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Exosomal cargos modulate autophagy 
in recipient cells via different signaling 
pathways
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Abstract 

Vesicular system of mammalian cells is composed of two intracellular and extracellular vesicles systems, which 
contributes to the intra/intercellular communication and cellular homeostasis. These systems mediate transferring of 
biological molecules like proteins, nucleic acids, and lipids inside the cytoplasm, and between the cells. By the present 
study, authors describe molecular crosslink between exosome biogenesis and autophagy and take a certain focus 
on the autophagic cargos of exosomes and signaling pathways involved in exosome-induced autophagy in target 
cells and vice versa. Autophagy the generation of double-phospholipid vesicles, is a process that engulfs damaged 
proteins and organelles, share molecular similarity and function synergy with exosomes biogenesis for degradation or 
exocytosis of certain cargo. Exosomes, the smallest subtype of extracellular vesicles, originating from the membrane 
of the multivesicular body located inside cells demonstrate key roles in the intracellular and intercellular communica-
tion. Growing evidence demonstrates the interaction between exosome biogenesis and autophagy both at inter-
twined molecular pathways and crossbred vesicles known as amphisomes. Crosstalk between exosome biogenesis 
and autophagy contributes to maintain cellular homeostasis under external and internal stresses. Moreover, these 
processes can modulate each other via different signaling pathways. Exosomes contain autophagic cargos that 
induce autophagy via the cascade of molecular events in target cells, which called here exosome-induced autophagy. 
Taken together, crosstalk between exosome biogenesis and autophagy plays pivotal roles in cell homeostasis. Shed-
ding light on the interaction between endomembrane systems may promote our knowledge about the relation 
between exosome and autophagy pathways in lysosome-related disorders against treatments; proposing a theoreti-
cal approach for therapy.
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Background
The endomembrane system of the mammalian cells 
encompasses the membranes and organelles that collab-
orate to maintain homeostasis through modifying, sort-
ing, and transferring lipids, nucleic acids, and proteins 
[1, 2]. Various organelles including the nuclear envelope, 
endoplasmic reticulum, Golgi apparatus, and lysosomes 
participate to mediate different essential processes such 
as importing and exporting of different bio-molecules [1, 
2]. Autophagy, a self-degrading process, has been con-
sidered as a dynamic process that plays pivotal roles in 
homeostasis of cells, especially in stressful conditions 
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[3]. Unwanted/damaged molecules and organelles are 
degraded by the autophagic activity of cells, therefore, 
cells remain safe against stress [3]. Energy balance and 
ATP content of cell regulate autophagy flux, therefore, 
these factors could ignite autophagic switch on/off based 
on cell status [4].

Autophagy may link with other endomembrane sys-
tems as well as signaling pathways to regulate endocy-
tosis, exocytosis, and even hydrolysis of bio-molecules 
[5, 6]. The ability of extracellular vesicles (EVs), espe-
cially those derived from endosomal system, exosomes, 
to cooperate with autophagy flux for preserving cellular 
homeostasis has recently been reported [7]. Exosomes 
are known as the smallest EVs that originate from late 
endosome (multivesicular body (MVB)) located at the 
cytoplasm ([8] {Jabbari, 2019#135)}. These vesicles 
released from most cells mediate intercellular commu-
nication by transferring bio-active molecules such as 
various proteins, lipids, RNAs and even DNA strands [9]. 
Besides, exosomes may participate to expel, degrade, and 
recycle of biomolecules, which may support the idea that 
exosome and autophagy pathways work together to pro-
mote cell survival [10, 11]. Through constant recycling 
of bio-molecules, cells achieve their metabolic demand 
and refurbish essential organelles, which support prolif-
eration, growth, differentiation, and the management of 
physiological offers [12]. Confirmed that, in physiological 
conditions, autophagy facilitates cellular metabolism and 
homeostasis, however, it also mediates the pathogenesis 
of several diseases [13, 14]. Similarly, exosome biogenesis 
plays pivotal roles in normal condition and progression of 
different diseases. In light of recent studies, there is now 
evidence that both processes may synergically and alter-
natively act to support cells and the constituent of these 
endomembrane systems is structurally and functionally 
interlocked [15]. Outlining these complex networks may 
expand our knowledge about underlying mechanisms 
involved in vesicular trafficking, the fate of cargos of vesi-
cles, the key roles of these vesicles in both intracellular 
and intercellular communication, and progression of lys-
osomal diseases. Here, we discuss the recent progress on 
the crosslink between exosome biogenesis and autophagy 
pathways; and also describe signaling pathways involved 
in mediating exosome-induced autophagy and vice versa.

Autophagy
protein metabolism (degradation and synthesis) is fun-
damental to maintain cellular homeostasis [16]. The 
interplay between the ubiquitin–proteasome system 
and autophagy pathway enables cells to recycle/deport 
intracellular unwanted/impaired proteins and organelles 
[3]. Autophagy is a complex process that mediates the 
degradation of unwanted proteins and dysfunctional 

