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Identification of predictors based on drug 
targets highlights accurate treatment 
of goserelin in breast and prostate cancer
Yue Zhao1, Huimin Sun1,2, Jianzhong Zheng1, Chen Shao1* and Dongwei Zhang3* 

Abstract 

Goserelin is an effective alternative to surgery or estrogen therapy in prostate cancer palliation, and possibly to 
ovariectomy in premenopausal breast cancer. However, not all users of goserelin can benefit from it, or some patients 
are not sensitive to goserelin. The advent of network pharmacology has highlighted the need for accurate treatment 
and predictive biomarkers. In this study, we successfully to identify 76 potential targets related to the compound of 
goserelin through network pharmacology approach. We also identified 18 DEGs in breast cancer tissues and 5 DEGs 
in cells, and 6 DEGs in prostate cancer tissues and 9 DEGs in cells. CRABP2 is the common DEG both in breast and 
prostate cancer. The risk prediction models constructed with potential prognostic targets of goserelin can success-
fully predict the prognosis in breast and prostate cancer, especially for very young breast cancer patients. Moreover, 
seven subgroups in breast cancer and six subgroups in prostate cancer were respectively identified based on con-
sensus clustering using potential prognostic targets of goserelin that significantly influenced survival. The expression 
of representative genes including CORO1A and ANXA5 in breast and DPP4 in prostate showed strong correlations 
with clinic-pathological factors. Taken together, the novel signature can facilitate identification of new biomarkers 
which sensitive to goserelin, increase the using accuracy of goserelin and clarify the classification of disease molecular 
subtypes in breast and prostate cancer.
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Introduction
Goserelin is a synthetic analogue of gonadotrophin-
releasing hormone (GnRH) which stimulates gonado-
trophin and sex hormone release in the short term, and 
then causes suppression with continued administration 
[1, 2]. Breast and prostate cancer are the most com-
monly diagnosed nonskin cancer in women and men, 
respectively [3]. Monthly goserelin depot therapy pro-
duces partial disease remission or stabilisation in about 

60%-80% of men with previously untreated prostate can-
cer, a rate equivalent to that achieved with orchidectomy 
or diethylstilbestrol (stilboestrol) [4]. About 30% to 45% 
of premenopausal women with breast cancer responded 
to goserelin using objective assessment criteria, suggest-
ing comparability to ovariectomy [5]. Thus, goserelin is 
an effective alternative to surgery or estrogen therapy in 
prostate cancer palliation, and possibly to ovariectomy in 
premenopausal breast cancer.

Recently, network pharmacology (NP) was proposed as 
a promising approach to discover drugs from a systems 
perspective and at the molecular level. It combines bioa-
vailability prediction, multiple drug target prediction and 
network analysis to understand the active compounds 
and therapeutic targets of drug [6, 7]. Lee et al. predicted 
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multi-compounds and multi-targets linked to hyperlipi-
demia and atherosclerosis in Yijin-Tang by Network anal-
ysis [8]. These previous studies suggested that NP will 
be a good predictive tool for exploring the therapeutic 
targets of goserelin and its relationships with breast and 
prostate cancer.

Currently, clinicians mainly use the clinic-pathological 
factors and clinical stages to assess the risk of breast and 
prostate cancer in patients and guide clinical treatment 
[9, 10]. These clinic-pathological variables have demon-
strated specificity or sensitivity in predicting the progno-
sis only in some of breast and prostate cancer patients, 
which gene is the target of goserelin and whether its 
expression is related to the prognosis is still unknown 
[11]. In addition, because of the response rates are lim-
ited and some of breast and prostate cancer patients do 
not benefit from goserelin. Therefore, it is essential to 
develop a new risk assessment system that can effec-
tively predict the prognosis of patients and relate to 
goserelin sensitivity. In this study, we successfully con-
structed a risk prediction model with several prognostic 
genes which linked to compound of goserelin. Through 
stratifying the risk of patients and their gene expression 
characteristics, we could find more effectively therapeu-
tic targets associated with goserelin, and preventing poor 
prognosis in high risk patients.

Materials and methods
Data selection and processing
The RNA-Seq gene expression profiles (FPKM format) 
of patients with breast and prostate cancer were down-
loaded from the cancer genome atlas (TCGA) portal 
(https​://cance​rgeno​me.nih.gov/). It contains 1164 breast 
samples (1053 breast tumor samples and 111 normal 
samples) and 551 prostate samples (499 prostate tumor 
samples and 52 normal samples). The clinical data of 
above samples, such as gender, age, tumor grade, clinical 
stage, and survival time, were also downloaded from the 
TCGA database. The RNA expression data of cells with 
breast and prostate cancer were downloaded from the 
Gene Expression Omnibus (GEO, http://www.ncbi.nlm.
nih.gov/geo/). Data from the GSE 62410, GSE 107209 
datasets were used for differential expression analysis. 
GSE 62410 [GPL16686 platform, Affymetrix Human 
Gene 2.0 ST Array] contains 6 samples, including 3 
PrEC cells and 3 LNcaP cells. GSE 107209 [GPL17586 
platform, Affymetrix Human Transcriptome Array 2.0] 
contains 6 samples, including 3 MCF-10A cells and 3 
UFH-001 cells. The gene expression data and clinical data 
of very young breast cancer patients were derived from 
international cancer genome consortium (ICGC) por-
tal (https​://dcc.icgc.org/). Genotype-Tissue Expression 

