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Abstract 

MicroRNA-derived structures play impressive roles in various biological processes. So dysregulation of miRNAs can 
lead to different human diseases. Recent studies have extended our comprehension of the control of miRNA func-
tion and features. Here, we overview some remarkable miRNA properties that have potential implications for the 
miRNA functions, including different variants of a miRNA called isomiRs, miRNA arm selection/arm switching, and the 
effect of these factors on miRNA target selection. Besides, we review some aspects of miRNA interactions such as the 
interaction between epigenetics and miRNA (different miRNAs and their related processing enzymes are epigeneti-
cally regulated by multiple DNA methylation enzymes. moreover, DNA methylation could be controlled by diverse 
mechanisms related to miRNAs), direct and indirect crosstalk between miRNA and lnc (Long Non-Coding) RNAs as a 
further approach to conduct intercellular regulation called “competing endogenous RNA” (ceRNA) that is involved in 
the pathogenesis of different diseases, and the interaction of miRNA activities and some Xeno-infectious (virus/bac-
teria/parasite) factors, which result in modulation of the pathogenesis of infections. This review provides some related 
studies to a better understanding of miRNA involvement mechanisms and overcoming the complexity of related 
diseases that may be applicable and useful to prognostic, diagnostic, therapeutic purposes and personalized medi-
cine in the future.
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Introduction
MicroRNAs (miRNAs) with 18–25 nucleotides are highly 
conserved non-coding (NC) RNAs that can be found in 
C. elegans to homo sapience and can play vital roles in 
the regulation of gene expression [1, 2]. The locations of 
human miRNAs are almost in intergenic and intragenic 
or intronic regions of the genome [3]. The maturation 
of miRNAs is done by Drosha and Dicer as RNase III 
enzyme, from the nucleus to the cytoplasm of cells [4]. 
Then, these miRNAs are associated with Argonaute (Ago) 

protein to produce the effector RNA-induced silencing 
complex (RISC) and contribute to the RISC complex to 
scan the related targets [5]. The unique and important 
role of miRNAs refers to post-transcriptional regula-
tion by endonucleotide cleavage or inhibition of mRNA 
translation through the formation of miRNA- induced 
silencing complex (miRISC) on target sites in the 3′ 
untranslated region (UTR) of mRNAs [6]. Each miRNA 
can target multi mRNAs. Moreover, each transcript can 
be targeted by various miRNAs simultaneously. Although 
the role of miRNAs in ongoing biological processes, 
including apoptosis, metabolism, differentiation [7, 8], 
signal transduction [9], and other normal function of 
the cell has been demonstrated by numerous studies, 
their dysregulation leads to disruption of mRNA expres-
sion profiling in various disease processes [10, 11], organ 
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transplant rejection [12], rheumatoid arthritis [13], car-
diovascular diseases [14], diabetes [15], etc., particu-
larly cancer development [16] and viral infections [17]. 
It makes miRNAs potential targets for cancer therapies, 
prognostic biomarkers, or diagnostic signs in diverse 
diseases.

MiRNAs have several distinct features compared to 
other functional RNA species. In this regard, diverse 
variants of a miRNA’s so-called isomiRs can affect the 
miRNA target selection. They are complex property of 
miRNAs that play functional roles in some diseases such 
as lipid homeostasis [18], Alzheimer’s disease [19], and 
different cancers [20]. Also, the next-generation sequenc-
ing (NGS) studies have shown that isomiRs circulate in 
the bloodstream with high stability similar to mature 
miRNA. Thus they might act as novel biomarkers along 
with miRNAs for malignancies [21]. Arm selection and 
arm switching are the other remarkable properties of 
miRNAs. which impact on miRNA function and their 
imbalance has been considered by many scientists as a 
significant issue in finding the cause of diseases such as 
cancer [22, 23]. It is important that although two arms 
of pre-miRNA (5p and 3p) are relatively complementary 
[24], each arm includes various related isomiRs that the 
functional arm involves target detection based on their 
affinity to RISC complex [25].

Regulation of miRNA expression through molecular 
epigenetic mechanisms is another important subject in 
the field of miRNAs and pathogenesis. DNA methyla-
tion of miRNA locus and miRNA processing genes leads 
to the regulation of their expression. On the other hand, 
multiple miRNAs can target and control the methylation-
related enzymes and factors to affect epigenetics event. 
Aberrant expression of miRNA mediated by epigenetics 
and aberrant activity of DNA methylation enzymes medi-
ated by miRNA are important in the pathogeneses of dis-
eases [26]. It can provide a strategy for early diagnosis 
and treatment of cancer in vitro and in vivo [27]. Addi-
tionally, the interaction between miRNA and lnc-RNAs 
as competing endogenous RNA control miRNA-mRNA 
binding and have therapeutic importance in cancer [28].

Valuable studies confirmed that there is a significant 
correlation between miRNAs and some infectious factors 
and agents; therefore, it can affect the progress or regress 
of these diseases [29–31]. There are applicable issues 
mentioned above to plan future direction in controlling 
diseases. In this review, we first provide a brief over-
view of some miRNA properties from variation in their 
sequence (isomiR) to regulation of miRNA arm selec-
tion/switching and the effect of some factors on these 
two features. We then collected some evidence about the 
relationship between miRNA and epigenetics, long non-
coding RNAs, and Xeno-infectious factors. Altogether, 

the regulation of miRNA function mediated by these fac-
tors is an important issue; therefore, it can provide new 
insight into the etiology of diseases and their treatment.