organelles through fusion with lysosomes or by expeling 
them outside of the cell in such condition [17]. Accord-
ing to literature [18, 19] (Fig. 1), three types of autophagy 
have been documented; (I) Macroautophagy: a dual lipid 
membrane, autophagosome, surrounds the exhausted 
materials and fuses with lysosomes to form autophago-
lysosomes; (II) Microautophagy enters directly sub-
stances into the lysosomes through the intrusion of 
self-membrane and finally (III) Chaperone-mediated 
autophagy (CMA) degrades target molecules by engaging 
specific motifs (KFERQ) targeted by Heat shock cognate 
71 kDa protein (HSC70) complex and then adhere to lys-
osomes via lysosomal-associated membrane protein type 
2A (LAMP2A) [20]. Several stimuli facilitate autophagy 
flux/returns. For instance, reactive oxygen species (ROS), 
hypoxia, and starvation could contribute to autophagy 
flux [21]. The nutrient availability has been demonstrated 
to mediate autophagy flux through the organized tar-
geting of rapamycin (mTOR) signaling pathway. In cells 
that are rich in nutrients and growth factors, the mTOR 
complex 1 (mTORC1) down-regulates the autophagy by 
phosphorylation and inhibition of the autophagy-initi-
ating kinase Unc-51-like kinase 1(ULK1) and ATG13. 
On the contrary, the nutrient starvation inhibits the 
mTORC1, accordingly induces autophagy flux to save 
energy [22]. As shown in Fig.  1, the autophagy process 
comprises multiple steps such as initiation, elongation, 
expansion, and finally fusion with lysosomes to form 
autophagolysosomes (or namely amphysomes). Initia-
tion of autophagy is mediated by a membrane nucleation 
event, which requires enrollment of the ULK1 complex 
and other molecules including FIP200, ATG13, ATG9, 
ATG6 (Beclin1), and also ATG5-ATG12-ATG16 com-
plex (Fig. 1). In this scenario, ULK1 and ATG13 interact 
with ATG17 to form a ULK1-ATG13-ATG17 complex, 
which initiates autophagosome development in presence 
of ATG9. Simultaneously, PI3K-III nucleation complex 
containing Beclin1, VPS14, VPS35, and ATG14 promotes 
autophagy flux. Indeed, once autophagy is initiated, 
ATG14 backlog on the ER-mitochondrion interaction 
surface and promotes the nucleation step. In this situa-
tion, ATG4 catalyzes the formation of LC3-I from LC3, 
whereas ATG7 and ATG3 form LC3-II from LC3-I. In 
this conjugation system, the phosphatidylethanolamine 
(PE) conjugates to LC3-II and phagophor is being matu-
rated to autoghagosome. In the expansion step, the PE-
conjugated LC3-II located on both sides of the membrane 
of autophagosome. In the final step, LC3-II molecules are 
detached from the cytoplasmic side of the membrane and 
autophagosomes fuse with lysosomes to form autolys-
osomes where cargos are hydrolyzed (Fig. 1). The intra-
cellular trafficking of autophagic vesicles is complex and 
mediated by different molecules such as microtubules, 
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LAMP1/2, Rab7, soluble NEM-sensitive factor (NSF) 
attachment protein receptor (SNARE) proteins, VPS, 
and endosomal sorting complexes required for transport 
(ESCRT) complex.

Exosome biogenesis
The extracellular vesicles (EVs) term refers to nano-sized 
vesicles releasing from the most mammalian cells into 
the extracellular environment [23]. Three types of EVs 
have been classified according to their origin and size; 
the endosomal-derived one is exosomes with 30–120 nm 
in diameter [24] (Fig. 2). These vesicles contain a differ-
ent form of biomolecules including nucleic acids, pro-
teins, lipids, and carbohydrates that play pivotal roles 
in the intracellular communication [25]. Exosomes ini-
tially are generated from endosomal compartments and 
share different networks of relations with endocytosis, 
lysosomal degradation and autophagy. In the endoso-
mal pathway, trapped cargo or molecules placed on the 

plasma membrane (PM) are packed into early endosomes 
which finally are either recycled to the PM or sorted 
into late endosomes also called MVB. MVBs cargo may 
be directed into intraluminal vesicles (ILVs) for con-
sequent secretion into extracellular milieu or directed 
to lysosomes for degradation [24, 26] (Fig.  2). Origin of 
exosomes is endosomal membrane, indeed, invagination 
of the MVB membrane forms ILVs inside MVB which are 
finally released outside of the cell when MVB combines 
with the PM [24, 26]. The stress and diseases condition 
may participate in inducing exosomes biogenesis, which 
we have recently described [27, 28].

Several studies have been published on exosome bio-
genesis [29, 30]. These studies demonstrated that differ-
ent synchronized mechanisms contribute to exosome 
biogenesis which involves ESCRT-dependent machinery 
and ESCRT-independent machinery [29, 30] (Fig. 2). The 
ESCRT machinery has been demonstrated to composed 
of four complexes (ESCRT 0, ESCRT I, ESCRT II, and 

Fig. 1  The autophagy flux. A diagram showing the autophagy and main regulatory molecules of autophagy pathway is presented. Three forms 
of autophagy may arise in cells; microautophagy, chaperone-mediated autophagy, and macroautophagy. Microautophagy is the procedure that 
impaired biomaterials directly sorted into lysosomes. In the chaperone-mediated autophagy, HSC70 classifies proteins containing specific motifs 
(KFERQ) and directs them into lysosome via interaction with LAMP2A molecules sited on lysosome membrane. Macroautophagy (autophagy) 
facilitates the lysosomal degradation of impaired proteins and organelles through four steps including initiation, nucleation, expansion, and finally 
fusion the autophagosome with lysosomes. Several proteins such as ULK, ATG13, FIP200, Beclin-1, ARG101, ATG5, ATG14L, ATG16L, LC3, and PE, in 
several steps, facilitate the development of autophagosome
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ESCRT III) and auxiliary molecules placed on the MVBs 
membrane which mediate the development of ILVs inside 
the MVBs and direct the ubiquitinated proteins into ILVs 
in presence of ATPase enzyme [24, 31]. The cascade of 
interaction among ESCRT subunits and accessory mol-
ecules leads to ILVs generation. Increasing evidence 
showed that exosomes from;diverse cell origin contain 
the common markers, for example, CD63, CD81, CD82, 
CD9, hepatocyte growth factor-regulated tyrosine kinase 
substrate (HRS), apoptosis-linked gene 2-interacting pro-
tein X (ALIX) [32, 33].