(GTEx) program (https​://commo​nfund​.nih.gov/gtex) 
established a data resource and tissue bank of healthy 
people. Data of GTEx were used to plot the expression 
of genes in multiple normal tissues in our study, and we 
used the R language “ggpubr” package to drawing box-
plot to distinguish the expression of genes between male 
and female. PharmMapper Server is designed to identify 
potential target candidates for the given probe small mol-
ecules (drugs, natural products, or other newly discov-
ered compounds with binding targets unidentified) using 
pharmacophore mapping approach [12]. The 2D or 3D 
structure of goserelin candidate compound was collected 
from pubchem database (https​://pubch​em.ncbi.nlm.nih.
gov/), and finding the best interaction mode between the 
potential target candidates and compound by pharmaco-
phore database (http://www.lilab​-ecust​.cn/pharm​mappe​
r/). R software (3.6.2) was used for data extraction and 
sorting to obtain the gene expression matrices and clini-
cal data.

Differential expression analysis
To identify differentially expressed genes (DEGs) between 
tumor and normal tissues/cells, we used the R language 
“limma” package to screen the DEGs. Mann Whitney 
test was performed to determine differential expression 
levels of genes between tumor samples and correspond-
ing control samples. |log2 fold change (FC)|> 1, and false 
discovery rate (FDR) values < 0.05 were considered to be 
statistically significant.

Construction of a drug regulatory network and functional 
enrichment analysis
A protein protein interaction (PPI) network of related 
goserelin target genes were constructed using the 
STRING online database (https​://strin​gdb.org/) [13], and 
the confided score with correlation degree > 0.400 was as 
the cut-off value to obtain a network. Compound-com-
pound target network construction was performed by the 
network visualization software Cytoscape (http://www.
cytos​cape.org/) [14]. Gene ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway 
enrichment analysis were conducted with R language 
“clusterProfiler” and “enrichplot” package, FDR < 0.05 was 
set as the threshold. Bubble chart was used to visualize 
the biological process (BP), cellular component (CC), and 
molecular function (MF) of GO enrichment. The circle-
plot was used to visualize the pathways of KEGG.

Construction of risk prediction model
In order to build a prognostic model applicable to breast 
and prostate cancer patients and relate to target genes 
of goserelin, all target genes were used to conduct a 
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univariate Cox survival regression, and P value < 0.05 was 
used to create a lasso regression model. This method was 
applied to reduce potential over-fit and implemented 
through the “glmnet” R package. Univariate and mul-
tivariate Cox analysis were conducted with R language 
“forest” and “survival” package. The risk scores of each 
patient were calculated through the prediction formula of 
the risk prediction model. We calculated the cut-off value 
used to determine whether the patient is at high or low 
risk. The formula used for this model was:

Verification of the validity of the risk prediction model
Recurrence-free survival (RFS) was collected and defined 
as the interval from the data of surgery to the end of fol-
low-up results or death. Overall survival (OS) was calcu-
lated from the date of diagnosis to the date of death or 
last follow-up. Survival curves were estimated using the 
Kaplan–Meier method, and the log-rank test was used to 
test for differences between groups. The time-dependent 
receiver operating characteristic (tdROC) curve analysis 
was first applied to evaluate the predictive accuracy of 
the model for cancer-specific death or biochemical recur-
rence based on the risk scores, with the help of the “sur-
vivalROC” R package. Chi-squared test or Fisher’s exact 
test were used to investigate the correlation between 
risk model and clinicopathologic variables, and draw the 
heatmap through the “pheatmap” R package, P < 0.05 was 
considered statistically significant for all tests.

Identification of molecular subtypes using consensus 
clustering
Consensus clustering was performed using the “Consen-
susClusterPlus” package in R to identify subgroups based 
on the target genes of goserelin. This algorithm deter-
mined consensus clustering by measuring the stability of 

Risk score =

n∑

i=1

genei · coefi

clustering results from the application of a given cluster-
ing method to random subsets of data. In each iteration, 
80% of the tumors were sampled, and the k-means algo-
rithm with the Euclidean squared distance metric was 
used. These results were compiled over 100 iterations. 
After executing ConsensusClusterPlus, we obtained the 
cluster consensus and item-consensus results. Graphical 
output results included heatmaps of the consensus matri-
ces, which displayed the clustering results, consensus 
cumulative distribution function (CDF) plots, and delta 
area plots, and which allowed us to determine an approx-
imate number of clusters. Numbers of clusters were 
determined according to the following criteria: relatively 
high consistency within the cluster, relatively low coef-
ficient of variation, and no appreciable increase in the 
area under the CDF curve. Associations between both 
clinicopathologic characteristics and clustering were ana-
lyzed using the χ2 test or Fisher’s exact test, and draw the 
heatmap through the “pheatmap” R package, P < 0.05 was 
considered statistically significant for all tests.