miRNA properties
The miRNA sequences and their maturation had been 
conserved from primary to higher eukaryotes. The pri-
mary transcript of miRNAs (≤ 100 bp) is processed using 
a two-step mechanism with two RNase III enzymes in 
the nucleus and cytoplasm. Firstly, Drosha in collabora-
tion with DiGeorge syndrome critical region 8 (DGCR8) 
accessory protein as a microprocessor complex binds 
to double-stranded miRNA and cleaves it to the gener-
ate pre-miRNA (~70  bp) [32]. After transmission of 
pre-miRNA to the cytoplasm using the Exportin-5 and 
Ran-GTP complex, the subsequential processing of 
miRNA is done by Dicer as the second RNase III and 
generates the matured double-strand miRNA (20–23 bp). 
RISC-loading complex includes double-stranded RNA, 
Dicer, the trans-activating response RNA-binding protein 
(TRBP), and Argonaut 2 that is essential for activation of 
RISC complex to follow related mRNAs using suitable 
single-stranded miRNA as guide RNA [33]. The discov-
ery of the frequency of miRNAs in various multicellu-
lar species raised intriguing questions, including what 
these molecules may do in the cell. The key response is 
to find their mRNA targets. In other words, highly con-
served miRNAs have extremely conserved targets. In the 
miRNA, there are several interaction sites with target 
mRNAs to direct post-transcriptional repression. Many 
sites that match the miRNA seed region (nucleotides 
2–7), particularly those in 3′UTRs, are preferentially con-
served. Four types of these sites are 6mer site, which per-
fectly matches the 6-nt miRNA seed, 7mer-m8 site that 
involves the seed match complete by a Watson–Crick 
match to miRNA nucleotide 8, 7mer-A1 site, which con-
tains the seed match supplemented by an A across from 
miRNA nucleotide 1, and 8mer site, which includes the 
seed match supplemented by both m8 and the A [34]. 
Furthermore, experiments using artificial sites show that 
targeting can also occur in 5′ UTRs, especially in open 
reading frames (ORFs) [35].

In silico study of miRNAs, like the other members of 
the genome, requires databases. Recently, five criteria 
databases have been developed. At first, miRBase was 
developed, which provided nomenclature for newly dis-
covered miRNA genes, thereby making available the 
annotation and sequences of all published miRNAs from 
various organisms to researchers [36]. MirGeneDB 2.0 is 
a manually created metazoan miRNA gene database that 
has a more complementary nomenclature system than 
MiRBase. Also, it contains previously overlooked miR-
NAs and seven organisms that are not currently listed in 
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miRBase. However, it contains fewer entries than miR-
Base [37]. MiRCarta is another miRNA database, which 
provides collection of validated novel human miRNAs 
and enhances the information provided by miRBase. 
In fact, miRCarta illustrate a more inclusive compan-
ion to manually created resources such as MirGeneDB 
[38]. Also, miRTarBase (http://miRTa rBase .mbc.nctu.
edu.tw/), miRDB (http://mirdb .org), miR-EdiTar (http://
micro rna.osumc .edu/mired itar), TransmiR v2.0 (http://
www.cuila b.cn/trans mir), miRandb (http://miran db.ir), 
HMDD v3.0 (http://www.cuila b.cn/hmdd), and Immune-
miR (http://www.biomi ningb u.org/immun emir/) are the 
other important databases in the field of miRNA.

miRNA isomiRs
Mature miRNAs consist of various variants that are 
diverse in length and/or sequence so-called isomiRs [39]. 
For the first time, isomiRs of miRNAs were determined 
by RNA-Seq approaches and it has been observed that 
any miRNA has different isomiRs with multiple copy 
numbers. IsomiRs are classified into three main types, 
including 3′, 5′ and polymorphic isomiRs with different 
nucleotide sequences compared with canonical miRNA 
(Fig.  1) in which 3′ isomiRs are most common in ani-
mals and plants [40–42] (Fig. 1a). Both 5′ and 3′ isomiRs 

are divided into homogenous (template) and or hetero-
geneous (non-template) variants. Polymorphic isomiRs 
are known as non-template sequences. The difference 
between these variants is attributed to their sequence 
that is match or non-match with the genome (parent 
gene) [41].

There are some mechanisms to generate these vari-
ous isomiRs. Processing heterogeneity as the main pro-
cess is involved in the generation of 5′ and or 3′ template 
isomiRs, provided by Drosha and or Dicer imprecise 
cleavage in the 5′ and or 3′ ends. A further mechanism 
is nucleotide trimming mediated by some exoribonucle-
ases or some nucleotidyltransferases that are less com-
mon for the generation of template isomiRs in animals, 
bacteria, humans, and others. The mentioned mecha-
nisms are common in 3′ end rather than 5′. Addition-
ally, post-transcriptional enzymatic processes that made 
non-template isomiRs are comprised of (1) nucleotide 
addition by ribonucleotidyl transferase mainly uridyl-
transferase and adenyltransferase [43, 44], (2) nucleo-
tide removal, which these two changes often occur in 3′ 
isomiRs, (3) adenosine (A) to inosine (I) RNA editing by 
the double-stranded RNA-specific adenosine deaminase 
(ADR) enzyme that is the most prevalent RNA-editing 
enzyme in isomiRs. RNA editing may occur in the seed 

Fig. 1 MiRNA properties. a IsomiRs as miRNA variants are categorized into three main types, including 3′ isomiR, 5′ isomiR, and polymorphic isomiR 
that they can affect a miRNA at the target level to select different mRNA (b) Arm selection is a feature of miRNA that can affect target selection of 
miRNA by isomiRs and it can occur in three common steps, including (d) 5p arms of a miRNA duplex selected as a guide strand to incorporates into 
the RISC complex., (e) 3p arms of a miRNA duplex may be selected as a guide strand to incorporates into the RISC complex., and (f) occasionally, 
two arms of a miRNA duplex can be used as guide RNA and incorporate into the RISC complexes with different target mRNAs. Note: the guide 
strand of a miRNA has weaker binding to Ago protein. However, the passenger strand has a tighter binding capacity to Ago protein. c Arm selection 
of a miRNA can be changed in different conditions that it termed as arm switching
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region of 5′ end, in the 3′ end nucleotides or internal 
nucleotides and generate 5′, 3′ and polymorphic isomiRs, 
respectively. This mechanism is the major process in the 
generation of polymorphic isomiRs [41, 45]. According to 
different pieces of evidence, all of the generated modifi-
cations could affect different functions of a miRNA such 
as a target selection, efficiency to target in RISC complex, 
diversity, stability, and half-life of miRNA [46–51].