In the ESCRT-independent machinery, subunits other 
than ESCRT-dependent machinery including several 

lipids, tetraspanins, proteins, and microdomains (mem-
brane typology) participate in MVB’s membrane inward 
budding and exosomes sorting [24]. In this scenario, for 
instance, ceramide a waxy lipid molecule plays a piv-
otal role in biogenesis of ILVs from MVBs of glial cells 
[34]. As a matter of fact, proteolipid proteins (PLP) are 
sorted into ILVs in lack of the ESCRT machinery subu-
nits by raft-based microdomains that richly associated 
with sphingolipids, from which ceramides are made by 
the activity of an enzyme known as sphingomyelinases. 
Ceramide stimulates assembly of the microdomains and 
prompts ILVs generation [34] (Fig.  2). In parallel, other 
molecules such as CD63, CD9, CD82, and phospholipase 

Fig. 2  The exosome pathway. These small vesicles (30–120 nm) of endocytic origin are formed by inside budding of the membrane of late 
endosomes, generating multivesicular bodies (MVBs), and are released into the extracellular matrix by fusion of the MVBs with the plasma 
membrane (secretion pathway). Alternatively, MVBs may fuse with lysosomes for hydrolysis of exosomes (degradation pathway) or back-fuse with 
the plasma membrane for recycling such molecules (back-fusion pathway). Exosome cargo may consist of endocytosis, Golgi apparatus, and 
cytoplasm. Various molecules contribute to biogenesis of exosomes, including the ESCRT machinery, tetraspanins and lipids (ceramide). It is still 
unclear whether these mechanisms simultaneously generate the same MVB or not. Various Rab-GTPase proteins (Rab7, Rab11, Rab27a,-b, and 
Rab35) are involved in the intracellular trafficking of MVBs/exosome. Furthermore, SNAREs have been proposed to facilitate the fusion of MVBs with 
the plasma membrane. EE: early endosome; ER: endoplasmic reticulum; GA: Golgi apparatus; L: lysosome; N: nucleus
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D2 have been reported to play essential roles in the 
development of MVBs in different cells [35–37]. Collec-
tively, ESCRT-dependent or independent machineries 
are involved in exosome biogenesis; however, it is indis-
tinct whether both types of machinery work inside a cell 
concurrently in a synergy or independent manner, and 
whether several types of exosomes, and their cargo are 
made via collaboration of such distinct machineries in 
these pathways or not [24, 38]. Moreover, biomolecules 
exported from Golgi apparatus, engulfed from endocyto-
sis pathway and/or from autophagosomes participate in 
exosome biogenesis and loading processes [39].

Along with crosstalk with autophagy, the MVBs also 
share collaborations with lysosomal degradation pathway. 
Outlined in the literature [24, 40], the mature MVBs may 
be degraded by the fusion with lysosomes or contribute 
to the recycling of biomolecules by back-fusion with the 
PM. In a well-known pathway, MVBs directly fuse with 
the PM and secrete ILVs as exosomes into the extracel-
lular matrix.

Other molecules including Rab-GTPase family facili-
tates trafficking of MVBs/exosomes inside cells [41]. For 
example, in the degradation pathway, Rab7 mediates traf-
ficking of MVBs to lysosomes for hydrolysis of MVBs 
cargo to adjust energy balance. Rab4 and Rab11 facili-
tate back-fusion of MVBs with the PM and decoration of 
the PM with surface molecules such as the major histo-
compatibility complex (MHC) and receptors. Whereas, 
Rab11, Rab27, and Rab35 are involved in MVBs fusion 
with the PM to release exosomes into extracellular milieu 
[42]. It has been suggested that SNAREs associated with 
the Rab proteins contribute to the fusion events of MVBs 
with the PM [39].

Interaction between autophagy and exosome 
biogenesis
Via molecular system
Interaction between exosome biogenesis and autophagy 
pathway has been reported [43] (Fig. 3). Recent evidence 
suggests that the common molecules contribute to gener-
ating exosomes and autophagy flux. For example, SNARE 
proteins not only facilitate the fusion of MVBs with the 
PM but also mediate autophagy membrane fusion. In this 
regard, Nair et al. showed that maturation of autophago-
some requires membrane fusion, which is depended on 
the activity of SNARE family proteins such as VAMP7, 
syntaxin 7, and syntaxin 8 [44]. VAMP7 plays a piv-
otal role in exosome secretion and is a key molecule for 
autophagy flux. Thus, SNAREs activity could represent 
the interaction between autophagosome/exosome bio-
genesis [45]. Furthermore, Rab11 protein, a MVB associ-
ated protein, has been reported to act as a platform for 
ATG proteins during the assembly of autophagosomes 

[46]. Previously, ALIX has been shown to associate with 
exosomal cargo, thus, it was suggested that ALIX asso-
ciation  mediates discrepancy  between lysosomal deg-
radation and exosomal secretory pathways [47, 48]. In 
addition, ALIX inhibition experiments showed a fun-
damental decrease in autophagy, signifying a crosslink 
arrangement between exosome biogenesis and autophagy 
pathway [49]. ATG12–ATG3 complex has ability to regu-
late MVB’s shape, distribution of late endosomes, and 
eventually exosome biogenesis [49]. Interestingly, inhi-
bition of the ATG12–ATG3 complex or ALIX did not 
inhibit starvation-induced autophagy that showing the 
contribution of the different overriding complexes in 
stress-induced and basal autophagy [50].

Growing evidence suggests autophagy-related pro-
teins contribute to exosome biogenesis in normal and 
pathological conditions [49, 51]. For example, in pancre-
atic tumor cells, autophagy-related proteins including G 
alpha interacting protein (GAIP) and C-terminus (GIPC) 
induced exosome secretion via metabolic pathways [43]. 
Guo et  al. reported that ATG16L1 and ATG5 play the 
pivotal roles in exosome biogenesis [51]. They showed 
that exosome biogenesis and exosomal lipidated LC3β 
secretion were significantly inhibited in breast cancer 
cells which are deficient in ATG5 and ATG16L1. ATG5 
mediates detachment of V 1/V 0–ATPase (vacuolar pro-
ton pumps) from MVBs which, in turn, inhibits acidic 
environment of the MVBs lumen and directs MVBs to 
the PM instead of lysosomes. These results added further 
information that MVB’s lumen pH is a determinant signal 
of exosomes fate [51]. Little is known about the role of 
LC3β in exosome biogenesis and it is not clear how this 
molecule participates in exosome secretion. This mol-
ecule is found on the inside face of ILVs, proposing the 
LAP-like lipidation mechanism on the MVB’s membrane 
or at the membrane invagination border that subse-
quently produces ILVs. As a result, secretion of the LC3B 
containing exosomes suggests the involvement of the 
LAP-like mechanism in producing of non-degradative 
ILVs [51]. It is proposed that ATG16L1 and ATG5 shield 
exosomes from degradation pathway and direct them 
into the secretory pathway. Other autophagic compo-
nents such as ATG12–ATG3 complex, which facilitates 
LC3β conjugation, contributes to exosome biogenesis 
via interaction with ALIX, a protein that interacts with 
ESCRT machinery for producing ILVs [49].