Analysis of the representative target gene
We are screening the representative target genes through 
the Venn diagram (http://bioin​forma​tics.psb.ugent​.be/
webto​ols/Venn/). We inputted the retained candidate 
target genes into the UALCAN (http://tumor​survi​val.
org/index​.html) database. Wilcoxon signed-rank test was 
used to generate a P-value for expression of age, gender, 
stages, different molecular subtypes, nodal metastasis 
status, menopause status, or gleason sorces analysis, all 
P-values < 0.05 were considered statistically significant.

Results
Goserelin regulatory networks construction 
and enrichment analysis
Chemical structures of goserelin was download in 
pubchem portal (Additional file 1: Figure S1a). To identify 
synergistic and mechanistically related targets for the com-
pound of goserelin, we employed a guilt-by-association 

Fig. 1  Regulatory networks construction and enrichment analysis of goserelin target genes. a Network of the interactions among the 76 targets 
predicted for goserelin. Red lines show compound and target genes interactions, and blue lines show interactions shared by target genes. b 
Bubble-plot of GO enrichment in cellular component terms, biological process terms and molecular function terms. c Circle-plot of KEGG enriched 
terms

(See figure on next page.)
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analysis on a multilayered molecular interaction network. 
There are 77 nodes (76 compound target nodes and 1 
compound node) and 269 edges composed regulatory net-
work (Fig.  1a). In this network, the relationship between 
compound and target genes were shown in red lines, and 
the PPI relationship of the target genes were shown in blue 
lines. In PPI network, some nodes (AR, MMP2, ANXA5, 
B2M, CD44, RAC1, IDH2, LDHA, ADK and SHMT2) 
have higher degrees (Additional file 1: Figure S1b and c).

To explore the biological functions of 76 target genes, 
they were categorized into BP, CC, and MF. Under strin-
gent threshold conditions (P-adjust < 0.05), we identified 
202 specific BP, 15 CC, and 21 MF of GO terms were 
enriched in these genes (Fig.  1b). The outcome of GO 
enrichment of the genes were shown in Additional file 1: 
Table S1. Additionally, analysis using clusterProfiler indi-
cated that these genes were significantly enriched in 11 
pathways as shown in Fig. 1c (Additional file 1: Table S2).

Identification of DEGs in breast and prostate cancer
We downloaded the RNA expression profiling data from 
TCGA database. Through a series of stringent filters 
was implemented, we obtained the expression levels of 
76 target genes from 1164 breast samples (1053 breast 
tumor samples and 111 normal samples) and 551 pros-
tate samples (499 prostate tumor samples and 52 normal 
samples). The genes that met the cutoff criteria of a fold 
change > 1 and an adjusted P-value < 0.05 were consid-
ered DEGs. Gene expression profiles of breast identified 
18 DEGs with 10 up regulated genes and 8 down regu-
lated genes in tumor samples when compared with nor-
mal breast tissues, and 6 DEGs with 3 up regulated genes 
and 3 down regulated genes (Fig. 2a). Heatmap analysis 
showed that these genes presented differential expres-
sion profiles between normal tissues and tumor tissues 
(Fig.  2b). Furthermore, DEGs were showed in boxplot 
to intuitively illustrate the differences between tumor 
and normal samples (Fig. 2c). CRABP2, HPD, ZEB2 and 
CDK5R1 are the common DEGs both in breast and pros-
tate cancer.

The RNA expression profiling data of cells were down-
loaded from the GEO database. Heatmap analysis showed 
that genes have differential expression profiles between 
breast MCF-10A cells and 3 UFH-001 cells (Fig.  3a). A 
total of 6 DEGs, including 2 down regulated genes and 
4 up regulated genes. Heatmap analysis showed that 

these genes have differential expression profiles between 
prostate PrEC cells and 3 LNcaP cells (Fig.  3b). A total 
of 9 DEGs, including 4 down regulated genes and 5 up 
regulated genes. The results of venn analysis showed that 
CRABP2 and IDH2 were the common DEGs both in 
breast cells and tissues (Fig. 3c). CRABP2 was the com-
mon DEGs in prostate cells and tissues (Fig.  3d). The 
results indicate that CRABP2 is the significantly DEGs 
related to prostate and breast cancers (Fig. 3e).

The expression of CRABP2 was significantly higher in 
breast cancer than normal controls in subgroup analysis 
based on gender, age, menopause status, disease stage, 
nodal metastasis status, and molecular subtypes (all 
P < 0.05, Fig.  4a). We also compared the relative expres-
sion levels of CRABP2 between subgroups in breast 
cancer tissues, and found that post-menopause was 
higher than per-menopause (P < 0.001) and peri-men-
opause (P = 0.01), N1 was higher than N0 (P = 0.02), 
luminal subtype was higher than triple negative breast 
cancer (TNBC) (P = 0.005) and HER-2 positive subtype 
(P < 0.001). However, the expression levels of CRABP2 
based on gleason score group, nodal metastasis group, 
and molecular signature group in prostate cancer were 
lower than normal controls (all P < 0.05, Fig. 4b).