Based on isomiR profiling, the isomiR variation of a 
miRNA is related to cells and tissue types [52]. Also, 
they are associated with the individual’s gender, popu-
lation origin, and race that all of them dependent on a 
dynamic and regulated maturation process that origi-
nated from the response to various biological inductions 
[53, 54]. More recent studies demonstrated that specially 
derived isomiRs could be applied as more effective prog-
nostic and diagnostic biomarkers in various cancers and 
related subtypes, thus they can differentiate healthy and 
non-healthy individuals. For example, isomiR-140-3p is 
confirmed in the prevention of triple-negative subtype of 
breast cancer and there are ongoing studies regarding the 
prediction of further disease [55]. Also, different isomiRs 
of miR-222 could play distinct roles, as a result, it may 
be used as a biomarker in breast cancer cells and other 
tumors [57]. These observations further support the fact 
that diverse isomiRs from the same mature miRNA can 
target practically non-overlapping collection of tran-
scripts. Accordingly, so far, some reliable approaches 
have developed with high sensitivity to the detection of 
isomiRs that could facilitate this detection. One of the 
novel applications is Quagmire with a flexible search-
ing algorithm that analyzes heterogeneous isomiRs from 
next-generation sequencing data and identifies differ-
ent isomiRs [58]. Recently, Comprehensive Approach to 
Sequence-oriented isomiR annotation (CASMIR) data-
base that facilitates precise interpretation of isomiR fea-
tures in small RNA sequencing data among species and 
miRDeep2, which is a favorite algorithm of miRNA anal-
ysis to accredit isomiR interpretation by CASMIR, are 
two ways of analysis of isomiRs [59].

Several tools have been developed to analyze miRNAs 
and their respective isomiRs that these are different in 
their abundance cut-offs, isomiR annotation methods, 
ways to handle cross-mapping events, or alignment strat-
egies. A number of bioinformatics tools only can analyze 
and detect isomiRs without their functional annotation, 
including CPSS, IsomiRex, MODOMICS, MiRGator 
v3.0, and SeqBuster. In the meantime, SeqBuster is a reli-
able, more flexible and highly versatile web-based toolkit 
due to overcoming storage capacity limitations through 
providing a stand-alone version that can permit the 
annotation against any custom database [60–64]. Up to 
now, SeqBuster, miRspring, isomiRex, YM500v2, YM500, 

RNASEQR, and miRGator v3.0 as isomiR databases have 
been used to diagnose cancer [65]. IsomiR-SEA as a novel 
tool based on RNA-Seq analysis can accurately detect 
miRNAs/isomiRs expression level profiling and evaluate 
conserved miRNA-mRNA interaction sites [66]. SRNA-
bench is the other high-throughput analytic tool for 
profiling of miRNAsʼ isomiRs in one or simultaneously 
multiple species [67]. MiRge 2.0 is a tool, which widely 
analyzes miRNA sequencing data and exclusively cap-
tures the potential miRNAs by using both composition 
of isomiRs and miRNA hairpin sequence structure [68]. 
The software PRocessing Of Short Transcripts (Prost), 
helps quantify mature miRNAs that accounts for post-
transcriptional processing such as nucleotide editing 
and identifies mirror-miRNAs [69]. Additionally, there 
are some other platforms or software to study miRNA/
isomiR such as miR-isomiRExp, miRWalk2.0, DIANA 
miRPath v.2.0, mirBridge, GeneSet2miRNA, miRror2.0, 
and C2Analyzer [70].

Recently, an optimized miRNA analysis project called 
miRNA Transcriptomic Open Project (miRTOP) has 
been designed. The purpose of miRTOP is to develop the 
downstream isomiR analysis tools that are compatible 
with available quantification and detection tools. Also, 
it solves the lack of consensus between related tools and 
allows any tool to convert results into mirGFF3 format as 
a standardized output format for miRNAs/isomiR ana-
lyzing [71].

Arm selection and arm switching of miRNAs
Before scanning and selecting the target by miRNA, 
there are two steps that add complexity and specificity to 
its roles. One of them is “arm selection” as a highly con-
trolled process. In this regard, each miRNA is formed 
from 3 and 5p arms of precursor miRNA (pre-miRNA). 
Although the derived 3p and 5p arms of miRNA are 
mostly complementary and derived from the same tran-
script, they result in different isomiR expression profiles 
and patterns under different situations; for example, 
each 5p and 3p arms could participate in various RISC 
complexes as guide strands or one of the involved arms 
is degraded as a passenger RNA in the RISC com-
plex (Fig.  1b) [25, 72–74]. Therefore, some factors can 
be involved in guide strand selection of RISC, includ-
ing lower thermodynamic stability at the 5′end and its 
weaker binding of 5′ end of a strand to the AGO2 protein 
to direct specific RISC toward the target gene. It seems 
AGO2 protein plays a major role in this process [75, 76]. 
Additionally, any post-transcriptional modifications on 
the 5′- or 3′-end of each strand of miR duplex can con-
siderably affect arm selection [41, 77–79]. Also, the fre-
quency of isomiRs can be important in involving the 
selected arm. For example, a study showed that affluence 
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of miR-140-3p isomiRs, compared with miR-140-5p, 
leads to the formation of a novel seed region in 3p arm, 
which is more functional than the original consensus one 
to detect targets in human cartilage cells [80].

