inhib-
its the entire neddylation modification and indirectly 
inhibits the CRLs [19] (Fig. 1a). As a result, MLN4924 
treatment triggers various cellular responses such as 
cell cycle arrest, apoptosis, senescence, autophagy as 
well as metabolic reprogramming [19, 24, 25]. Given 
that preclinical studies both in  vitro cell culture set-
tings and in vivo xenograft models showed potent anti-
tumor activity and well-tolerated toxicity, MLN4924 
has been advanced into several phase II clinical trials 

a b

Fig. 1  The process of neddylation modification. a Neddylation is a process that tags the ubiquitin-like small molecule NEDD8 onto its substrate 
through an enzymatic cascade involving NEDD8-activating enzyme E1, NEDD8-conjugating enzyme E2 and substrate-specific NEDD8 E3 ligases. 
MLN4924 is a NAE inhibitor that blocks the entire neddylation pathway. b Cullin-RING ligase, consisting of a scaffold cullin, a RING protein that binds 
to NEDD8-loaded E2, an adaptor, and a substrate receptor, promotes ubiquitylation and degradation of their substrates. N8, NEDD8
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for anticancer therapy as a single agent or in combina-
tion with chemotherapeutic drugs [22].

The neddylation has been implicated in various meta-
bolic processes, including adipogenesis, lipid droplet 
formation, and redox homeostasis [26–31]. Interestingly, 
emerging data revealed that mitochondrial functions are 
subjected to the regulation by neddylation and CRLs. 
More importantly, different approaches including mito-
chondria purification and confocal microscopy image 
analysis have shown that mitochondria contain various 
components of neddylation and CRLs, as well as non-cul-
lin substrates, providing molecular basis for such a regu-
lation [28, 32, 33].

Mitochondrial regulation by neddylation enzymes
NEDD8 activating enzyme (NAE)
UBA is the catalytic subunit of NAE [34], and a direct 
drug target of MLN4924 [19]. Our recent study showed 
that like MLN4924 (see below), UBA3 knockdown also 
markedly induces mitochondrial fission-to-fusion con-
version to form filamental mitochondria [35]. In addition, 
one study reported that UBA3 is involved in mitochon-
drial respiration, since UBA3-deficient neonatal primary 
hepatocytes manifest reduced basal and maximal respira-
tion, as compared to UBA3-sufficient ones [28].

NEDD8 conjugating enzymes
While there is no direct report to show that mitochon-
drial structure or function is subjected to regulation by 
neddylation E2s (Ube2M/UBC12 and Ube2F), our recent 
study found a negative cross-talk between UBE2M and 
UBE2F. Specifically, UBE2M complexes with Parkin-DJ1, 
an E3 localized in mitochondria under stressed con-
ditions to promote ubiquitylation and degradation of 
UBE2F [21]. However, the biochemical and biological sig-
nificances as to how this degradation impacts mitochon-
drial function remain elusive.

NEDD8 ligases
Two well-defined neddylation co-E3s, RBX1 and RBX2 
(also known as SAG for Sensitive to Apoptosis Gene) 
were found to regulate mitochondrial functions [36, 
37]. One study showed that upon mitochondrial dam-
age, RBX1 promotes ubiquitylation and degradation of 
Suppression of Sestrin 2 (SESN2) to trigger the genera-
tion of mitochondrial ROS, leading to cell death in neu-
roblastoma cells [38]. Another recent study showed that 
in mice hepatocytes with Drp1KO, Rbx1 is recruited to 
mitochondria in a p62-dependent manner to mediate 
mitochondrial ubiquitylation and subsequent mitophagy 
[32].

RBX2/SAG was originally cloned in our laboratory 
as a redox-inducible antioxidant protein [37], which 

scavenges oxidant at the expense of forming inter or intra 
molecular disulfide bond [39]. In mouse embryonic stem 
cells, Rbx2/Sag disruption increases the steady-state lev-
els of ROS after exposure to ionizing radiation, leading to 
radiosensitization via enhanced apoptosis [40].

c-CBL is another neddylation E3 [41]. It was reported 
that the activity of several enzymes involved in mitochon-
drial fat oxidation and the phosphorylation of acetyl CoA 
carboxylases are significantly increased in the muscle tis-
sues of c-Cbl deficient mice when fed with the high-fat 
diet [42]. However, the detailed underlying mechanism of 
c-CBL action is unknown, nor whether this is through its 
ubiquitylation or neddylation activity.