Survival analysis of target genes of goserelin in TCGA data
Kaplan–Meier survival analysis was performed based 
on TCGA survival data, and only log-rank P value < 0.05 
was shown in Fig.  5a, b. Genes expression of CD3E, 
CORO1A, ENOPH1, GSTK1, GZMM, PNLIP, TRIM21 
and UBTF are significantly related to the prognosis of 
breast cancer patients (Fig. 5a). DPP4 and PAX5 are sig-
nificantly associated with the prognosis of prostate can-
cer patients (Fig. 5b).

Constructing and evaluating the breast and prostate 
cancer risk prediction model by target genes of goserelin
In order to investigate the prognostic value of these 76 
target genes in breast and prostate cancer, respectively. 
Univariate Cox survival regression analysis was per-
formed based on the expression levels of the genes from 
TCGA (Figs.  4a and 7a). We selected the survival asso-
ciated genes as candidates to create a lasso regression 
model. Eventually, the risk prediction model of breast 
cancer with 13 genes, including GSTK1, CORO1A, 
TRIM21, CD3E, GZMM, ADK, RAC1, GSTZ1, HCK, 
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Fig. 2  Identification of differentially expressed target genes in breast and prostate cancer. a Volcano plot of 76 target genes in breast and prostate 
cancer from TCGA database. Red plots represent aberrantly expressed mRNAs with P < 0.05 and absolute log FC > 1. Black plots represent normally 
expressed mRNAs. Green plots represent aberrantly expressed mRNAs with P < 0.05 and log FC < − 1. b Heatmap analysis of differential expression 
profiles between normal tissues and cancer tissues in breast and prostate. c Boxplot to intuitively illustrate the differences between tumor and 
normal tissues
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UBTF, ANXA5, GRHPR, CHP1, was generated and the 
coefficient of each independent prognostic gene was 
shown in Fig. 4b. The lasso results also showed that five 
genes (AR, PDHA1, RAN, DPP4 and DAZAP1) were the 
powerful composed factors of prostate cancer risk pre-
diction model (Fig. 7b). All samples were divided into two 
(high and low) groups according to the median value of 
risk score of our model. Both in breast and prostate can-
cer model, the heatmap of composed genes expression 
were shown in Figs. 6c and 7c, and the samples of deaths 
was significantly higher in the high risk group compared 
to the low risk group (Figs.  6c and 7c). The expression 
levels of the genes in high-risk and low-risk group were 
presented in the heatmap with clinicopathologic vari-
ables as the annotations (Figs. 6d and 7d). In the breast 
cancer risk prediction model, the results showed that 
there were significant differences between the high risk 
and low risk groups in term of survival (P < 0.001), and 
stage M (P < 0.05). While survival status (P < 0.05) was the 
only difference between high risk and low risk groups in 
the prostate cancer risk model.

To test whether the risk signature was an independent 
prognostic factor, univariate and multivariate Cox regres-
sion analyses were performed. As a result, the age at 
diagnosis, pathological stage, stage TNM and risk score 
were associated with OS (all P < 0.001) of breast cancer 
patients in univariate analysis and only risk score and 
age at diagnosis were still significantly related to OS (all 
P < 0.001) in multivariate Cox regression analysis(Fig. 6e), 
while only the risk score was significantly related to OS 
(all P < 0.05) of prostate cancer patients in both univariate 
and multivariate Cox regression analysis (Fig.  7e). Fur-
thermore, time-dependent ROC curve showed that the 
risk score (AUC = 0.812) was better than other factors 
in predicting for OS of breast cancer patients (Fig.  6f ). 
In prostate cancer patients, the ROC curve was used 

to assess the sensitivity and specificity of the predic-
tion and the result showed that AUC values was 0.745, 
suggesting well-prediction performances (Fig.  7f ). The 
result of Kaplan–Meier survival analysis both in breast 
and prostate cancer patients showed that the high-risk 
group had significantly shorter survival time compared 
to low-risk group (Figs. 6g and 7g). Among the 13 genes 
that was built of the breast cancer risk prediction model, 
the expression levels of ANXA5 were related to stage T 
(P = 0.028) and age (P = 0.004), CD3E expression levels 
(P = 0.017) were only related to age, GSTZ1 (P = 0.040), 
GZMM (P = 0.006), GRHPR (P < 0.001), UBTF (P = 0.004) 
and CHP1 (P = 0.003) were significantly related to stage 
M (Fig. 6h). Among the 5 genes that was built of the pros-
tate cancer risk prediction model, the expression levels 
of DPP4 were related to stage T (P < 0.001) and stage N 
(P < 0.001), (Fig. 7h).

