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RNA N6‑methyladenosine: a promising 
molecular target in metabolic diseases
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Abstract 

N6-methyladenosine is a prevalent and abundant transcriptome modification, and its methylation regulates the 
various aspects of RNAs, including transcription, translation, processing and metabolism. The methylation of N6-meth-
yladenosine is highly associated with numerous cellular processes, which plays important roles in the development 
of physiological process and diseases. The high prevalence of metabolic diseases poses a serious threat to human 
health, but its pathological mechanisms remain poorly understood. Recent studies have reported that the progres-
sion of metabolic diseases is closely related to the expression of RNA N6-methyladenosine modification. In this review, 
we aim to summarize the biological and clinical significance of RNA N6-methyladenosine modification in metabolic 
diseases, including obesity, type 2 diabetes, non-alcoholic fatty liver disease, hypertension, cardiovascular diseases, 
osteoporosis and immune-related metabolic diseases.
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Introduction
A total of 160 RNA modifications have been reported 
to participate in life activities and diseases progress, 
especially methylation [1]. In eukaryotic mRNA, 
there are several identified methylation modifications, 
such as N(7)-methylguanosine, N(6)-methyl-2′-O-
methyladenosine, 2′-O-methylation, N(6)-methyladen-
osine (m6A) and 5-methylcytosine (m5C) [2]. Among 
them, m6A has been considered as the most abundant 
internal modification, since it was discovered from meth-
ylated nucleosides in mRNA of Novikoff hepatoma cells 
in the early 1970s [3]. m6A is enriched in stop codon and 
3′ untranslated terminal region (UTR) and translates 
near 5′ UTR in a cap-independent manner [4–6], thereby 
regulating RNA transcription, translation, processing 
and metabolism [5, 6]. The process of m6A modification 

is reversible and can be regulated by three homologous 
factors jargonized as ‘writers’, ‘erasers’ and ‘readers’ [7, 
8]. For example, ‘Writers’ are categorized as the compo-
nents of that catalyze the formation of m6A methylation 
[7, 9]; ‘Erasers’ play an important role in m6A modifica-
tion for their demethylated functions [10, 11]; ‘Readers’ 
are a group of molecules which can decode m6A meth-
ylation and generate functional signals [12, 13]. So far, 
m6A has been found not only in mRNAs, but also in a 
variety of non-coding RNAs including rRNA, tRNA, 
snRNA, miRNA, and lncRNA [14, 15]. For example, 
m6A methyltransferase-like 3 (METTL3) interacts with 
the microprocessor protein DGCR8 and modulates 
miR-873-5p mature process positively [16]. The expres-
sion of m6A demethylase fat mass and obesity-associ-
ated protein (FTO) can influence the steady state level 
of various miRNAs, including increased expression of 
hsa-miR-6505-5p, hsa-miR-651-5p and hsa-miR-493-5p, 
and decreased expression of hsa-miR-7-5p, hsa-miR-
92a-1-5p and hsa-miR-6769a-3p [15]. In addition, m6A 
modification of lncRNAs can induce the proliferation, 
metastasis and apoptosis of cancer cells [17]. For exam-
ple, alkB homolog 5 (ALKBH5) inhibits pancreatic cancer 

Open Access

Cell & Bioscience

*Correspondence:  zhanhuak@qq.com; keyangxu@qq.com
†Huakui Zhan and Keyang Xu contributed equally to this article
1 Hospital of Chengdu University of Traditional Chinese Medicine, 
Chengdu 610072, Sichuan, China
4 Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical 
University, Hangzhou 310023, Zhejiang, China
Full list of author information is available at the end of the article

http://orcid.org/0000-0003-2210-8728
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13578-020-00385-4&domain=pdf


Page 2 of 11Li et al. Cell Biosci           (2020) 10:19 

motility by demethylating lncRNA KCNK15-AS1 [18], 
and METTL16 can methylate diverse cellular RNAs in 
human embryonic kidney 293 cells, consisting of 8 pre-
mRNAs, 355mRNAs, 68 lncRNAs and other type of 
RNAs [19].

m6A RNA modification is a widespread and reversible 
process, which is highly associated with multiple diseases 
such as metabolic diseases (MDs), infertility, virus infec-
tion and cancers [20–23]. In this review, we aim to sum-
marize the biological features and therapeutic potentials 
of m6A modifications in MDs.