Collectively, very limited reports suggest that neddyla-
tion enzymes modulate mitochondrial structure and 
functions. Much more extensive studies with mechanistic 
elucidation are needed to firmly establish the notion that 
mitochondria are subjected to neddylation regulation via 
the enzymatic cascade.

Mitochondrial regulation by neddylation 
substrates and CRLs
Cullins
Cullins with eight family members are physiological 
substrates of neddylation [43]. Cullins are scaffold com-
ponent of the cullin-RING ligases (CRLs), which are the 
largest family of E3 ubiquitin ligases, consisting of four 
subunits: a cullin with 8 family members, adaptor pro-
teins with many members, substrate recognition recep-
tors with many members and the RING component with 
two family members (RBX1/RBX2) [44] (Fig.  1b). Inter-
estingly, RBX1/RBX2 serves as dual E3 for both ubiqui-
tylation and neddylation. Cullin neddylation is required 
for activation of CRLs [43], and accumulated data have 
shown that CRLs are actively involved in regulation of 
morphology, trafficking, functions, and the degradation 
of mitochondria (Table 1 and Fig. 2).

CRL1
CRL1, also known as SCF (SKP1-Cullin 1-F box pro-
tein), is the best studied founding member of CRLs. The 
F-box protein, the CRL substrate recognition subunit, 
consists of 69 members in mammalian cells, which are 
classified into FBXW, FBXL, and FBXO subfamilies [44, 
45]. In yeast, F-box protein Mdm30 was shown to tar-
get Fzo1 (an ortholog of mammalian mitofusion1/2) or 
Mdm34, two mitochondrial proteins for their turnover, 
leading to inhibition of mitochondrial fusion [46–48]. 
The mitochondrial dynamics is also regulated by Mfb1, 
another F-box protein, although its specific mitochon-
drial substrate(s) are yet to be identified [49].

In mammalian cells, our recent study showed that 
SCFβ−TrCP1 E3 ligase, located in mitochondria, targeted 
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MFN1 for ubiquitylation and degradation, and β-TrCP1 
knockdown induced mitochondrial fusion due to MFN1 
accumulation [35]. FBXW7 is well characterized F-box 
protein and its knockdown elevated the level of MITF, 
a lineage-specific master regulator of melanocytes to 
enhance mitochondrial transcriptional program and oxi-
dative phosphorylation [50]. Furthermore, a recent study 
showed that SKP2, another well-characterized F-box pro-
tein, regulated the stability of IDH1/2, the key TCA cycle 
enzymes, and SKP2 knockdown promoted the TCA cycle 
by reducing glycolysis [51]. Other studies revealed that 
FBXL7 and FBXL4 modulated mitochondrial morphol-
ogy and function through survivin and other uncharac-
terized substrates [52–56]. FBXO7 and FBXO11 (also 
characterized as a NEDD8 E3) were shown to regulate 
mitochondrial morphology and function, as well as mito-
chondrial elimination by modulating PARP activation, 
apoptosis, and mitophagy, respectively [57–59]. Finally, 
FBXO15 was found to modulate mitochondrial func-
tion through regulating the stability of CLS1 (cardiolipin 
synthase), an enzyme for generation of cardiolipin, a 
mitochondrial-specific lipid [60], while FBXO25 targeted 
mitochondrial HAX-1 for degradation to induce cellular 

apoptosis [61]. Thus, CRL1 regulates the structure and 
function of mitochondria at various aspects via modulat-
ing the stability of a variety of mitochondrial substrates.