Generating novel prognosis subgroups and their clinical 
intercluster prognosis analysis
We selected the survival associated genes from uni-
variate Cox survival regression analysis as candidates 
to perform consensus clustering. As a result, 13 poten-
tial prognostic genes was used to identify subgroups of 
breast cancer for prognostic purposes, and 6 genes was 
used to identify subgroups of prostate cancer. Num-
bers of clusters were determined according to the fol-
lowing criteria: relatively high consistency within the 
cluster, relatively low coefficient of variation, and no 
appreciable increase in the area under the Cumula-
tive Distribution Function (CDF) curve. We calculated 
average cluster consensus and the coefficient of varia-
tion among clusters depending on category number 
(Figs.  8a and 9a). To improve the prognostic value of 
the COAD classifications, we choose larger cluster 
numbers when possible. Hence, when k = 7 (Fig.  8b) 

Fig. 3  Identification of differentially expressed genes (DEGs) of goserelin in breast and prostate cells. a Heatmap analysis of differential expression 
profiles between normal breast cells (MCF-10A) and breast cancer cells (UFH-001) from GSE107209. b Heatmap analysis of differential expression 
profiles between normal prostate cells (PrEC) and prostate cancer cells (LNCaP) from GSE62410. c Venn diagram summarize the common DEGs both 
in breast cells and tissues. d Venn diagram summarize the common DEGs of goserelin both in prostate cells and tissues. e Venn diagram summarize 
the common DEGs both related to prostate and breast (cells and tissues)

(See figure on next page.)
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Fig. 4  Conducting clinical correlation analysis of CRABP2 by UALCAN. a CRABP2 transcription in subgroups of patients with breast cancer, stratified 
based on gender, age menopause status, disease stage, nodal metastasis status, and molecular subtypes. b CRABP2 transcription in subgroups of 
patients with prostate cancer, stratified based on age, gleason score, nodal metastasis status, and molecular signature
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Fig. 5  Prognostic value of goserelin target genes in TCGA. a Kaplan–Meier overall survival curve for breast cancer patients with high and low 
indicated gene expression. b Kaplan–Meier overall survival curve for prostate cancer patients with high and low indicated gene expression
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in breast cancer and k = 6 (Fig.  9b) in prostate cancer 
could be the optimal choice with clustering increas-
ing from k = 2–9. Kaplan–Meier survival analysis of 
breast cancer revealed significant differences in prog-
nosis among the 7 clusters (P < 0.05), cluster 7 had the 
best prognoses, while cluster 2 had the worst (Fig. 8c). 
Kaplan–Meier survival analysis of prostate cancer 
revealed significant differences in prognosis among the 
6 clusters (P < 0.001), cluster 5 had the best prognoses, 
while cluster 1 had the worst (Fig. 9c). The expression 
levels of the genes in different clusters were presented 
in the heatmap with clinic-pathological variables as 
the annotations (Figs.  8d and 9d). The results showed 
that there were significant differences between the 7 
breast cancer clusters in term of age (P < 0.05, Fig. 8d), 
and survival status was difference among the 6 prostate 
cancer clusters (P < 0.05, Fig. 9d).

Risk prediction model was validated in very young breast 
cancer patients use ICGC data
Women younger than 35 years are more demanding for 
fertility. Goserelin is the most commonly ovarian sup-
pression strategies among premenopausal women with 
hormone positive breast cancer owing mainly to its 
non-invasiveness and reversibility [15]. The gene expres-
sion data and clinical data of 50 breast cancer patients 
younger than 35  years were downloaded from ICGC 
portal. Univariate Cox survival regression analysis (OS 
and RFS) was performed to investigate the candidates to 
create a lasso regression model in very young breast can-
cer patients by ICGC data (Additional file 1: Figure S2a, 
S2b). Eventually, the risk prediction model of OS with 5 
genes, including HCK, ASAP1, NDST1, EXTL2, MSX1, 
was generated and the coefficient of each independent 

prognostic gene was shown in Additional file  1: Fig-
ure S2c. The lasso results also showed that seven genes 
(AR, APPL1, ASAP1, NDST1, GRHPR, PPP2R1A, and 
TRIM21) were the powerful composed factors of RFS 
risk prediction model (Additional file 1: Figure S2d). The 
result of survival analysis (both in OS and RFS) showed 
that the high-risk group had significantly worse progno-
sis compared to low-risk group (Additional file 1: Figure 
S2e). The models performed well as the AUCs were equal 
to 0.908 at OS and 0.998 at RFS (Additional file 1: Figure 
S2f ). The results showed that the model of very young 
breast cancer patients we constructed exhibited good 
classifier performance. ASAP1 and NDST1 are the com-
mon genes that build risk prediction models for OS and 
RFS.

OS and RFS analysis of very young breast cancer patients 
in ICGC data
Kaplan–Meier survival analysis of OS and RFS were per-
formed based on ICGC survival data, and only log-rank 
P value < 0.05 was shown in Fig.  10a, b. Genes expres-
sion of POU2F1, AR, PDK2, GSTZ1, GZMM, ACADS, 
ENOPH1, HCK, NDST1, and VAV2 are significantly 
related to the OS of breast cancer patients younger than 
35  years (Fig.  10a), and POU2F1, AR, PDK2, GRHPR, 
SCO2, ACADS, ENOPH1, PPP2R1A, NUDC, and VAV2 
are significantly associated with the RFS (Fig.  10b). 
The venn results also showed that six genes (POU2F1, 
AR, PDK2, ACADS, ENOPH1, and VAV2) were both 
related to OS and RFS in Kaplan–Meier survival analysis 
(Fig. 10c).