Metabolic diseases
MDs refer to the pathological results of metabolic disor-
ders of proteins, fats, carbohydrates and other substances 
in the human body [24], including obesity, type 2 diabetes 
(T2D), non-alcoholic fatty liver disease (NAFLD), hyper-
tension, osteoporosis, chronic kidney disease, cardiovas-
cular disease and other related metabolic disorders [25]. 
Currently, there are over 1.9 billion adults and 340 mil-
lion children and adolescents with overweight or obese 
[26], more than 415 million people with diabetes [27], 
and 6–35% (median 20%) of population with NAFLD [28] 
around the world. In the past decades, the various treat-
ments were used to prevent and treat the aforementioned 
MDs but they are still limited [29]. For diabetes, the 
long term treatment is insufficient for controlling blood 
glucose by daily medicines take like metformin or sub-
cutaneous injection of insulin, as blood glucose is easy 
fluctuated by the intake of food and physical activity [30]. 
For the treatment of NAFLD, although lifestyle modifica-
tion, vitamin E, and clinical surgery as main methods are 
commonly used, there is no effective medicine to prevent 
the pathological development of it [31]. Recently, m6A 
RNA modification has been found to be involved in the 
development of MDs [32–34] (Table 1). Therefore, m6A 
modification might be potential targets for the therapy 
and early diagnosis of MDs.

m6A writers, erasers, readers
The regulators in m6A modification are categorized as 
‘writers’ and ‘erasers’ (methylation and de-methylation, 
respectively) and ‘readers’ (recognition) [35–37] which 
were presented in Fig.  1. The m6A methylation begins 
to be installed by a large multiprotein writer complex, 
which includes the core METTL3 and METTL14 meth-
yltransferase subunits and many other associated regu-
latory subunits [38]. METTL3 is a significant catalytic 
component [38, 39], and METTL14 as a homolog of 
METTL3 shares 43% identity with METTL3, which can 
help their RNA substrates recognize each other [39, 40]. 
These two proteins can form a stable heterodimer core 
METTL3–METTL14 complex that acts on the cellular 

m6A deposition of nuclear RNAs and increases the meth-
yltransferase activities in mammals [38]. Meanwhile, 
Wilms’ tumor 1-associated protein (WTAP), Virilizer 
like m6A methyltransferase associated protein (VIRMA/
KIAA1429), an E3 ubiquitin ligase for the E-cadherin 
complex (HAKAI), and zinc finger CCCH-type con-
taining 13 (ZC3H13/KIAA0853) are adaptor proteins 
which may guide the METTL3–METTL14 heterodimer 
to its target mRNAs. Besides, RNA-binding protein 15 
(RBM15) and RBM15B may participate in determining 
which sites can be methylated [9, 41–51].

The demethylated process of m6A ‘erasers’ are domi-
nated by two members of the a-ketoglutarate-dependent 
dioxygenase protein family, including FTO and ALKBH5 
[10, 11]. ALKBH5 and FTO as powerful m6A demethyl-
ases can effectively demethylate m6Am and m6A, but the 
demethylation capacity of FTO is stronger than ALKBH5 
[37, 52]. FTO is a significant fat mass and obesity asso-
ciated gene with a full length of 400  kp, including nine 
exons, which mainly locates in the 16q12-q24 of the 
human chromosome [53]. It is currently recognized as 
the most robust predictor of polygenic obesity [53, 54] 
as its capability of encoding for several important energy 
regulating proteins [55–58].

‘Readers’, YT521-B homology (YTH) family proteins, 
contain a YTH domain that can specifically recognize 
m6A methylation. YTHDF1, YTHDF2, YTHDF3, and 
YTHDC2 are predominantly located in the cytoplasm, 
while YTHDC1 is mainly found in the nucleus [12, 35, 
59–62]. Among them, YTHDF1, YTHDC2 can recognize 
and bind to the methyl tag on the RNA and influence the 
translation of the target RNA [60]. YTHDF2 can alter the 
distribution of various m6A-containing mRNAs in the 
cytoplasm and affect the stability of the target RNA [60]. 
A newly identified m6A reader family including insulin 
like growth factor 2 mRNA binding protein 1 (IGF2BP1), 
IGF2BP2 and IGF2BP3 can regulate gene expression by 
enhancing the stability of its target RNA [63]. In addi-
tion, fragile X mental retardation protein (FMRP) has 
showed to promote nuclear export of methylated mRNA 
targets during neural differentiation by reading m6A [64]. 
Another novel m6A reader, proline rich coiled-coil 2A 
(PRRC2A), controls myelination and oligodendrocyte 
specification by stabilizing target mRNA [65].