CRL2
CRL2 is a complex of cullin-2, RBX1, adaptor protein 
Elongin B/C and substrate recognition receptor VHL-
box [62]. HIF1α is the best-known substrate of CRL2 
[63]. It was recently reported that pVHL up-regulated 
(a) CHCHD4, a key component of the disulphide relay 
system in mitochondrial protein import within the inter-
membrane space, and (b) respiratory chain subunits of 
complexes I and IV, leading to increased rate of oxygen 
consumption and alterations in glucose and glutamine 
metabolisms in renal cell carcinoma [64].

CRL3
CRL3 is composed of cullin-3, RBX1, and BTB-contain-
ing substrate receptors, such as Kelch-like ECH-associ-
ated protein Keap1 and Speckle Type POZ protein SPOP 
[44, 65]. Nrf2 is the best-characterized substrate of CRL3-
Keap1. In non-stress cells, Nrf2 is degraded by Keap1-
mediated UPS. The oxidative stress and electrophiles, 

Table 1  CRLs in regulation of mitochondrial functions

NR not reported

Category Substrate receptors Substrates Regulatory functions/biological consequences References

CRL1 Mdm30 (Yeast) Fzo1 Inhibits Mitochondrial fusion [46, 47]

Mdm34 Inhibits Mitochondrial fusion [48]

Mfb1 (Yeast) NR Inhibits Mitochondrial fusion [49]

β-TrCP1 MFN1 Inhibits Mitochondrial fusion [35]

FBXW7 MIFT Inhibits mitochondrial gene transcription and oxidative metabolism [50]

SKP2 IDH1 Inhibits tricarboxylic acid (TCA) cycle [51]

FBXL4 NR Inhibits mitochondrial morphology, mtDNA integrity, and OXPHOS [52–54, 56]

FBXL7 Survivin Inhibits mitochondrial morphology and membrane potential [55]

FBXO7 NR Inhibits mitophagy [59]

Decreases mitochondrial membrane potential, ATP production, and oxygen consump-
tion, increases cytosolic ROS production

[58]

FBXO11 NR Inhibits mitochondrial swelling [57]

FBXO15 CLS1 Inhibits mitochondrial function [60]

FBXO25 HAX-1 Induces apoptosis [61]

CRL2 pVHL HIF1α Increases the rate of oxygen consumption [64]

CRL3 Keap1 Nrf2 Promotes cellular oxidative stress and controls mitochondrial retrograde trafficking [66, 67]

SPOP INF2 Inhibits mitochondrial fission [68]

CRL4A CRBN NR Acts specifically as a Lon-type protease in mitochondria [70]

BNIP3L Inhibits mitophagy [71]

DCAF6 NR Maintain sarcomere structure and mitochondrial/ contractile function in cardiomyocytes [72]

CRL4B AhR NR Promotes mitochondrial biogenesis against oxidative damage [74]

Suppresses mitochondrial dysfunction and apoptosis induced by cigarette smoke [75]

CRL5 NR TRAF6 Binds with SARM1 and recruited to PINK1 complexes on depolarized mitochondria and 
facilitates Parkin-induced mitophagy

[79]

NR DEPTOR Suppresses mitochondrial respiration, mtDNA copy number, and citrate synthase activity [82]
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however, oxidize the cysteine residue in Keap1 to change 
its conformation, leading to blockage of NRF2 ubiqui-
tylation and degradation. As result, NRF2 translocates to 
nucleus and transactivates a series of antioxidant genes to 
scavenge the ROS as the cellular response to the oxida-
tive stress [66, 67]. SPOP, another well-known substrate 
recognizing component of CRL3, was found to interact 
with INF2 (inverted formin 2) and promote its atypical 
ubiquitylation, leading to inhibition of INF2 ER locali-
zation instead of degradation. The dissociation of INF2 
from ER reduced the formation of mitochondrial associ-
ated DRP1 puncta and abrogated mitochondrial fission. 
Biologically, INF2-mediated mitochondrial fission is 
involved in migration and invasion, the processes pro-
moted upon mutational inactivation of SPOP in human 
prostate cancer cells [68].

CRL4
CRL4 consists of cullin-4, RBX1, adaptor protein DDB1 
(UV-damaged DNA-binding protein 1), and substrate 
receptors DCAFs (DDB1-CUL4-associated factor). 