Furthermore, some other factors can determine guide 
RNA selection, such as U/C base at the 5′-end of a strand 
and an excess of purines/pyrimidines in guide RNA [81] 
that are directly or indirectly derived from different 
expression levels of protein activator of dsRNA-depend-
ent protein kinase (PACT), DICER, TRBP and 5′-3′ exo-
ribonuclease (Xrn)-1/2 in various cells and tissue types 
[82, 83] as well as the abundance of target’s copy numbers 
may contribute to arm preference [84]. Another aspect 
of miRNA is related to miRNA’s biological ability to 
switch strand preference called “arm switching” (Fig. 1c). 
The loaded arms of RISC are related to the frequency of 
them. Arm switching events are different at various dif-
ferentiation states, various cells and tissue types (such as 
a variety of species and gender) possibly due to alterna-
tive Dicer cleavage or Drosha processing [85–87]. Thus, 
arm switching is a mechanism that plays vital roles in the 
evolution of miRNA gene functions under different con-
ditions in mRNA targeting [25, 88, 89].

Accordingly, some reports showed that both arms of 
a miRNA can conduct distinct targets and play different 
roles in cancer. For instance, both miR-193a-3p and miR-
193a-5p expression decrease in gastric cancer cells and 
their ectopic expression show that miR-193a-5p inhib-
ited these cells’ growth, but only miR-193a-3p remark-
ably repressed cell invasion via directly targeting ETS1 
and CCND1 expression [90]. Furthermore, miR-324-3p 
and -5p were significantly overexpressed in lung cancer 
cells, so their ectopic expressions have different effects 
on lung cancer cell line and the overexpression of miR-
324-3p only enhance cell proliferation but did not alter 
the invasion of these cells, while miR-324-5p significantly 
promoted both cell invasion and proliferation[92]. Alto-
gether, the arm selection and/or arm switching have 
key functions in the regulation of isomiRome and miR-
NAome profiles and lead to changes in isomiR/miRNA 
expression profiles to evolutionary and/or functional 
pressures. Also, these results suggest that miRNAs arm 
switching and or arm selection could be the other essen-
tial mechanism of miRNA variation and applicable bio-
markers in various diseases such as cancers.

Crosslinking between DNA methylation and miRNAs
DNAmethylation is a dynamic and reversible event that 
its status depends on the regulation of such involved 
enzymes through further factors. Accordingly, such doc-
uments demonstrated that miRNAs could target and con-
trol the mentioned enzymes. Moreover, various miRNAs 
located in CpG islands and shores could be controlled 

epigenetically. Although DNA methylation could impact 
the expression of miRNAs via their promoter region, it 
can regulate the expression of miRNA processing-related 
enzymes [57, 92–94]. Therefore, DNA methylation 
affects both miRNAs and processing related enzymes. 
Some miRNAs such as miR-29 family (29a, 29b, and 29c) 
could target directly and indirectly DNA methylation-
related enzymes such as TETs and DNMTs, and histone-
modifying enzymes; for example, histone deacetylase 4 
(HDAC4) and histone methyltransferase SET domain 
bifurcated 1 (SETDB1) are impaired in various cancer 
e.g., lung cancer, breast cancer, hepatocellular cancer, etc. 
[95–102]. Additionally, a study indicated that as miR-29 
could control the other miRNAs expression such as miR-
34c and miR-449a by targeting DNMT3a and 3b [103]. 
Other studies established that miR-29b modulated the 
global DNA methylation through targeting DNMT3A 
and DNMT1, leading to decreased transcription fac-
tor specificity protein 1 (SP1) and increased p21 expres-
sion in chronic lymphocytic leukemia (CLL) cells [104]. 
MeCP2 is one of the other target genes for miRNA-29a as 
an epigenetic mediator. Overexpression of MiR-29a leads 
to a decrease in the Bromo domain-containing protein 4 
(BRD4) signaling and zinc finger protein SNAI1 expres-
sion and downregulated methyl-CpG-binding protein 2 
(MeCP2) in mouse hepatic stellate cells (HSCs) [105]. It 
seems the miR-29 family plays a vital role in the modu-
lation of epigenetic phenomenon compared with other 
associated miRNAs.

One research declared that co-transfection and over-
expression of miR-339 and miR-766 lead to inhibition of 
DNMT3b upregulation in colon cancer. Subsequently, 
it results in reactivating the expression of such tumor 
suppressor genes SFRP1, SFRP2, DKK2 and WIF1 in 
these cells [106]. MiR-221 is another miRNA involved in 
DNMT3b targeting, which can elevate the cancer stem 
cell properties such as Oct3/4 and Nanog through down-
regulation of DNMT3b in breast cancer cell lines [107]. 
According to a study, both mir-148b and mir-152 can 
reactivate some tumor suppressor genes such as SPARC 
and BNIP3 by targeting DNMT-1, thereby resulting in 
modification of methylation status of the mentioned 
tumor suppressor genes and reducing tumorigenic prop-
erties in pancreatic cancer cell lines [108].

To the best of our knowledge, there are two studies on 
miRNA-140 and methylation regulation. Accordingly, 
miR-140, as a tumor suppressor, controls NF-κB activity 
by direct targeting Dnmt1 and conducting hypometh-
ylation and overexpression of metallothionein genes 
to indirectly enhance NF-κB activity in a liver cell line 
[109]. The second one shows that miR-140-5p can regu-
late  CD4+ T cell differentiation through demethylation of 
GATA3 and hypermethylation of STAT1. In addition, it 
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is involved in the tricarboxylic acid (TCA) cycle by the 
regulation of methylation status of mediated transcrip-
tion factors that may be associated with TET2 activities. 
Therefore, mir-140 probably performs its epigenetic roles 
by controlling both Dnmt1 and TET2 [110]. Based on 
in vitro and in vivo experiments, there are downregulated 
and upregulated miRNAs such as miR-212, miR-373, 
miR-638, miR-106a, miR-221/222, miR-19a/b, miR-132, 
miR-7b, miR-130a, miR-22, miR-483-5p and miR-218 
that may control the expression level of Methyl-CpG-
binding protein MECP2 as a reader of DNA methylation 
[111–115117–124]. Furthermore, Methyl-CpG-binding 
domains (MBDs) i.e., MBD1 and MBD2 could be regu-
lated through miR-195-5p, miR-224 in various diseases. 
Therefore, DNA methylation could be modulated by 
miRNAs involved in targeting of MBD proteins [125, 
126] (Table 1).