m6A methylation and T2D
The global prevalence of diabetes in adults is about 8% 
and it may increase to 10% by 2040 [66]. More than 90% 
of diabetes is T2D, which is characterized by hyper-
glycemia and dyslipidemia. Recent released studies 
have suggested that the m6A modification may play a 
critical role in the regulation of T2D [32, 67, 68]. For 
example, m6A highly stimulates glucose oxidation in 
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Table 1  The functions of RNA m6A methylation in metabolic diseases

m6A methylation plays crucial roles on the regulation of metabolic diseases, including obesity, type 2 diabetes, non-alcoholic fatty liver disease, hypertension, 
osteoporosis and immune-related metabolic diseases

Refs references

m6A Regulators Functions Refs

T2D FTO Promoting the mRNA expression of FOXO1, G6PC, and DGAT2, which are associated with 
glucose and lipid metabolism

[32]

METTL3 Inhibiting hepatic insulin sensitivity via N6-methylation of FASN mRNA and promoting fatty 
acid metabolism

[69]

Upregulating insulin/IGF1–AKT–PDX1 pathway in human β-cells [71]

METTL14 Decreasing cell death and the changes of cell differentiation of β-cells, increasing β-cell mass 
and insulin secretion

[70]

Upregulating insulin/IGF1–AKT–PDX1 pathway in human β-cells [71]

Obesity FTO Promoting adipogenesis by inhibiting the Wnt/β-catenin signaling pathway [86]

Promoting autophagy and adipogenesis via increasing the expression of ATG5 and ATG7 [87]

Promoting adipocyte proliferation via enhancing the expression of the pro-adipogenic short 
isoform of RUNX1

[77]

WTAP Suppressing adipogenesis by promoting cell cycle transition in mitotic clonal expansion [89]

METTL3 Suppressing adipogenesis by promoting cell cycle transition in mitotic clonal expansion [89]

Inhibiting adipogenesis via the depletion of ZFP217 and CCND1 [92]

METTL14 Suppressing adipogenesis by promoting cell cycle transition in mitotic clonal expansion [89]

YTHDF2 Inhibiting autophagy and adipogenesis by decreasing protein expression of ATG5 and ATG7 
and shortening the lifespan of their m6A-modified mRNAs

[87]

Suppressing adipogenesis by increasing m6A methylation of CCNA2 and CDK2 and reversing 
the methylation effect of FTO on CCNA2 and CDK2

[90, 91]

Inhibiting adipogenesis via the downregulation of CCND1 [92]

NAFLD FTO Down-regulating mitochondrial content and up-regulating TG deposition [101]

Promoting hepatic fat accumulation by increasing the expression of lipogenic genes, including 
FASN, SCD and MOGAT1, and intracellular TG level in HepG2 cells

[101]

Increasing oxidative stress and lipid deposition [99]

YTHDF2 Increasing lipid accumulation by decreasing both PPARα mRNA lifetime and expression [105]

METTL3 Increasing lipid accumulation by decreasing both PPARα mRNA lifetime and expression [105]

Hypertension m6A-SNPs EncodIing β1-adrenoreceptor, a hypertension-susceptibility candidate gene [108, 109]

Altering BP-related gene expression, mRNA stability and homeostasis [110]

Cardiovascular diseases FTO Decreasing fibrosis and enhancing angiogenesis in mouse models of myocardial infarction [111]

METTL3 Driving cardiomyocyte hypertrophy by catalyzing methylation of m6A on certain subsets of 
mRNAs

[112]

Decreasing eccentric cardiomyocyte remodeling and dysfunction [112]

Inhibiting cellular autophagic flux and promoting apoptosis in hypoxia/reoxygenation-treated 
cardiomyocytes

[113]