Cullin-4 has two family members cullin-4A and cullin-
4B, which share 82% sequence identity, but target differ-
ent sets of substrates [69]. Cereblon (CRBN), a Cul-4A 
substrate receptor, was partially localized within the 
mitochondrial matrix. Instead of targeting degradation 
of Cul-4A substrates, CRBN acted as a Lon protease to 
suppress neuronal cell death upon induced by oxida-
tive stress [70]. Moreover, CC-885, a novel thalidomide 
derivative that bridges the interaction between CRBN 
and its neosubstrate BNIP3L (also known as NIX), 
leading to ubiquitylation and degradation of BNIP3L 
to abrogate BNIP3L-dependent mitophagy [71]. Fur-
thermore, a recent study showed that muscle-specific 
deletion of DCAF6, another substrate receptor of Cul-
4A, resulted in reduced binding between Z-disc pro-
teins ACTN2 and Cap-Z as well as increased levels of 
mitochondrial ROS and impaired respiration/ATP pro-
duction in mouse hearts or cardiomyocytes isolated 
from these mice. The authors concluded that DCAF6 
deficiency contributes to the pathogenesis of limb-
girdle muscular dystrophy (LGMD) and heart failure, 
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Fig. 2  The modularity of Cullin-RING E3 ligases in mitochondria. Shown are the substrates of CRL1 (a), CRL2 (b), CRL3 (c), CRL4 (d), CRL5 (e) that are 
involved in the regulation of mitochondrial morphology and function
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although detailed molecular mechanism remains elu-
sive [72].

A direct evidence that CRL4B regulates mitochon-
drial function was shown by a Cul-4b knockout study. 
Cul-4b deletion in germ cells led to male infertility due 
to impaired sperm motility, partly caused by reduced 
mitochondrial activities including lower membrane 
potential and decreased ATP production. While the 
authors identified that Insl6, an insulin family member, 
is a novel substrate of Cul-4b in male germ cells, as pos-
sible mechanism, no functional rescue experiment was 
conducted to demonstrate that accumulation of Insl6 
is indeed the cause of infertility derived from impaired 
mitochondrial function [73]. In another study, Arylhy-
drocarbon Receptor (AhR), a substrate receptor subunit 
in the CUL4B-AhR complex [69] was reported to protect 
melanocytes from oxidative damage via a mechanism 
that involved the up-regulation of nuclear respiratory 
factor 1 (NRF1) and its downstream targets to increase 
mitochondrial DNA synthesis and ATP production [74]. 
Furthermore, in human lung fibroblasts, genetic ablation 
of AhR decreased mitochondrial membrane potential 
and increased mitochondrial ROS to trigger cytochrome 
c release and subsequent apoptotic cell death when 
exposed to oxidative stress induced by tobacco extracts. 
Mechanistically, AhR appears to act as an antioxidant, 
rather than an E3 ligase for substrate degradation [75].

CRL5
CRL5 consists of cullin-5, a RING finger protein RBX2, 
adaptor protein Elongin B/C, and SOCS-box contain-
ing receptor proteins [62]. Compared to many CRL5 
substrates for targeted degradation [76, 77], Cullin-5 
bound to TRAF6 and promoted its polyubiquitylation 
via K63 linkage in response to LPS exposure, which 
facilitated NF-κB activation to trigger inflammatory 
response [78]. Interestingly, on depolarized mitochon-
dria, TRAF6 was found to form a complex with PINK1 
and SARM1 to promote K63-linked ubiquitylation and 
stabilization of PINK1. As a result, parkin, a PINK1 part-
ner, was recruited to damaged mitochondria to facilitate 
mitophagy [79]. DEPTOR, a naturally occurring inhibi-
tor of both mTORC1 and mTORC2, has been identified 
as the substrate of both CRL1 (SCFβ−TrCP1) and CRL5, 
respectively [80, 81]. One study showed that knockdown 
of DEPTOR in cultured term primary human trophoblast 
(PHT) cells promoted mitochondrial respiration, mtDNA 
copy number, and citrate synthase activity with mecha-
nism involving activation of mTORC1 and mTORC2 [82].