According to different studies, some miRNAs are regu-
lated by their methylated locus or promoter region. For 
example, miR-200c and miR-141 play important roles 
in the Epithelial-Mesenchymal Transition (EMT) event 
of solid cancers that both of them are regulated epige-
netically [127–131]. In prostate cancer, the promoter 
region of miR-200c and miR-141 are hypermethylated, 
leading to downregulation of their expression [132]]. 
This association between miR-141 and miR-200c is con-
firmed in gastric and breast cancers, respectively [133, 
134]. Another miRNA involved in gastric cancer inva-
sion is miR-7-5p that its silencing by methylation of its 
promoter leads to an increase in its target genes, namely 

Smo and Hes1 [135]. Furthermore, the promoter meth-
ylation of miR-7 is a significant and early-stage biomarker 
in cisplatin-resistance and clinical management of ovar-
ian and lung cancer cells [136] (Table 2).

Although miRNAs could be controlled epigenetically 
and vice versa, the expression of miRNA processing 
enzymes, including DROSHA, DGCR8, EXPORTIN5, 
Dicer, and TRBP, can be affected by DNA methylation 
and its related factors directly or indirectly [137] (Fig. 2). 
According to studies, methylation of some CpG sites in 
the gene body of Drosha has a significant correlation 
with the stimulation of transcriptional elongation in 
cancer cells [138, 139]. The further study reported that 
MeCP2 binds to DGCR8 and suppresses the DGCR8/
Drosha complex directly in the brain [140]. In contrast, 
Drosha can also affect and maintain DNA methylation 
by mediating DNMT1 activity [141]. As a result, there 
is a bilateral association between Drosha complex and 
DNA methylation. Exportin-5 (XPO5), as a master pro-
tein, exports pre-miRNAs from nuclear to the cytoplasm. 
The related study showed that XPO5 promoter methyla-
tion status controls its expression level in breast cancer 
patients [142].

The association of Dicer, as another processing enzyme 
in DNA methylation, was demonstrated through some 
studies. Accordingly, in Cholangiocarcinoma (CCA) was 
declared that the overexpression and translocation of 
Dicer to the nucleus and formation complex with hetero-
chromatin protein 1α (HP1α) leads to hypermethylation 
of SFRP1 promoter and suppression of its transcription 

Table 1 Effect of the related miRNAs on DNA methylation

miRNA miRNA expression Outcome Disease Refs.

miR-29 family Down-expressed Decrease targeting DNMT1, 3A, 3B and 
TET1

Multiple myeloma, lung cancer, Burkitt 
lymphoma, breast cancer, nasopharyn-
geal carcinoma

[79–81, 95, 
97–100, 102]

miR-339 and miR-766 Down-expressed Decrease targeting DNMT3B gene Colorectal cancer [11, 108, 107, 
113–115, 
122, 124, 
183]

miR-221 Over-expressed Increase directly targeting DNMT3b 3′UTR 
region

Breast cancer [184]

miR-148b and miR-152 Down-expressed decrease targeting DNMT-1 mRNA Pancreatic cancer [185]

miR-140 Down-expressed Decrease directly targeting DNMT-1 Liver cancer [90]

miR-140-5p Decrease DNA methylation of STAT1 and 
Tbx genes CpG island

Autoimmune encephalomyelitis [186]

miR-212 Down-expressed
Down-expressed

Increase MeCP2 protein level Gastric cancer [187]

miR-373 Down-expressed Increase MBD2 expression Hilar cholangiocarcinoma [188]

miR-638 Down-expressed Increase MeCP2 mRNA level Gastric cancer [189]

miR-221/222 Down-expressed Increase MBD2 expression Cervical cancer [190]

miR-19a/b Down-expressed Increase MeCP2 expression Gastric cancer [191]

miR-132 Over-expressed Decrease MeCP2 expression Chronic Cerebral Hypo perfusion [192]
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through recruiting Dnmts [143]. Another study showed 
that Dicer indirectly could control methylation of Xist 
promoter in Embryonic Stem (ES) cells through Dnmt3a 
regulation [144]. There is a relationship between Dicer 
and methylation status by controlling of DNMTs in 
various human cancer cells [145]. It seems that Dicer is 
indispensable to the maintenance of methylation status 
throughout the genome.

Despite the association of DNA methylation with the 
expression of various miRNAs, RNA methylation of pri-
miRNAs can modify their expression. RNA methylation 
is a reversible and dynamic event that is mostly per-
formed in m6A position by specific-related enzymes such 
as ALKBH5 and METTL3 [146, 147]. RNA methylation 
of various positions in pri-miRNAs could be impacted 
by the interaction of processing enzymes such as Dicer 
[148]. Additionally, the expression of METTL3 could be 
controlled by DNA methylation. Therefore, RNA meth-
ylation is regulated by DNA methylation [149]. Although 
N6-methyladenosine (m6A) modification is more com-
mon, 7-methylguanosine (m7G) as a further RNA modi-
fication has been reported in miRNA regulation like 
hypermethylation of let-7 pri-miRNA by METTL1 [150].

The interaction between miRNAs and lncs
In addition, the specificity, feature, and function of a 
miRNA can be affected by the structural variants of the 
miRNA itself or by epigenetics, which play a significant 
role in the normal function of the cell or diseases; these 
can be affected by other RNAs, including lncRNAs.