Fig. 6  Construction and evaluation of the breast risk prediction model in TCGA. a Overall survival in univariate Cox regression of target genes. b 
Lasso regression for genes in univariate Cox regression. c The horizontal axis represents the samples, and the vertical axis represents risk scores (top), 
overall survival (middle), and target genes (bottom). d The heatmap shows the expression of the 13 genes in high-risk and low-risk groups. The 
distribution of clinic-pathological characteristics was compared between the high-risk and low-risk groups. *P < 0.05, **P < 0.01 and ***P < 0.001. e 
Univariate and multivariate Cox regression analysis of the clinic-pathological factors (including risk score) related to overall survival. f ROC curves 
showed the predictive efficiency of the clinic-pathological factors (including risk score). g Kaplan–Meier overall survival curve for patients with 
high-risk group and low-risk group. h The expression of genes in lasso regression related to clinic-pathological factors
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Screening representative target gene and conducting 
clinical correlation analysis
Venn diagram summarize amount of predicted com-
posed gene of risk prediction models links for DEGs, 
OS, hub genes or clinical factors. Eventually, CORO1A 
and ANXA5 as the representative target genes for breast 

cancer (Fig. 11a) and DPP4 for prostate cancer (Fig. 11b) 
were made the following analysis. The results of the box-
plot indicated that there were significant differential 
expression of three representative target genes between 
male and female in normal breast tissues (Additional 
file  1: Figure S3). Additional file  1: Table  S1 shows the 

Fig. 6  continued

Fig. 7  Construction and evaluation of the prostate cancer risk prediction model in TCGA. a Overall survival in univariate Cox regression of target 
genes. b Lasso regression for genes in univariate Cox regression. c The horizontal axis represents the samples, and the vertical axis represents risk 
scores (top), overall survival (middle), and target genes (bottom). d The heatmap shows the expression of the 5 genes in high-risk and low-risk 
groups. The distribution of clinic-pathological characteristics was compared between the high-risk and low-risk groups. *P < 0.05, **P < 0.01 and 
***P < 0.001. e Univariate and multivariate Cox regression analysis of the clinic-pathological factors (including risk score) related to overall survival. 
f ROC curve showed the predictive efficiency of the risk score. g Kaplan–Meier overall survival curve for patients with high-risk group and low-risk 
group. h The expression of genes in lasso regression related to clinic-pathological factors
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results of the GO enrichment analysis of BP category. 
CORO1A was mainly enriched in 15 BP items, and 3 
among them (including positive regulation of T cell acti-
vation, positive regulation of leukocyte cell–cell adhe-
sion and positive regulation of cell–cell adhesion) were 
co-enriched with DPP4. ANXA5 was mainly enriched 
in 3 BP items, and peptide hormone secretion was co-
enriched with DPP4. Thus, CORO1A, DPP4 and ANXA5 
might play the significant roles in some common biologi-
cal process of tumor.

We assessed the expression levels of CORO1A and 
ANXA5 in breast samples by subgroup analysis of 
multiple clinic-pathological features. The expression 
of CORO1A was significantly higher in breast can-
cer patients than normal controls in subgroup analysis 
based on female, age, menopause status, disease stage 
1–3, nodal metastasis status, and molecular subtypes 
(all P < 0.05, Fig.  11c). We also compared the relative 
expression levels of CORO1A between subgroups in 
breast cancer tissues, and found that female was higher 
than male (P < 0.001), post-menopause was higher than 
peri-menopause (P = 0.041), N1 was higher than N0 
(P = 0.048), triple negative breast cancer (TNBC) was 
higher than luminal subtype (P < 0.001). The expres-
sion of ANXA5 was significantly lower in breast cancer 
patients than normal controls in subgroup analysis based 
on gender, age, menopause status, disease stage, nodal 
metastasis status, and molecular subtypes (all P < 0.001, 
Fig. 11d). We also compared the relative expression lev-
els of ANXA5 between subgroups in breast cancer tis-
sues, and found that luminal subtype was lower than 
TNBC (P = 0.007) and HER2 postitive (P = 0.003) sub-
types, peri-menopause was higher than per-menopause 
(P = 0.028) and post-menopause (P = 0.002), and as the 

age progressed, the expression of ANXA5 decreased (all 
P < 0.05, Fig.  11d). The expression levels of DPP4 based 
on gleason score 9 group, N1 nodal metastasis group, and 
FOXA1 mutation group in prostate cancer tissues were 
lower than normal controls (all P < 0.001, Fig.  11e). We 
then assessed the expression of DPP4 between subgroups 
in prostate cancer tissues, and found DPP4 expression 
in N1 was low than N0 (P < 0.001). As the gleason score 
increased, the expression of DPP4 decreased. The expres-
sion of DPP4 was lowest in FOXA1 mutation group, and 
found a statistically significant only compared to ETV1 
fusion (P = 0.012), ERG fusion (P < 0.001), SPOP muta-
tion (P = 0.001) groups (Fig. 11e). Thus, the expression of 
CORO1A and ANXA5 may serve as the potential diag-
nostic indicators in breast cancer, and DPP4 might play 
a significant role in the tumorigenesis and progression of 
prostate cancer.