The CRL7 and CRL9 were seldom studied family mem-
bers of CRLs, and no reports were found in their involve-
ment of mitochondrial regulation.

Taken together, the CRL regulation of mitochondria 
occurs by either promoting ubiquitylation and degradation 
of mitochondrial proteins or their regulators, or in a degra-
dation independent manner via modulating other key mol-
ecules that affect mitochondrial functions. The finding that 
CRLs play an important role in modulating mitochondrial 
network indeed broadens our understanding of how mito-
chondria is precisely regulated.

Non‑cullin substrates
The neddylation substrates can be broadly classified into 
two categories: commonly studied cullins and less studied 
non-cullin substrates. Two studies reported potential regu-
lation of non-cullin substrates in mitochondrial functions. 
A recent study showed that electron transfer flavoproteins 
(ETFs: ETFA and ETFB) were subjected to neddylation 
modification, which resulted in their stabilization by pre-
venting ubiquitylation and degradation in hepatocytes and 
also partially facilitated fatty acid β-oxidation in neonatal 
mice. In the same vein, the mutants of ETFA and ETFB 
with neddylation site abrogated had reduced protein levels 
or activities which contributed to the pathogenesis of glu-
taric aciduria type II (GA-II). Furthermore, ETFA knock-
down led to substantially decreased basal and maximal 
respiration [28].

The second study showed that HIF-1α and HIF-2α are 
subjected to neddylation modification, which led to their 
stabilization in a manner independent of prolyl hydroxy-
lase (PHD)/VHL oxygen-sensing system, but dependent on 
mitochondria-generated ROS, although the biological con-
sequence of such stabilization was not determined [83].

Furthermore, some non-cullin substrates were found 
to regulate mitochondrial function, but whether this is 
related to neddylation modification is unclear. For exam-
ple, in response to various DNA damaging agents, p53, a 
non-cullin substrate of neddylation, was translocated to 
mitochondria to regulate apoptosis [84, 85]. Although p53 
neddylation mediated by MDM2 or SCFFBXO11 inhibited 
its transcription activity [86, 87], whether its neddylation 
modification impacts mitochondrial functions remains 
unclear. One more case is Parkin, an E3 ubiquitin ligase, 
that promotes ubiquitylation and degradation of MFN1/2 
to trigger mitophagy [88]. While Parkin is subjected to 
neddylation modification, which activated its ligase activity, 
but not altering its subcellular localization [89], there is no 
direct biological evidence to show that Parkin neddylation 
indeed enhanced mitophagy.

Neddylation inhibitor MLN4924 alters 
mitochondrial morphology and function
Cellular ROS is mainly generated in mitochondrial pow-
erhouse. Abnormal ROS overproduction due to impaired 
mitochondria alone or in combination with defective 



Page 7 of 12Zhou et al. Cell Biosci           (2021) 11:55 	

antioxidative scavenger systems contributes significantly 
to the damages to cellular DNA, proteins, and lipids, 
leading to tumorigenesis [90]. MLN4924 (also known 
as pevonedistat in the clinical trials), a small molecu-
lar inhibitor of catalytic subunit of NEDD8 activating 
enzyme, blocks the entire neddylation modification and 
consequently inactivates all CRLs [19]. Given overac-
tivation of neddylation system and CRLs in a variety of 
human cancers, MLN4924 has been shown impressive 
anti-cancer activity in many preclinical studies and had 
advanced to few Phase II clinical trials as an anticancer 
agent alone or in combination with various chemothera-
peutic drugs [22].