According to significant in  vitro and in  vivo studies, 
lnc RNAs as long non-coding RNAs (> 200  bp) involve 
in many cellular processes and various diseases, which 

could interact with other non-coding RNAs such as miR-
NAs to modulate their roles [151]. LncRNAs originate 
from intragenic and intergenic regions that can activate 
or repress gene expression at multiple levels through 
diverse mechanisms, and their interaction with miRNAs 
is a complex mechanism to regulate target genes. Conse-
quently, the effects of lncRNA-miRNA on the regulation 
network have attracted extensive attention in medical 
research [152–154]. This interplay has different aspects. 
In some cases, miRNAs interact with the miRNA-bind-
ing site of lncRNA like their target mRNAs (Fig.  3a), 
thereby triggering to disturb lncRNAs by miRNAs [155, 
156]. In other cases, lncRNAs can compete with miRNAs 
to bind to the related mRNA (Fig. 3b) or act as miRNA 
sponges/decoys (Fig. 3c) in some pathway of the cells so-
called competing endogenous RNA (CeRNA). Obviously, 
lncRNA competes with mRNAs for sequestering or bind-
ing to miRNAs through matching the miRNA response 
elements (MREs) [157]. Although there are reports that 
show the CeRNA abundances alteration from individ-
ual genes can modulate the activity of miRNAs, some 
studies demonstrated the modulation of miRNA target 
abundance unlikely have significant effects on the gene 
expression and metabolism through CeRNA [158]. Mul-
tiple studies show that lncRNA-miRNA collaboration is 
the most prevalent collaboration in cancer. In this regard, 
numerous studies have been performed. For example, 
lnc-ABCA12-3 is a novel oncogene in esophageal squa-
mous cell carcinoma (ESCC) competes with endogenous 
miR-200b-3p to regulate the expression of fibronectin 1 
(FN1) in metastatic stages of the tumor [159]. Further-
more, the overexpressed lncRNA HAGLROS in hepato-
cellular carcinoma cell and tissue leads to inhibition of 

Table 2 Effect of DNA methylation on miRNAs

miRNA Expression Mechanism Disease Refs.

miR-874 Down expressed Hyper methylation of the promoter region Breast cancer [194]

miR-129-2 and miR-9-1 Down expressed DNA methylation of the miRNA promoter CpG island Renal cell carcinoma [75]

miR- 10b-3p Over expressed Promoter hypo methylation Esophageal squamous cell carcinoma [195]

miR-141 Down expressed Hyper DNA methylation Gastric cancer [108]

miR -145 Over expressed Demethylation of the promoter region Breast cancer [50]

miR-200c and miR-141 Over expressed Hypomethylation of the promoter region Colorectal Cancer [109]

miR-200c/141 Down expressed Hyper methylation of CpG island located in the promoter 
region

Invasive breast cancer [114]

miR-370 Down expressed Hyper methylation of two CpG islands located in the 
upstream of miR genomic locus

Osteosarcoma [196]

miR-941 and miR-1247 Down expressed Hyper methylation of the CpG island in miRs loci Gastric cancer [197]

miR‐7‐5p Down expressed Hyper methylation of the promoter site Gastric cancer [116]

miR-21 and miR-146b Over expressed Hypo methylation of miRs promoter region Papillary thyroid carcinoma [198]

miR124-2 Over expressed Hypo methylation of CpG site in miR gene Breast Cancer [199]

miR-183 Down expressed Hyper methylation of the miR promoter Hepatocellular carcinoma [200]
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Fig. 2 MiRNA and methylation: miRNA and DNA methylation have interaction with each other in two ways, including the effects of miRNA on 
methylation and vice versa. DNA methylation can affect 1) miRNA-related gene or 2) promoter region of miRNA processing enzymes and cofactors 
such as TRBP and DGCR8 and also can affect CPG sites of Drosha gene body. Mutually, a miRNA can affect DNA methylation in two ways, including 
1) it can target genes of DNA methylation-related enzymes such as DNMTs, TETs, MECP2, and MBDs, and leads to hyper- or hypo-methylation of 
different genes. 2) Also, miRNA processing-related enzymes can directly or indirectly affect DNA methylation through recruiting DNMTs to CpG sites 
in the genome or at gene levels
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miR-5095 and elevated expression of its target, ATG12 
[160]. Another study reported that lncRNA H19 is over-
expressed and increases NOX4 expression through miR-
148b-3p suppression [161]. This association was observed 
between different lncRNAs such as MIR205HG, NEAT1, 
SNHG20, SNHG1, SNHG12, GIHCG, TUSC-7, ATB, 
MEG3, GAS5, PCF, AL445665.1–4, lnc-p21, LINC00339, 
TINCR and related miRNAs, including miR-590-3p, 
miR-129-5p, miR-495, miR-577, miR-16, miRNA-1281, 
miR-146, miR-141-3p, miR-147, miR-21, miR-344a-5p, 
miR-146b-5p, miR-625, miR-497-5p, miR-214-5p in nor-
mal and cancerous cells, respectively (Table  3) [56, 91, 
160, 162–173]. 

Furthermore, a study demonstrated that lncRNA can 
inhibit miRNA expression by affecting its promoter 
region (Fig.  3c); for example, LncRNA-p23154 controls 

miR-378a-3p expression through this way in oral squa-
mous cell carcinoma [174]. In addition to the studies 
mentioned above, lncRNA can also affect a miRNA in 
two ways. For instance, overexpression of LncRNA- 
miR503HG as a decreasing lncRNA in ovarian cancer 
(OC) cells may decrease the expression of miR-31-5p via 
sponging of miR-31-5p and increasing miR-31-5p gene’s 
methylation [175]. Some miRNAs are involved in inhi-
bition of lncRNA activities that may have a reciprocal 
interaction between lncRNAs and miRNAs; for exam-
ple, lncRNA XIST and miR-132-3p repress each other 
in CRC cells [176]. Also, this association was shown in 
Lnc-OC1/miR-34a/34c of OC and MALAT1/miR-101 of 
Glioblastoma (GBM) cells, respectively [177, 178]. The 
mutual interaction between LNC-ZEB1-AS1 and miR-
101 was demonstrated in CRC tissues and cells [179]. 