In Drosophila, it has been confirmed that ATG9 
facilities the generation of ILVs in the endosomal com-
partments. Indeed, inhibition of ATG9 induced per-
turbation in autophagy flux and reduced amount of the 
ILVs in autolysosomes and amphisomes, however, it 
was not determined whether these ILVs were released 
as exosomes or not [52]. Furthermore, class III PI3K 
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complex shares a pivotal role in exosome secretory and 
autophagy pathways.

In mammalian, this complex is made up of VPS34, Bec-
lin-1, p150, and several supplementary molecules that 
are involved in autophagy and endocytosis processes. 
PI3K is necessary for producing PI (3) P molecules, 
which facilitates membrane trafficking in endocytosis 
and autophagy processes. In this regard, the interaction 
of ATG14L with PI3K complex controls autophagosome 
maturity, while UVRAG involvement mediates endo-
some maturation indicating the determinative role of this 
complex [53]. Additionally, the PI3K complex associated 
with Run domain Beclin-1-interacting and cysteine-rich 
domain-containing protein (Rubicon) participate in LC3-
based phagocytosis [54] and block both endocytosis and 

autophagy [55]. In human chronic myeloid leukemia 
(CML) cells, it was reported that the distribution of the 
PI3K complex reduced both autophagy and exosome bio-
genesis [56].

Via vesicular system
Interaction between exosome secretion and autophagy 
via the vesicular system has been shown by the biogen-
esis of amphisome inside cells (Fig.  3). Amphisomes, 
hybrid vesicles, may illustrate the indication of crosslink 
between exosome biogenesis and autophagy pathways 
[57]. These vesicles are produced through hybridization 
of MVBs and autophagosomes, which finally combine 
with lysosomes for hydrolysis  of cargos such as ILVs or 
fuse with the PM for releasing ILVs [57] (Fig.  3). In a 

Fig. 3  Interaction between exosome biogenesis and autophagy. Beside link at molecular level, exosome biogenesis and autophagy pathways 
meet each other by the hybrid-vesicles known amphisomes. In this link, the common molecules including Rab11, Rab8a, and Rab27 mediate the 
trafficking of vesicles between exosome and autophagy pathways. Different autophagic-related proteins (ATG5, ATG16L1, and LC3β) located on 
the multivesicular bodies (MVBs) membrane, facilitate exosome biogenesis, distributing via exosome into extracellular matrix. Amphisomes are 
crossbreed vesicles of MVBs and autophagosome that may fuse with lysosomes or with the plasma membrane. It was proposed that biomolecules 
such as annexin A2 (ANXA2) are sorted into exosomes at amphisomes lumen. Amphisomes, similar to MVBs, can fuse with lysosomes or with the 
plasma membrane, however, molecular mechanisms involved in amphiboles fate is still remains unknown. EE: early endosome; L: lysosome
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study by Fader and co-workers, rapamycin or starvation 
treatment supported autophagy and MVB-autophago-
some combination and inhibited exosome secretion 
in K562 cell line [58], which suggesting cells challenge 
against energy imbalance. Interestingly, blockage of 
exosomes secretion alternatively leads to direct MVBs to 
the autophagy pathway. It has been proven that ISGyla-
tion of TSG101, an ESCRT-I complex protein, induced 
protein congestion and degradation and also diminished 
formation of MVBs and exosome in vitro and in a mouse 
model [59]. However, the block of lysosome-endosome 
fusion via inhibition of autophagy (by abafilomycin A1) 
improved exosome secretion, which indicated autophagy 
regulates the degradation of MVBs bearing ISGylation-
induced aggregate by lysosomes [59]. Following CD63 
knockout, it has been recently demonstrated that unusual 
endocytic vesicles degraded by autophagy, however, inhi-
bition of autophagy fairly increased exosome biogenesis 
[60]. These results highlighted the key role of CD63 in 
synchronizing endosomal and autophagic pathways.

In intestinal goblet cells, LC3β is associated with the 
endosomal molecules including EEA1, Rab11, and RAB7 
on amphisome-like structures, which correlated with 
the generation of ROS that regulates the secretion of 
mucin granules [61]. Correspondingly, in lung epithelial 
cells, amphisomes mediate generation of exosomes con-
taining annexin A2 (ANXA2) exosome [62]. Indeed, in 
these cells, IFN-γ induced autophagy and accumulation 
of ANXA2, CD63, and LC3β inside amphisomes, and 
RAB11 and RAB27A mediated fusion of amphisomes 
with the PM [62]. Noteworthy, this secretion of cargo is 
different from the exosome secretion pathway. Indeed, 
secretion of IL-1β via autophagy flux is related on MVBs/
exosome biogenesis [63] but autophagosome–lysosome 
combination dose not related to MVBs [64], demonstrat-
ing that LC3β-positive IL-1β containing compartments 
fuse with the PM. Besides, RAB8A facilities the secretion 
of the IFN-γ-induced ANXA2 containing exosomes [24] 
and secretion of autophagy-dependent IL-1β [65].

Collectively, exosome and autophagy pathways syn-
chronize the intracellular removal process, so each 
pathway may initiate in deficiency of the other one 
alternatively. Degradable MVBs may be introduced to 
autophagy pathway, and malfunctioning in autophagy 
may direct MVBs to the PM and releasing exosomes 
[66]. Furthermore, it seems that there is the interplay 
between autophagy flux and cellular senescence, so 
increased senescence-associated EVs may be related to 
the insufficient autophagy status of senescent cells [67]. 
It is possible that these mechanisms may contribute to 
the pathogenesis of ageing diseases [68]. In addition, both 
processes may work together to shield cell from stress-
ors [69]. Due to diversity in used cell types and multipart 

in endosomal system, further inquiry is necessary to 
delineate the possible any more networks between these 
pathways.