Discussion
Goserelin is an accepted alternative to diethylstilbestrol 
or orchidectomy in the management of men with pros-
tate cancer. Goserelin was the most widely accepted 
upfront method of ovarian suppression in premenopau-
sal women (especially for women who want to have chil-
dren) due to its advantage of being easy to administer, 
noninvasive and reversible. As palliative treatment for 
premenopausal women with ER-positive breast cancer, 
goserelin may similarly rival ovariectomy [16]. Andro-
gen-deprivation therapy (ADT) has traditionally been 
the mainstay of patients diagnosed with advanced pros-
tate cancer [17]. Because treatment of advanced prostate 
cancer is only palliative, treatment should be aimed at 
enhancing quality of life, and treatment with goserelin 
has a more favourable effect on the quality of life than 

Fig. 8  Defining breast cancer signature by consensus clustering and evaluating its prognostic value. a Criteria for selecting number of categories. 
b Color-coded heatmap corresponding to the consensus matrix for k = 7 obtained by applying consensus clustering. Color gradients represent 
consensus values from 0–1; white corresponds to 0 and dark blue to 1. c Kaplan–Meier plot showing the OS for the seven classes. d The expression 
levels of the genes in different clusters were presented in the heatmap with clinic-pathological variables as the annotations

(See figure on next page.)



Page 18 of 27Zhao et al. Cell Biosci            (2021) 11:5 



Page 19 of 27Zhao et al. Cell Biosci            (2021) 11:5 	

surgical castration. However, not all users of goserelin 
can benefit from it, or some patients are not sensitive 
to goserelin. The advent of network pharmacology has 
highlighted the need for accurate treatment and predic-
tive biomarkers. Network pharmacology approaches have 
been used from two points of view: (1) to identify novel 
targets and (2) to determine which unknown signaling 
pathways interact with compounds [18]. In this con-
text, disease enrichment analysis indicates that goserelin 
might be related with cancer pathways in general, sug-
gesting its potential as an antitumoral compound. Our 
data showed that the compound of goserelin yielded 76 
candidate target genes. In order to improve the treatment 
management of goserelin, it is important to identify novel 
drug targets that can improve prognostic evaluation, 
recurrence prediction, and the success of medication. 
However, few study has demonstrated that drug targets 
can be used for construction of disease subgroups and 
prognostic evaluation.

In the present study, we identified 18 DEGs in breast 
cancer tissues and 5 DEGs in cells, and 6 DEGs in pros-
tate cancer tissues and 9 DEGs in cells. CRABP2 is the 
common DEG both in breast and prostate cancer. Previ-
ous reports state that  abnormal expression of CRABP2 
is associated with malignant cancers in the human being 
[19]. In our study, CRABP2 is highly expressed in breast 
cancer, and lowly expressed in prostate cancer. CRABP2 
transports RA to the retinoic acid receptor (RAR) in 
the nucleus and regulates cell proliferation, apoptosis, 
invasion, and metastasis.  However, how RA regulates 
CRABP2 in mammary cancer invasion and metastasis 
requires further investigation. Murphy et  al. [20] used 
multiple omics platforms to integrate biomarkers to 
improve the stratification of patients with aggressive and 
indolent prostate cancer. This study is of high research 

value, but its risk stratification of the disease depends on 
multiple sets of data, which may increase the complexity 
and cost of diagnosis. Considering the experiences from 
a previous study showed that a combination of multiple 
genes manifests more efficiently than a single gene as a 
diagnostic or prognostic biomarker [21]. Next, univari-
ate Cox regression followed by lasso regression was used 
to validate independent factors and construct a risk pre-
diction model for breast and prostate cancer patients 
in our study. Although the composed genes of the risk 
prediction models for breast and prostate cancer were 
completely different, the low-risk group had significantly 
better survival than the high-risk group in both models. 
The results of ROC also showed that the model we con-
structed exhibited good classifier performance. Although 
the well predictive value of model was available, the sig-
nificance of these genes in relation to tumor classifica-
tion, survival time, and prognosis need to be confirmed 
in more groups of patients. Then, seven breast cancer 
subgroups (cluster1- cluster7) and six prostate cancer 
subgroups (cluster1- cluster6) were identified by consen-
sus clustering according to the expressions of the target 
genes, which were selected for construction of the risk 
signature. We found that there were significant statistical 
differences in survival between the clusters of both breast 
and prostate cancer. Therefore, the candidate target genes 
of goserelin may serve as the potential prognosis indica-
tors screened by univariate Cox regression analysis.