Fig. 3 Interaction between miRNA and lncRNA. There are three states of collaboration among miRNAs and lncRNAs: a miRNA can bind to its 
binding site of lncRNA and weak lncRNA stability. b LncRNA and miRNA can compete with each other to binding to target mRNA. c Also, lncRNA 
can affect the binding of miRNA to target mRNA through sponging the miRNA. However, sometimes miRNA can decoy from lncRNA and bind to 
related mRNA
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The growing various in silico and experimental studies 
help demonstrate the RNA-RNA interactions that func-
tionally impact the related gene regulation derived from 
detailed primary and secondary structure predictions 
and their validations. Therefore, synthetic RNAs can have 
therapeutic applications in the mentioned targets.

The miRNA and transcript association 
between xeno‑infections and host
Accordingly, another complexity of miRNAs is their 
effects on xeno-infection’s RNAs that lead to moderate 
severity and weakness of associated diseases. Moreo-
ver, some miRNAs of parasites could probably target the 
expression of host-related mRNAs because of the con-
servative sequence of miRNAs from primary to higher 
organisms. Therefore, the up- and down-regulation of 
special miRNAs can control the virulence genes in vari-
ous infections. Also, miRNAs and their related isomiRs 
can affect or be affected by various populations and 
immune system activation against infections, especially 
viral infections that lead to crucial modifications in the 
miRNA/ isomiR repertoire, which indicates miRNAs’ 
role and variances of immunity in different hosts along-
side the infection [180].

There are several interaction levels between the host’s 
miRNAs and RNAs of different viruses. Regarding vari-
ous virus infections, some host’s miRNAs can target 

critical virus-related mRNAs or part of the virus genome. 
For example, miR-296-5p is significantly upregulated in 
enterovirus 71 (EV71)-infected human cells and inhib-
its replication of the virus by targeting the two regions 
of the viral genome [181]. Moreover, miR-125b-5p can 
negatively regulate hepatitis C virus (HCV) infection via 
targeting Human antigen R (HuR) as an affirmative regu-
lator of HCV replication in both liver carcinoma cells and 
serum of HCV-infected patients [182]. Also, miR-28-3p 
inhibits the transmission of human T cell leukemia virus, 
type 1 (HTLV-1) to T cells by blocking the reverse tran-
scription step of the virus genome [183].

Further studies showed that the number of host miR-
NAs can influence virus infection by targeting some host 
factors. For instance, miR-939 decreases  the frequency 
of Hepatitis  B  virus (HBV) RNAs by targeting host fac-
tors like Jmjd3 that it is an enhancer for transcription 
efficiency of HBV [184]. Also, miR-10a-5p directly tar-
gets the signal recognition particle 14 (SRP14) that leads 
to a decrease in the extracellular viral RNA expression 
of PRRSV and its multiplication [185]. In a study, gga-
miR-29a-3p and gga-miR-19b-3p repressed Newcastle 
Disease Virus (NDV) multiplication, while the gga-miR-
199-5p and gga-miR-451 stimulated this infection.In this 
regard, it was demonstrated that gga-miR451 performs 
its role via targeting host factor of tyrosine3 monooxy-
genase/tryptophan5-monooxygenase activation protein 

Table 3 Interaction between lncRNA and miRNA

LncRNA miRNA ceRNA Disease Refs.

ABCA12-3 miR-200b-3p – Esophageal squamous cell carcinoma

HAGLROS miR-5095 Sponging Hepatocellular carcinoma [56, 146, 
159, 
162–
168]

MIR205HG miR-590-3p Sponging Head and Neck Squamous Cell Carcinoma [49]

NEAT1 miR-129-5p Sponging Papillary thyroid cancer [148]

SNHG20 miR-495 Sponging Breast cancer [140]

SNHG1 miR-577 Sponging Osteosarcoma [142]

SNHG12 miR-16 Sponging Colorectal cancer [144]

GIHCG miRNA- 1281 – Gastric cancer [143]

TUSC-7 miR-146 Sponging Lung adenocarcinoma [141]

ATB miR-141-3p Sponging Breast cancer [149]

MEG3 miR-147 – Chronic myeloid leukemia [72, 91, 
149, 
169–
173]

GAS5 miR-21 Sponging Ovarian cancer [152]

PCF miR-344a-5p – pulmonary fibrosis [4]

AL445665.1-4 miR-146b-5p – Multiple uterine leiomyoma [153]

lnc-p21 miR-625 – Neuronal injury [150]

LINC00339 miR-497-5p Sponging Pancreatic cancer [201]

TINCR miR-214-5p Sponging Hepatocellular carcinoma [151]
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zeta (YWHAZ) [186]. Additionally, hsa-miR-199a has an 
antiviral effect through the downregulation of a Golgi-
localized GTPase-activating protein for Cdc42 called 
ARHGAP21 in the Herpes Simplex Virus-1(HSV-1) 
infection [187]. In addition to the above, some miRNAs 
such as miR-122 play a dual function in the proliferation 
of Human Papillomavirus (HPV) and Hepatitis C virus 
(HCV) in infected cell lines [188, 189].