Osteoporosis METTL3 Inhibiting adipogenesis and adipogenic differentiation via JAK1/STAT5/C/EBPβ pathway in 
bone marrow stem cells

[119]

Inhibiting osteoporosis pathological phenotypes, consisting of decreased bone mass and 
increased marrow adiposity via PTH/PTH1R signaling axis

[118]

FTO Promoting the differentiation of adipocyte and osteoblast by upregulating GDF11–FTO–PPARγ 
signalling way

[116]

Enhancing the stability of mRNA of proteins which function to protect osteoblasts from geno-
toxic damage through Hspa1a–NF-κB signaling way

[120]

Immune-related MDs ALKBH5 Expressing highly in organs enriched in immune cells with frequent immune reactions [10, 123]

METTL3 Stimulating T cell activation and the development of T lymphocytes in the thymus by regulat-
ing the translation of CD40, CD80 and TLR4 signaling adaptor TIRAP transcripts in dendritic 
cells

[124, 125]

Maintaining T cell homeostasis and differentiation by targeting the IL-7/STAT5/SOCS pathways [126]
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rat adipocytes, which indicates that the proper level of 
m6A may be required to maintain certain concentration 
of blood glucose [67]. Many studies demonstrate that 
the content of m6A is negatively associated with the risk 
of T2D, as a significant reduction of m6A contents can 
been found in T2D patients [32], while, the increased 
mRNA expression of demethylase FTO is responsible 
for the reduction of m6A content, which may induce 
the complications of T2D, including obesity, cardio-
vascular diseases [68]. Meanwhile, high glucose stimu-
lation contributes to the increase of FTO expression 
[32], and then further promotes the mRNA expression 
of forkhead box O1 (FOXO1), glucose-6-phosphatase 
catalytic subunit (G6PC), and diacylglycerol O-acyl-
transferase 2 (DGAT2) to participate in glucose and 
lipid metabolism [32]. Intriguingly, the levels of m6A 
methyltransferases (METTL3, METTL14, WTAP) 
mRNA expression are also significantly elevated in 
patients with T2D, but the expression of METTL3, 
METTL14, and KIAA1429 are negatively correlated 

with m6A content [32]. In addition, METTL3 inhibits 
hepatic insulin sensitivity via N6-methylation of FASN 
(fatty acid synthetase) mRNA and promoting fatty acid 
metabolism, which eventually results in the develop-
ment of T2D [69]. In addition, METTL14 is essential 
for β-survival, differentiation and insulin secretion, the 
deficiency of METTL14 in β-cells increases cell death, 
changes cell differentiation and decreases β-cell mass 
and insulin secretion, leading to glucose intolerance 
and T2D [70]. Furthermore, the increased expression 
of m6A methylation upregulates the insulin/insulin-like 
growth factor 1 (IGF1)–AKT-pancreatic and duodenal 
homeobox  1 (PDX1) pathway by targeting METTL14 
or METTL3 in human β-cells, which ultimately inhib-
its cell-cycle arrest and protects insulin secretion [71]. 
Besides, single nucleotide polymorphisms (SNPs) in 
FTO are also strongly associated with T2D, such as var-
iant rs9939609 and rs17817449 of FTO gene [72], which 
are important for the development of insulin resistance 
and occurrence of T2D [73]. Together, m6A modulators 
might be potential therapeutic targets for maintaining 

Fig. 1  The dynamic and reversible processes of m6A methylation and its biological functions. m6A RNA modification is a widespread and reversible 
process which is catalyzed by “writers”, consisting of METTL3, METTL14, WTAP, HAKAI, ZC3H13/KIAA0853, VIRMA/KIAA1429, RBM15B and RBM15. 
Meanwhile, the m6A methylation can be removed by m6A “erasers”, including FTO and ALKBH5. Besides, it is recognized by “readers”-YTHDF1, 
YTHDF2, YTHDF3, YTHDC1, YTHDC2, IGF2BP1, IGF2BP2, IGF2BP3, FMRP and PRRC2A. The biological functions of m6A methylation on stability, 
translation, splicing or nuclear export are highly involved in m6A methylation associated diseases
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glucose metabolism and preserving β-cell survival and 
insulin functions in T2D.