Modulation of autophagy via exosome vice versa
As mentioned, normal autophagy flux is essential for 
maintaining cell homeostasis, while the excess autophagy 
causes cell death, indicating that autophagy has both 
the protective and detrimental functions in the path-
ological settings [13]. Jiang et  al. found that inhibi-
tion of autophagy contributes to improving ischemia/
reperfusion (I/R) injury in an animal model. Molecu-
lar experiments showed that mesenchymal stem cells 
(MSCs)-derived exosomes reduced LC3-II/I ratio and 
autophagosome formation, whereas up-regulated p62 
in heart tissue [70]. On the contrary, Jin and co-work-
ers declared that exosomes from adipose-derived stem 
cells (ADSCs) improved diabetic nephropathy through 
induction of autophagy flux and reducing apoptosis rate 
in podocytes [71]. Fujita et  al. reported that exosomes 
from cigarette smoke-induced bronchial epithelial cells 
result in airway fibrosis by autophagy regulation via the 
exosomal miR-210 [72]. Exosomes-related miRNAs (i.e. 
miR-19b, miR-20a/b, miR-21, miR-30a, miR-33, miR-
125b, miR-130a, miR-214, miR-221/222, miRNA-223, 
miRNA-302a, and miR-758) have been suggested to reg-
ulate autophagy flux via modulation of PI3K-Akt-mTOR 
and AMPK-mTOR signaling and downstream autophagic 
molecules including ATG or Beclin1, P62, and ULK1; 
which consequently increased expression of ABCA1 and 
cholesterol efflux in the atherosclerosis and cardiovascu-
lar diseases [73]. It has been revealed that tumor-derived 
exosomes play a major role in different stages of tumor 
progression of all cancer types. Regarding the gastric can-
cer cell-derived exosomes, they could regulate pro-tumor 
activation (polarization) of neutrophils via autophagy as 
well as HMGB1/TLR4/NF-κB signaling pathway induc-
tion which promoted proliferation and migration of 
gastric cancer cells [74]. There is increasing evidence 
that modulation of autophagy may cause alternation 
in exosomes loading/secretory pathway. For example, 
autophagy inhibition increased synuclein alpha (SNCA) 
secretion by neuronal cells which consequently resulted 
in the spreading of SNCA in brain tissue [75]. SNCA, 
an important cytosolic protein, plays a critical role in 
restricting of synaptic vesicles. It reduces release of some 
neurotransmitters such as dopamine transporter, parkin 
(ligase), tau protein and beta amyloid (β-amyloid) [76–
81]. Therefore, autophagy may affect exosomes cargo, 
secretion, and also the formation of hybrid autophago-
some-exosome vesicles [82]. Of note, α-synuclein widely 
considered to be the most important factor in Parkinson’s 
disease development. The previous study demonstrated 
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that following autophagy blockage by ATG5 silence, 
distribution of α-synuclein increased by the exosomes 
and toxicity in human neurons considerably diminished 
[83]. Similarly, it is worth to note that over-expression 
of tubulin polymerization-promoting protein (TPPP/
p25) caused an increase in exophagy rate (exocytosis 
of autophagic components) of α-synuclein, indicating 
unconventional secretion of α-synuclein following an 
inhibition in autophagosomes/lysosomal pathway [84]. 
Secretory carrier membrane protein 5 (SCAMP5) is 
believed to mediate α-synuclein propagation under the 
stress conditions by modulating autophagy flux and exo-
some secretion [85]. Regarding the infected hepatocytes 
by hepatitis C virus (HCV), a leading cause of liver malig-
nancies, it has been reported that inhibition of autophagy 
was a protective approach to increase survival rate of 
infected cells following the suppression of innate immune 
response. In another context, knockdown of autophagy-
related genes (BCN1 and ATG7) by up-regulation of 
BST-2 gene could inhibit the HCV sorting into exosomes 
and subsequently suppressed extracellular distribution of 
HCV [86]. Sahu et  al. documented that the knockdown 
of ATG7 resulted in an increased level of GAPDH in the 
exosome contents [87]. Miao et al. reported that rapamy-
cin (an autophagy inducer) treatment decrease exosome 
secretion, but rapamycin in conjugation with bafilomycin 
A1 (an autophagy inhibitor) led to an incredible release of 
exosomes [88]. The intracellular effectors and pathways 
suggest the possible coordination between autophagy 
and exosome biogenesis [15], which serves as a tool for 
cells to response against various stress conditions. How-
ever, the stimulatory or inhibitory effects are varying due 
to the pre-conditions and origin of cells.

Role of mesenchymal stem cell‑derived exosomes 
in autophagy flux
Stem cell-derived exosomes exhibit potentially beneficial 
effects through modulation of autophagy flux in target 
cells [89]. Several attempts have been made to investigate 
the pivotal roles of MSCs-derived exosomes in several 
diseases [27, 90]. These vesicles have been identified to 
modulate autophagy flux of target cells and contribute to 
attenuate adverse condition of diseases. For instance, the 
protective role of MSC-derived exosomes against myo-
cardial infarction is mediated by up-regulation of ATG13 
[91]. Further scrutiny confirmed that 3-methyladenine, 
an autophagy inhibitor, inhibited the therapeutic effect 
of exosomes in an I/R model [91]. Additionally, exosome 
secreted from ADSCs considered as a therapeutic tool 
in diabetic nephropathy. In this regard, miR-486 cargo 
of these exosomes could be able to ameliorate the urine 
profiles and high blood glucose level through suppression 

apoptosis and induction of autophagy in podocytes [92, 
93].