Several studies including from our own laboratory 
showed that MLN4924 regulates mitochondrial ROS 
production and other mitochondrial functions. In acute 
myeloid leukemia cells, MLN4924 inactivated CRL1/
SCF to inhibit NF-κB via accumulated IκB, leading to 
increased ROS generation due to downregulation of 
Mn-SOD (superoxide dismutase), a typical NF-κB down-
stream gene and a major antioxidant enzyme to scavenge 
ROS. Thus, MLN4924-induced disruption of cellular 
redox status was identified as a key event in apoptosis 
induction [19, 30]. Moreover, other two studies reported 
that MLN4924 induced ROS generation by impair-
ing mitochondrial membrane potential in both ovarian 
and live cancer cell lines to cause apoptosis through the 
upregulation of pro-apoptotic proteins, including PUMA, 
BIK, NOXA and BIM. Among these proteins, NOXA and 
BIK were identified as important downstream effectors 
for apoptosis induced by MLN4924/CQ and MLN4924/
cisplatin combination, respectively. Importantly, the ROS 
scavenger reduced the expression of these pro-apoptotic 
proteins and attenuated apoptosis, indicating the causal 
effect of ROS [31, 91].

Recently, we found that MLN4924 induced mitochon-
drial fission-to-fusion conversion in time-and dose-
dependent manners in a variety of human cancer cell 
lines. Mechanistic studies revealed that MLN4924 inac-
tivated SCFβ−TrCP E3 ligase to cause accumulation of 
MFN1 [35], which is a protein previously known to trig-
ger the fission-to-fusion conversion [92]. MLN4924 also 
reduced the level of phospho-DRP1S616 in mitochondria 
to increase cytoplasmic DRP1 content. The mitochon-
drial functional assays showed that MLN4924 inhibited 
TCA cycle but promoted both the basal and maximal 
oxygen consumption rate (OCR), while reducing the 
intracellular ATP production. MLN4924 also caused 
mitochondrial depolarization and increased mitochon-
drial ROS levels as well as mtDNA copy number. Since 
MLN4924-induced mitochondrial fusion was coupled 
with increased oxidative phosphorylation (OXPHOS), 
we then tested translational implication of this finding 

by combined treatment of MLN4924 with metformin, 
an inhibitor of mitochondrial complex I, to determine 
possible enhanced anticancer efficiency in breast cancer 
cells. The results indeed showed a synergistic effect both 
in  vitro cell culture and in  vivo xenograft models [35]. 
Thus, our strategy of inhibiting both neddylation modi-
fication and OXPHOS provides new avenues for targeted 
therapy in some types of tumor such as breast cancer. 
It is interesting to mention that MLN4924 effect on 
OXPHOS appears to be cell-type dependent. Two other 
studies showed that MLN4924 decreased both basal and 
maximal OCR in liver cancer cell line and mouse hepato-
cytes [28, 93]. Taken together, MLN4924 induces mito-
chondrial fission-to-fusion conversion, mitochondrial 
copy number, oxygen consumption and ROS produc-
tion, but inhibits mitochondrial membrane potential and 
ATP production (Fig. 3). MLN4924 may, therefore, have 
unique application against human cancers with dysfunc-
tional mitochondria.

Conclusion and future perspectives
In this review, we summarized neddylation regulation of 
mitochondrial morphology and functions with poten-
tial anticancer application. The fact that several com-
ponents and substrates of neddylation/CRLs, including 
NEDD8, UBA3, RBX1, FBXL4 and β-TrCP1, were found 
in mitochondria [28, 35, 54] provides the physical basis 
on neddylation regulation of mitochondria. The regula-
tion is likely achieved via altered protein activity after 
neddylation modification or possible targeted degrada-
tion of mitochondrial substrates of CRLs. Nevertheless, 
neddylation regulation of mitochondria is still an emerg-
ing field in the broad area of mitochondria research with 
many unanswered questions. We propose the follow-
ing aspects as future perspectives for this exciting field 
(Fig. 4).