m6A methylation and obesity
Obesity is an increasing risk for its related chronic 
diseases like NAFLD, cardiovascular diseases, dia-
betes and cancers [74, 75]. Obesity or adipogenesis is 
usually characterized by increased cell size (hypertro-
phy) and fat cell numbers (hyperplasia) at the cellular 
level. Studies have suggested that FTO-mediated m6A 
demethylation is closely related with the upregulated 
ghrelin production, adipogenesis, fat mass and body 
weight [33, 76–79]. People with a high body mass 
index may commonly carry FTO risk alleles [80–82] 
and there are some SNPs of FTO positively associ-
ated with obesity. For instance, FTO (rs17817449) is 
positively correlated with obesity and plasma insulin, 
insulin resistance, percentage body fat and fat mass 
in a north Indian population [83]. FTO (rs3751812) 
can promote obesity by altering fat deposition and 
disturbing serum lipid profile [84]. FTO (rs9939609 
T/A) is related to increased FTO expression, reduced 
m6A ghrelin mRNA methylation, and finally results 
in increased energy intake and obesity by upregulat-
ing the ghrelin expression [85]. m6A demethylase FTO 
can promote adipogenesis by inhibiting the Wnt/β-
catenin signaling pathway in porcine intramuscular 
pre-adipocytes [86]. The knockdown of FTO decreases 
the expression of ATG5 (autophagy-related 5) and 
ATG7, leading to attenuation of autophagosome forma-
tion, thereby inhibiting autophagy and adipogenesis. 
Meanwhile, YTHDF2 decreases protein expression of 
ATG5 and ATG7 by shortening the lifespan of their 
m6A-modified mRNAs [87]. Furthermore, the effect of 
FTO on adipogenesis also appears to be regulated via 
enhanced expression of the pro-adipogenic short iso-
form of Runt-related transcription factor 1 (RUNX1), 
which can promote adipocyte proliferation [77]. In the 
contrast, WTAP, METTL3, METTL14 are negatively 
related with adipogenesis by promoting cell cycle tran-
sition in mitotic clonal expansion [88, 89]. Moreover, 
m6A-YTHDF2-FTO signaling way might be crucial 
for the development of obesity, m6A—binding protein 
YTHDF2 can methylate mRNAs of cyclin A2 (CCNA2) 
and cyclin dependent kinase 2 (CDK2), and then reduce 
their protein expression to prolong cell cycle progres-
sion and suppress adipogenesis [90]. The methylation 
effect of FTO on CCNA2 and CDK2 can be reversed 
by epigallocatechin gallate induced YTHDF2 expres-
sion [91]. The expression of METTL3 increases via the 
depletion of ZFP217 (zinc finger protein 217), reversely, 
METTL3 knockdown rescues the siZFP217-inhibited 
mitotic clonal expansion and promotes CCND1 (cyclin 

D1). Meanwhile, YTHDF2 recognizes and degrades the 
methylated CCND1 mRNA, leading to the downregu-
lation of CCND1. Consequently, cell cycle progression 
is blocked, and adipogenesis is inhibited [92]. Taken 
together, m6A modification may be a novel potential 
biomarker of obesity.

m6A methylation and NAFLD
NAFLD is the most common cause of chronic liver dis-
ease among children and adults all over the world [93–95], 
which is characterized by steatosis, ballooning degenera-
tion, and fatty retention of liver parenchyma cells with no 
history of excessive alcohol intake or other known liver dis-
ease [96]. The pathological character of NAFLD is caused 
by metabolic dysregulation of de novo lipogenesis, fatty 
acid uptake, fatty acid oxidation, and triglycerides export 
[97, 98]. Previous studies have found that m6A alteration is 
highly related to the development of NAFLD [34, 99, 100]. 
The level of FTO is elevated in hepatic tissue at NAFLD 
patients with hyperglycemic and hyper-insulinemic [34], 
which can down-regulate mitochondrial content and up-
regulate triglyceride (TG) deposition, while FTO (R316A) 
mutant lacking demethylation activity and could not regu-
late mitochondria and TG content. These indicate that 
FTO can affect mitochondrial content and fat metabolism 
by modulating m6A levels in hepatocytes [101]. In addi-
tion, the activation of phosphatidylinositol 3-kinase (PI3K)/
AKT signaling pathway may improve the development of 
NAFLD by suppressing FTO mediated hepatocyte regener-
ation [102]. Enhanced FTO expression can increase expres-
sion of lipogenic genes, containing fatty acid synthase 
(FASN), stearoyl-CoA desaturase (SCD) and monoacyl-
glycerol O-acyltransferase 1 (MOGAT1), and intracellu-
lar TG level in HepG2 cells [101], which finally promotes 
hepatic fat accumulation. Meanwhile, these effects can 
be effectively reversed by betaine (a methyl donor) [101, 
103]. Increased FTO levels are also highly involved in 
hepatic oxidative stress and lipid deposition which partici-
pate in the process of NAFLD [99]. Currently, dietary cur-
cumin can affect the expression of METTL3, METTL14, 
ALKBH5, FTO, and YTHDF2 mRNAs, and finally improve 
lipopolysaccharide-induced liver injury and hepatic lipid 
metabolism disruption by increasing m6A methylation 
level in the liver of piglets [104]. In addition, the knock-
down of METTL3 or YTHDF2 can increase the lifetime 
and expression of peroxisome proliferator activated recep-
tor alpha (PPARα) mRNA, resulting in a reduction of lipid 
accumulation [105]. In summary, m6A modulators have 
potentials in the therapeutic function of NAFLD.