A controversy research reported that exosomes from 
human MSCs had potential to attenuate I/R injury by 
inhibition of autophagy flux through up-regulation of 
mTORC1/p-4eBP1 [94]. Exosomes from pigment epithe-
lium-derived factor (PEDF)–over-expressing MSCs have 
been shown to contribute to neuroprotection through 
inducing autophagy, which attenuated cerebral I/R injury 
[95]. Previous studies have emphasized the therapeutic 
capacity of MSC-derived exosomes on the progression 
of cisplatin-induced acute nephrotoxicity; and revealed 
that these particles were capable of reducing apoptosis 
biomarkers and inflammatory-related cytokines follow-
ing over-expression of 14-3-3ζ protein and interaction of 
it with ATG16L [96, 97]. Exosomes obtained from MSCs 
over-expressing miRNA-181-5p up-regulated expression 
of Beclin-1 (autophagic protein) and decreased expres-
sion of Bcl-2 (anti-apoptotic protein) in mouse hepatic 
stellate cells, resulting in augmented autophagy and 
apoptosis in fibrotic livers. However, these exosomes 
considerably inhibited pro-fibrotic genes including 
α-SMA, collagen I, fibronectin, and vimentin hepatic 
stellate cells, which inhibited CCl4-induced liver fibrosis 
in a mouse model [98].

More recently, it was demonstrated that MSCs-derived 
exosomes effectively protected hepatocytes against 
D-galactosamine and lipopolysaccharide (D-GalN/
LPS)-induced damage via increasing levels of autophagic 
related proteins (LC3B and Becin-1) and suppression 
of pro-apoptotic proteins [99]. The similar result were 
obtained in a rat model of spinal cord injury where 
authors showed that neural stem cell-derived exosomes 
suppressed apoptosis and neuro-inflammation, whereas 
induced autophagy [93].

Exosomal secretion of autophagic regulators
As mentioned above, exosomes contain several biologi-
cally active materials including nucleic acids, proteins, 
lipids, and carbohydrates [29] that deliver them to tar-
get cells. Exosomes considered to be the important tool 
in the induction of autophagy flux in target cells through 
transferring autophagic activator or/and autophagy-
related molecules. Autophagy was activated in recipi-
ent cells after internalization of exosomes. For instance, 
exosomes from breast cancer cells were capable of induc-
ing autophagy flux in recipient breast epithelial cells [97]. 
Even though the scientists are expected to discover the 
autophagic cargo of EVs, there is still not sufficient infor-
mation about them.

Growing evidence indicates EVs derived from MSCs 
contain several mRNAs of autophagy-related proteins 
including Beclin-1, LC3, and ATG7, which increase 
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the autophagy flux in hematopoietic stem cells [100]. 
Confirmed that, upon exosomes uptake, human breast 
epithelial cells produce ROS, which contributes to the 
increasing of autophagy flux [97]. For that reason, it is 
reasonable that the arrival materials potentially facilitate 
intracellular autophagy triggered by exosomes.

Besides the autophagic component, there is evidence 
that specific miRNA cargo of exosomes can affect the 
dynamic of autophagy in target cells. It was revealed that 
ionizing radiated astrocytes in brain produce exosomes 
enriched with miRNA-7, which induces autophagy in 
lung cells through targeting Bcl-2 in  vitro and in  vivo 
model [101]. Similarly, in a study by Song et  al. it was 
found that exosomes transferring miR-7-5p from γ -irra-
diated lung epithelial cells induced autophagy in target 
cells [102]. Ying and co-workers showed that exosomes 
purified from genetically modified MSCs transfer miR-
181-5p to HST‐T6 cells, mouse hepatic stellate cells, 
and to CCl4‐induced liver fibrosis mouse model which 
induced autophagy and improved liver injury [98]. In 
addition, previous studies demonstrated that miRNA-
30a cargo of cardiomyocytes exosomes and miR-30d-5p 
cargo of exosomes of brain cells up-regulated autophagy 
in the recipient cells [103, 104]. Other exosomal miRNAs 
such as miRNA-221/222 has been shown to down-reg-
ulate autophagy in endothelial cells [105]. It was dem-
onstrated that human MSCs-derived exosomes contain 
14-3-3ζ proteins that induced autophagy in HK-2 cells 
in  vitro. Exosomes-mediated autophagy inside HK-2 
cells was reduced after inhibition of the 14-3-3ζ gene in 
human MSCs [106]. These findings provide novel infor-
mation that exosomes may regulate autophagy through 
transferring the autophagic components or/and via the 
autophagic regulators.

Signaling pathways involved in cross‑regulation 
of exosomes‑induced autophagy
A growing body of literature has investigated the biologi-
cal responses of target cells received exosomes from the 
different sources [107, 108] (Fig. 4). As exosomes are dis-
tributed by much biological fluids, they can easily reach 
to target cells. Exosomes can regulate singling pathways 
of target cells through possible three ways including 
internalization, direct fusion, and ligand-receptor inter-
action (Fig. 4). These vesicles deliver several types of bio-
molecules to target cells by which may activate or/and 
inhibit different signaling pathways such as autophagic 
one. It was confirmed that exosomes secreted from 
breast cancer cells could connect with the normal human 
primary mammary epithelial cells (HMEC), and subse-
quently contributed to the tumorigenesis via increas-
ing ROS generation and autophagy [109]. However, 
our knowledge is not more detailed due to numerous 

exosomes cargos and variety in cells/exosomes is inves-
tigated. Furthermore, because of technical limitation, the 
ways that exosomes used to affect target cells is not fully 
understood. In this section, we discuss the possible sign-
aling pathways involved in the regulation of autophagy in 
target cells upon exosomes deliver.