On the basis of various prospective and retrospective 
studies of breast cancer, age is an independent prognos-
tic factor with worse survival [22–26]. Recent reports 
from large clinical trials have established that tamoxifen 
or aromatase inhibitor (AI) in combination with ovarian 
suppression strategies was superior to tamoxifen alone in 
very young women [27, 28]. Medical ovarian suppression 

(See figure on next page.)
Fig. 9  Defining prostate cancer signature by consensus clustering and evaluating its prognostic value. a Criteria for selecting number of categories. 
b Color-coded heatmap corresponding to the consensus matrix for k = 6 obtained by applying consensus clustering. Color gradients represent 
consensus values from 0–1; white corresponds to 0 and dark blue to 1. c Kaplan–Meier plot showing the OS for the six classes. d The expression 
levels of the genes in different clusters were presented in the heatmap with clinic-pathological variables as the annotations
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Fig. 10  The prognostic value of goserelin target genes in breast cancer patients younger than 35 years in ICGC data. a Kaplan–Meier overall survival 
curve for patients with high and low indicated gene expression. b Kaplan–Meier recurrence-free survival curve for patients with high and low 
indicated gene expression. c Venn diagram summarize the representative target genes both related to OS and RFS
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(MOS) such as goserelin are equally efficacious to non-
pharmacological ovarian suppression (NPOS) methods, 
which includes surgical oophorectomy and ovarian irra-
diation [15]. Furthermore, recent data from Suppres-
sion of Ovarian Function Trial (SOFT) and Tamoxifen 
and Exemastane Trial (TEXT) indicated the superiority 
of combining AI with goserelin in the cohort of adju-
vant premenopausal patients younger than 35 years, may 
potentially result in an increase utilization of goserelin 
in the future [29]. In this study, we analyzed RNA-seq 
datasets from the ICGC database of very young breast 
cancer patients. We defined the risk prediction model of 
OS using 5 target genes, and 7 genes use for RFS model. 
There are two common genes (ASAP1 and NDST1) to 
build of risk prediction models for OS and RFS, and he 
high-risk group had significantly worse prognosis com-
pared to low-risk group in both models. The results of 
ROC curve showed that the model of very young breast 
cancer patients we constructed have better classifier 
performance compared to all patients’ model of breast 
cancer. Thus, the above results demonstrated that the 
risk prediction models constructed with goserelin tar-
get genes can well distinguish the prognosis of patients, 
especially for very young breast cancer patients.

Although a combination of multiple genes mani-
fests more efficiently than a single gene as a diagnostic 
or prognostic biomarker, the predictive role of single 
gene was also explored in our study. CORO1A is highly 
expressed in cells of the haematopoietic lineage, where 
it has been predominantly investigated in lymphocytes, 
macrophages, mast cells and neutrophils [30], but has 
not been reported in tumors. Annexin A5 (ANXA5) 
is a member of the calcium and phospholipid binding 

protein family called the annexins, which bind phos-
phatidylserine (PS) with high affinity. Due to its prefer-
ential PS binding property, AnxA5 has been utilized as 
a marker for the detection of cells undergoing apoptosis 
[31]. Our data indicated that the expression of CORO1A 
and ANXA5 are significantly associated with multiple 
clinic-pathological features of breast cancer, such as age, 
menopause status, disease stage, nodal metastasis status, 
and molecular subtypes. Dipeptidyl peptidase (DPP)4 
is a membrane-bound protein found in many cell types 
of the body, and a soluble form is present in body flu-
ids [32]. Nazarian et  al. found that DPP4 was reduced 
in mice with progressive invasive prostate cancer, and 
DPP4 activity could be used alone or in combination, 
the latter being more likely, with other markers of pros-
tate cancer as an indicator of metastatic disease [33]. 
DPP4 as the composed gene of risk prediction models in 
prostate cancer, its expression is significantly related to 
multiple clinic-pathological factors and survival in our 
results. These findings emphasize the important role of 
the target genes of goserelin in constructing tumor risk 
models and evaluating prognosis.

Conclusion
In conclusion, this study presents a novel signature 
with demonstrated prognostic value similar in magni-
tude to that of clinical staging of breast and prostate 
cancer, and having added value in very young breast 
cancer patients. This signature can facilitate identifi-
cation of new biomarkers which sensitive to goserelin, 
increase the using accuracy of goserelin and clarify the 
classification of disease molecular subtypes in breast 

Fig. 11  Screening representative target gene and conducting clinical correlation analysis (UALCAN). a Venn diagram summarize the representative 
target genes of breast cancer, CORO1A screening in left and ANXA5 in right. b Venn diagram summarize the representative target genes of prostate 
cancer. c CORO1A transcription in subgroups of patients with breast cancer, stratified based on gender, age menopause status, disease stage, 
nodal metastasis status, and molecular subtypes. d ANXA5 transcription in subgroups of patients with breast cancer, stratified based on gender, 
age menopause status, disease stage, nodal metastasis status, and molecular subtypes. e DPP4 transcription in subgroups of patients with prostate 
cancer, stratified based on age, gleason score, nodal metastasis status, and molecular signature

(See figure on next page.)
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and prostate cancer. Future experimental and clinical 
studies are necessary to produce a solid confirmation of 
our results.
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