Regarding other studies about the effects of viral 
factors on the host’s miRNA expression, some virus-
related intergenic non-coding RNAsequences of the 
virus genome can decline the host miRNAs during 
pathogenesis by affecting the maturation of miRNAs 
[190]. In a study, the NS3 protein of HCV can upregu-
late miR-27a; meanwhile, downregulate miR-150 and 
miR-335 expression in LX-2 liver cells, thereby enhanc-
ing the pathogenesis of related diseases [191]. Fur-
thermore, hepatitis B virus X protein (HBx) represses 
the expression of miR-30e by increasing its promoter 
methylation that leads to developing hepatocarcino-
genesis and liver fibrosis [192]. Also, dengue virus 
(DENV) and Borna disease virus 1 (BoDV-1) induce 
hsa-miR-146a overexpression to control the IRAK1/
TRAF6/NF-κB signaling pathway in host cells to facili-
tate viral replication [193]. Other mechanisms of the 
virus to escape from the host immune system in influ-
enza A virus (IAV) is the mutation of the NS1 gene as 
a major regulator of pathogenicity that helps to virus 
proliferation by disrupting the antiviral response of 
hsa-miR-1307-3p [195]. The appearance of new coro-
navirus disease 2019 (COVID-19) that has also been 
termed severe acute respiratory syndrome coronavirus 
2 (SARS-CoV-2) with rapid spreading, severe symp-
toms, which affects the lung, heart, kidney cells, etc. 
[196–198] by targeting Angiotensin-converting enzyme 
2 (ACE2) receptors and the whole world faced a pan-
demic. Given that the interaction between miRNA and 
virus materials has been established in various diseases, 
some miRNAs, which can target capsid protein-coding 
genes of the virus or ACE2, may be used as a therapeu-
tic solution to inhibit or attenuate COVID-19.

According to the association between miRNAs and 
microbes involved in the pathogenesis of the disease, 
there is some gut microbiota such as Proteobacteria, Bac-
teroidetes, and Firmicutes that correlate with colorectal 
cancer (CRC) by inducing some oncogenic miRNAs such 
as miR-503, miR-182and mir-17 ~ 92 cluster [199]. In 
this regard, Zhou et  al. reported that tumor suppressor 
miR-203, which targets CASK oncogene, can be down-
regulated by Helicobacter pylori infection and promoted 
the proliferation and invasion of gastric cancer [200]. 
Recent findings of the association between host miRNAs 
and parasites have shown that they can play reciprocal 

roles in this regard to modulate pathogenesis. For exam-
ple, mmu-miR-101b-3p is increased in the infection of 
a nematode (larvae), Angiostrongylus cantonensis, and 
could reduce the pathological effect of the parasite in the 
host by targetting extracellular superoxide dismutase 3 
(Acsod3) in vitro and in  vivo [201]. Furthermore, miR-
146a and miR-155 as a biomarker are upregulated in 
Toxoplasmosis that modulates inflammatory factors in 
hosts [202]. Also, Toxoplasma gondii infection can alter 
the expression levels of miR-17 ~ 92 and miR-106b ~ 25 
clusters that contribute to enhancing the related diseases 
[203].

On the other hand, some miRNAs of parasites can 
also impact the host cells. For instance, the extracellular 
vesicle (EVs) miRNAs cargo like miR-125b and bantam 
miRNAs derived from Schistosoma japonicum leads to 
an increase in TNF-α production and macrophage prolif-
eration in host cells by targeting and regulating Fam212b, 
Pros1, and Clmp; then, it elevates the rate of survival of 
the parasite in mouse [204]. Overall, various studies high-
lighted the issue that the ability of host cellular miRNA 
networks as a tool may control xeno-infection dissemina-
tion. The host’s miRNAs as immunomodulatory agents 
may target some pathogenic factors. On the other hand, 
because of the conserved properties of miRNAs in dif-
ferent organisms, some parasite-derived miRNAs may 
target the host’s transcripts.  Therefore, there are recip-
rocally associations between host miRNAs and related 
infectious agents.

Future perspective
Given the aforementioned contents on miRNA proper-
ties, the precise studies of isomiR profiling, arm selection, 
and arm switching can be applied to the related diseases 
that need reasonable and advantageous methods for their 
specific detection to be used as prognostic and diagnostic 
markers. Besides, the impressive variants of miRNAs are 
significant in miRNAs-targeted therapy. Ideal character-
istics of miRNA and their related isomiRs, as well as their 
dependency on individual characteristics such as popula-
tion origin, race, a person’s sex, and on tissue state/type, 
will provide an improvement in comprehension of the 
molecular mechanisms of diseases. Also, it provides new 
insights into novel approaches to improve personalized 
medicine. However, it still needs further investigation 
[205–207]. Furthermore, owing to epigenetically control-
ling miRNAs in their processing and expression levels, 
epigenetic-controlling agents can be used for regulation 
of them. With regard to the relationship between lncRNA 
and miRNA, lncRNAs can be used to control sponge-
related miRNAs as a therapeutic strategy that may be 
considered another way for regulating miRNAs in vari-
ous diseases. Finally, considering the roles of miRNA in 
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xeno-infectious diseases, it can be controlled with men-
tioned approaches to attenuate infections.

Conclusion
To highlight the role of miRNAs in the related diseases, 
some of them are collected in this review. Numerous 
studies have established that miRNAs are involved in 
both spectra of normal biological functions and dis-
eases by directly or indirectly regulating multiple cellu-
lar transcripts by affecting epigenetic-related enzymes, 
thereby interfering with lncRNA functions with CeRNA 
roles. Also, they modulate xeno-infectious diseases 
by host and/or infection factors such as related tran-
scripts and proteins, etc. On the other hand, complexi-
ties in the structure of their miRNAs such as isomiRs, 
arm selection, and arm switching can demonstrate the 
critical roles of miRNAs in the development of various 
diseases. Regarding the combination of structural prop-
erties of miRNAs and their interaction with epigenetics 
and other non-coding intracellular RNAs, they can also 
be affected by xeno-infectious agents such as viruses, 
parasites and bacteria, etc. Therefore, the potential role 
of miRNAs should be further considered because they 
are valuable prognostic and diagnostic biomarkers. In 
addition, to be applied as therapeutic agents, further 
studies are needed to be conducted from bench to bed-
side because miRNAs provide new insights into some 
mechanisms of complex diseases such as cancer, as well 
as neurodegenerative and xeno-infectious diseases that 
can be efficiently used in personalized medicine to con-
trol the diseases.
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