Cross‑regulation by Akt/mTOR signaling pathway
Several singling pathways involved in autophagy flux 
(Fig.  4). Akt/mTOR signaling is an important compo-
nent in the cellular system and plays the key roles in 
numerous cellular processes including survival, prolif-
eration, growth, transcription, and angiogenesis [104]. 
It is confirmed that PI3K activates downstream signal-
ing molecules such as AKT through converting phos-
phatidylinositol-4, 5-bisphosphate (PtdIns (4,5)P2) to 
phosphatidylinositol-3,4,5-triphosphate (PtdIns(3,4,5)
P3) [110]. In addition, mTOR complex which is com-
posed of two subunits (mTORC1 and mTORC2) regu-
lates protein synthesis and mTORC1 subunit negatively 
regulates autophagy through phosphorylation of Atg 
13 and inhibiting it from association with the ULK1 
kinase complex [111]. In this regard, it has been proven 
that exosomes from MSCs potentially up-regulated the 
expression of LC3-II and Beclin-1 in the renal tissue of 
diabetic nephropathy (DN) mice through the activa-
tion of the mTOR signaling pathway, which behind the 
development of DN in mice. Moreover, the protective 
function of exosomes was proven in biochemistrical and 
histological analysis [92]. As a note, the pivotal role of 
mTOR and its downstream signaling molecule p70S6K 
in regulating autophagy has been confirmed [112]. PI3K/
AKT/mTOR axis facilities growth and metabolism events 
of mammalians [113]. Recently, Xue et  al. reported that 
Mitofusin2 was capable of inducing autophagy flux in 
pancreatic cancer cells via inhibiting the PI3K/AKT/
mTOR pathway [114]. In a similar vein, it was demon-
strated that treatment of lung cells with Perfluoroalkyl 
acid caused autophagy flux through suppressing the 
PI3K/AKT pathway [114]. Recent experiments indi-
cated that the exosomes of MSCs have the potential to 
control autophagy through PI3K/AKT/mTOR pathway. 
For instance, MSCs-derived exosomes reduced oxida-
tive stress and repressed myocardial remodeling in an 
I/R injury model by initiating PI3K/AKT signaling path-
way [115], indicating modulating of autophagy through 
increasing ATP. In support, MSCs-derived exosomes 
have been found that to increase autophagy in H9C2 
target cells. Concurrently, the transcripts of p-AKT/
AKT and p-mTOR/mTOR were intensely decreased, 
while the p-AMPK/AMPK ratio augmented in the cells 
received exosomes. Thus, at least, these pathways medi-
ated autophagy flux inside cells [109]. Surprisingly, 
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exosomal miR-30a and miR-125b-5p which derived from 
transplanted MSCs represents the protective effect on 
I/R-induced injuries in cardiomyocytes by autophagy 
regulation through the Akt/AMPK/mTOR pathways 
both in vitro and in vivo studies [116–118]. It seems that 
activation of the PI3K/AKT/mTOR signaling pathway 
reduces excessive autophagy and rescues cells from death. 
In contrast, mTORC1 suppression triggers autophagy 
and eradicates intracellular toxicity. EFGR (epidermal 
growth factor receptor) has been confirmed to mediate 
multiple cellular processes including survival, growth, 
and differentiation of different types of cells [119]. EFGR 
in upstream situation regulates Akt/mTOR signaling 
pathway and play a pivotal role in autophagic pathway. 
In human bronchial epithelial cells, exosomes delivering 

miRNAs such as miRNA-7-5p induced autophagy 
through EGFR/Akt/mTOR pathway [102]. Under physi-
ological conditions, EGFR-activated PI3K/AKT/mTOR 
signaling inhibits autophagy, while in tumors received 
therapies this pathway contribute to resistance via acti-
vation of autophagy. However, in tumors with resistance, 
EGFR targeting may provide us to overcome resistance 
[120]. As a result, this cross-regulation mediates exoso-
mal-induced autophagy in target cells.

Cross‑regulation by STAT3/BCL‑2/Beclin‑1 signaling 
pathway
STAT3 has been proved an important negative regulator 
in autophagy process as it inhibits the protein kinase R 
[121]. A recent study showed that MSCs decreased the 

Fig. 4  A schematic diagram of signaling pathways in exosome-mediated autophagy inside target cell. Different signaling pathways are involved 
in exosome-mediated autophagy. Exosomes may contribute to autophagy flux of target cells via directly delivering cargo into the cytoplasm or via 
interacting with such receptors as EGFR and TLR1/2/4/6 located on the plasma membrane. Other potential signaling pathways may be induced 
by exosomes. Red color for Akt/mTOR signaling pathway, Blue color for Toll-like receptor-ligand signal pathway, Light purple color for AMPK/mTOR 
signal pathway
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mRNA levels of STAT3 in human intrahepatic biliary epi-
thelial cells, which resulted in autophagy activation [122]. 
A growing body of evidence has demonstrated the inter-
action between autophagy and apoptosis [114]. In this 
scenario, there is evidence that Bcl-2, an anti-apoptotic 
molecule, interacts with Beclin-1, which may result in 
inducing autophagy [123] (Fig. 4). Qu et al. showed that 
exosomes from MSCs suppressed expression of Bcl-2 and 
STAT5 in HSC-T6 cells. Further scrutiny revealed that 
these vesicles contain miR-181-5p that down-regulated 
Bcl-2 and STAT5 but up-regulated the Beclin-1 expres-
sion. Authors concluded that MSCs-derived exosomes 
induced autophagy via the STAT3/BCL-2/Beclin-1 axis 
[98].

Cross‑regulation by toll‑like receptor‑ligand signal 
pathway
Toll-like receptors (TLRs), membrane passing proteins, 
are abundantly expressed in immune cells and renal 
tissue, and considered as autophagy mediators. For 
instance, it was reported that TLR2 induced autophagy 
in acute kidney injury model made by cisplatin and 
improved the global renal tissue parameters [124]. Wen 
et  al. found that TLR2 and TLR4 were up-regulated in 
hippocampus neurons of epilepsy mice. MiR-421-over-
expression experiment showed that autophagy was 
inhibited in hippocampus neurons of epilepsy mice, indi-
cating involvement of TLR/MYD88 signaling pathway 
[125]. Furthermore, there exist evidence that TLR2/1/
CD14 signaling which activated by mycobacterial lipo-
protein LpqH; induces antibacterial autophagy through 
cathelicidin and vitamin D receptor signaling [126]. 
Alvarez-Jimenez et al. demonstrated that exosomes from 
neutrophils infected with mycobacterium tuberculosis 
contain TLR2/6 ligands that induced autophagy flux in 
macrophages [127].