Identification of mitochondrial CRL substrates?
Mitochondrial proteins are subjected to degradation by 
both UPS and proteases. It is generally accepted that 
the UPS is involved in degradation of the outer mem-
brane proteins, whereas the proteases are responsi-
ble for the cleavage and degradation of the proteins of 
inner mitochondrial compartments [94], although the 
UPS was also reported to be involved in the degrada-
tion of some cysteine-rich proteins in the intermem-
brane space (e.g. yeast Cox12), the uncoupling protein 
in the inner membrane, and a subunit of succinate 
dehydrogenase in the matrix [10, 94]. Several compo-
nents of neddylation and CRLs were found in the mito-
chondria [28, 35, 54]. An open question is whether they 
actually assembly the active CRLs to promote the ubiq-
uitylation of mitochondrial proteins for degradation 
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via the UPS which is mainly localized outside the mito-
chondria? Given that few mitochondrial proteins were 
reported as the substrates of CRL, such as MFN1 by 
SCFβ−TrCP [35] and HAX-1 by SCFFBXO25 [61], and a 
comprehensive quantitative diGly proteomics analysis 
identified ~ 150 mitochondria proteins [95], it is likely 
that some mitochondrial proteins are indeed the sub-
strates of CRLs. Here we propose that a similar analysis 
could be performed using HEK293 cells with knocked-
in ubiquitin tagged with a mitochondrial signal peptide 
at the N-terminus, followed by mitochondrial purifica-
tion and diGly proteomics. The approach will validate 
previous candidates with identification of additional 
putative mitochondrial substrates of CRLs for further 
confirmation and functional characterization.

Identification of neddylated mitochondrial proteins
Only one study reporting that mitochondrial protein 
parkin is subjected to neddylation modification which 
increased its E3 ligase activity [89]. To identify almost, 
if not all, mitochondrial proteins subjected to ned-
dylation modification at the whole mitochondria level, 
an approach similar to serial NEDD8-ubiquitin sub-
strate profiling (sNUSP), reported recently [20] can be 
employed. Specifically, the approach includes the estab-
lishment of a knock-in HEK293 cell line of NEDD8 
R74K mutant tagged with a mitochondrial signal pep-
tide at the N-terminus for mitochondria targeting, 
followed by mitochondrial isolation, Lys-C digestion, 
K-εGG-peptide enrichment, and finally Mass Spec-
trometry analysis to identify neddylated mitochon-
drial proteins. The specificity can be determined by 
including a MLN4924-treatment control group. Each 
validated candidate can be further characterized for 
functional significance of neddylation modification.

Identification of mitochondrial proteins that bind 
to neddylation enzymes
To mechanistically elucidate neddylation regulation 
of mitochondrial function, it should be meaningful to 
isolate mitochondrial proteins that bind to any of ned-
dylation enzymes. Again, a given neddylation enzyme 
expression construct can be made with the N-terminal 
tag of mitochondrial signal peptide and the C-terminal 
FLAG-tag for affinity purification. The construct can 
then be knocked-in to HEK293 cells, and selected sta-
ble clone to be used for routine affinity purification and 
mass spectrometry, followed by validation of the can-
didates in an individual basis and biological effect on 
mitochondrial function determined.

Characterization of mitochondrial metabolic pathways 
altered by MLN4924
We recently performed Mass-Spectrometry-based meta-
bolic profiling of breast cancer cells to investigate the 
overall effect of MLN4924 on cell metabolism at a global 
level, and found that MLN4924 treatment caused sig-
nificant increase or decrease of many metabolites in cell 
extracts [35]. Similarly, integrated liquid chromatogra-
phy-tandem mass spectrometry (LC–MS/MS) analysis 
of metabolites and mass spectrometry-based proteomic 
analysis of proteins should be performed using isolated 
mitochondria upon overall neddylation inhibition (by 
MLN4924) or manipulation of each individual cullins 
to define specifically the effect of neddylation/CRLs on 
mitochondrial metabolism.

The cross‑talk between tumor metabolism and tumor 
microenvironment: involvement of mitochondrial 
neddylation?
Increasing amount of data has shown that neddyla-
tion can modulate both tumor metabolism and tumor 
microenvironment [18, 35]. Whether and how mito-
chondria are involved in this cross-talk upon regulation 
by neddylation/CRLs is an interesting topic for future 
investigation. As an initial step, mitochondrial proteom-
ics could be performed under the conditions in which 
tumor metabolism and tumor microenvironment are 
altered upon MLN4924 treatment to determine potential 
involvement of mitochondrial neddylation.
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