Cross‑regulation by AMPK/mTOR signal pathway
AMP-activated protein kinase (AMPK), a cellular 
energy regulator, contributes to autophagy flux. As men-
tioned previously, AMPK activates autophagy whereas 
mTOR inhibits autophagy. Xie et al. showed that hydro-
gen sulfide improved ischemic myocardium in murine 
model through AMPK-activated autophagy. In this 
regard, AMPK singling blocked mTOR activation that 
consequently resulted in autophagy flux [128]. Study of 
ezetimibe treatment showed that AMPK-TFEB pathway 
positively activated autophagy in cells [129]. Similarly, a 
study conducted by Zhao et al. showed that phosphoryla-
tion of AMPK promoted cytoprotection in myocytes fol-
lowing a hypoxia/reoxygenation injury [130]. In addition, 
AMPK/mTOR- mediated autophagy has been shown 
in an experiment that exosomes from MSCs increased 

autophagy in cardiomyocytes and diminished adverse 
effects of myocardial ischemia/reperfusion injury [109].

Clinical translation potential 
of exosomes‑mediated autophagy
Autophagy plays pivotal role in different pathologi-
cal condition such as cancer and cardiovascular dis-
eases (CVD) ([73] {Guo, 2013 #137)}. In tumor cells, 
both autophagy and exosome secretion are accelerated. 
Nutrient deprivation and hypoxia (which are present in 
the tumor environment) induce autophagy flux, which 
defends against inflammation and necrosis [131, 132]. 
In the case of cancer, autophagy is a bilabial process and 
in normal cells it contributes to inhibiting tumorigen-
esis, but in transformed cells, it promotes tumorigen-
esis. In tumor cells, autophagy also plays a dual role by 
supporting tumor growth and promoting tumor resist-
ance to therapy [133]. Exosomes may also accelerate 
tumorigenesis through inducing autophagy in recipient 
cells. For instance, a study by Dutta et al. presented the 
novel mechanisms by which breast cancer cell derived 
exosomes manipulate normal human primary mam-
mary epithelial cells (HMECs) to generate a tumor leni-
ent microenvironment. In this context, they showed 
that exosomes from human breast cancer cells induce 
ROS production, phosphorylation of ATM, H2AX and 
Chk1 as well as induction of DNA damage repair (DDR) 
responses in HMECs, which eventually contributes to the 
increasing of autophagy flux and tumorigenesis [97]. Ma 
et  al. found that exosomes from cisplatin-resistant non-
small cell lung cancer (NSCLC) contain miRNA-425-3p 
that facilitate autophagy flux and induce cisplatin resist-
ance in sensitive cells by targeting the AKT1/mTOR 
signaling pathway [134]. Similarly, exosomal miRNA-
425-3p derived from cisplatin-resistant NSCLC cells 
declined sensitivity to cisplatin via targeting the AKT1/
mTOR signaling pathway, which resulted in up-regula-
tion of autophagic activity [135]. However, more recently 
Kulkarni et al. reported that exosome-mediated delivery 
of miRNA-30a sensitize cisplatin-resistant variant of oral 
squamous cancer cells via modulating Beclin1 and Bcl2, 
suggesting exosomes potential therapeutic role [136]. 
Tumor microenvironment is composed of the complex 
communication between cells, therefore, paracrine-
mediated communication (such as exosomes) plays piv-
otal roles in signal transduction between neighboring and 
distant cells [137, 138]. It seems that exosomes can induce 
tumorigenesis through activation of autophagy in recipi-
ent cells, thus, targeting exosome-mediated autophagy 
may open new avenue to reduce tumor growth and resist-
ance. In addition, the key role of autophagy in CVD has 
been well-studied in literature [139, 140]. Preclinical evi-
dence suggests that autophagy is a double-edged sword in 
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CVD, acting in either advantageous or maladaptive ways, 
depending on the context. In this regard, the autophagic 
machinery in cardiomyocytes and other cardiovascular 
cells has been suggested as a potential therapeutic target 
[139, 140]. MSCs-derived exosomes have been shown to 
improve CVD through regulating autophagy. Liu et  al. 
found that exosomes from MSCs increased autophagy 
in cardiomyocytes through AMPK/mTOR pathway 
and reduced adverse effects of myocardial I/R injury 
[109]. Besides, MSCs-derived exosomes transfer miR-
30a and miR-125b-5p, which participate in improving 
I/R-induced injuries in cardiomyocytes by modulating 
autophagy via the Akt/mTOR signaling pathways both 
in vitro and in vivo studies [116–118]. Therefore, MSCs 
derived exosomes have potential to modulate autophagy 
in cells of cardiovascular system, proposing clinical 
application in CVD treatment. Determining the role of 
exosome-mediated autophagy manipulation in clini-
cal therapy will need approaches of assessing changes in 
autophagy in patients and their tumors/afflicted organs. 
Careful and exact assessment of autophagy with a focus 
on how to translate laboratory findings into related clini-
cal therapies remains a vital feature of improving clinical 
outcomes in patients with diseases.

Conclusions
Both exosome biogenesis and autophagy flux share cross-
link not only at function but also at molecular signaling 
and vesicular levels. Crosstalk between these processes 
enables cells to respond appropriately against such 
stress conditions and mediates cell to cell communica-
tion. MSCs-derived exosomes demonstrate beneficial 
effects through modulating autophagy in  vivo. Several 
autophagic molecules mediate exosome biogenesis, and 
autophagy and exosome biogenesis conjoin each other 
by the hybrid vesicles named amphisomes, which finally 
fuse with lysosomes or the plasma membrane. Exosomes 
transfer autophagic components and contribute to mod-
ulating autophagy in the target cells through different 
signaling pathways. More information on the interaction 
between exosomal and autophagic pathways would help 
us to establish a greater degree of accuracy on this mat-
ter for the treatment of various diseases such as cancer 
and CVD. Detailed mechanisms of this interaction is an 
intriguing one, some questions remain unresolved which 
could be usefully explored in further research. Dose cells 
produce different populations of MVBs and autophago-
somes? How the fate of MVBs and autophagosomes 
differentially synchronized? Are autophagic proteins 
transferred by different exosomes? What are mechanisms 
involved in exosomal loading of autophagic component? 
Which are signaling mechanisms involved in modulating 
exosome-based autophagy in target cells?
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