Page 6 of 11Li et al. Cell Biosci           (2020) 10:19 

m6A methylation in hypertension 
and cardiovascular diseases
Recent studies show that m6A modification is closely 
related to blood pressure (BP) and cardiovascular diseases 
[106]. For example, the m6A-SNP (Lys67Arg, rs197922) 
in golgi SNAP receptor complex member 2 gene is posi-
tively associated with hypertension in white individuals 
[107]. In addition, the m6A-SNPs (Arg389Gly, rs1801253; 
Ser49Gly, rs1801253) can develop hypertension as they 
can encode β1-adrenoreceptor, a hypertension-suscepti-
bility candidate gene [108, 109]. rs9847953 and rs197922 
have regulatory potentials to alter BP related gene expres-
sion, mRNA stability and homeostasis [110]. The m6A 
RNA modifications also involve in various mechanisms 
of cardiovascular diseases. For example, FTO overexpres-
sion in mouse models of myocardial infarction decreases 
fibrosis and enhanced angiogenesis [111]. In addition, 
cardiac growth is controlled by METTL3, which drives 
cardiomyocyte hypertrophy by catalyzing methylation of 
m6A on certain subsets of mRNAs. Whereas, diminished 
METTL3 promotes eccentric cardiomyocyte remodeling 
and dysfunction [112]. Moreover, METTL3 upregulation 
inhibits cellular autophagic flux and promotes apoptosis 
in hypoxia/reoxygenation-treated cardiomyocytes [113]. 
In summary, targeting m6A through its relative enzymes 
may be used as a potential diagnostic or a novel thera-
peutic strategy for hypertension and cardiovascular dis-
eases in the future.

m6A methylation and osteoporosis
Osteoporosis is one of the most significant bone meta-
bolic diseases, especially aged-related osteoporosis. The 
low bone mass and excessive accumulation of adipose 
tissue in bone marrow milieu can result in architec-
tural deterioration of the skeleton, the decrease of bone 
strength and an increased risk of fragility fractures [114, 
115]. Recent released studies has suggested that m6A 
modification and its regulatory enzymes such as FTO, 
METTL3 are the key factors for osteoporosis [116–118]. 
The deletion of METTL3 in porcine bone marrow stem 
cells could promote adipogenesis and adipogenic dif-
ferentiation via janus kinase 1 (JAK1)/signal transducer 
and activator of transcription 5 (STAT5)/CCAAT/
enhancer binding protein β (C/EBPβ) pathway [119]. 
Also, the deletion of METTL3 in bone marrow mesen-
chymal stem cells disrupts cell fate and promotes osteo-
porosis pathological phenotypes (decreasing bone mass 
with incompetent osteogenic potential and increasing 
marrow adiposity with enhanced adipogenic potential) 
by reducing m6A methylation level in mice via parathy-
roid hormone (PTH)/parathyroid hormone 1 receptor 
(PTH1R) signaling axis [118]. In addition, the abundance 
of FTO can promote the differentiation of adipocyte and 

osteoblast from bone marrow mesenchymal stem cells 
by growth differentiation factor 11 (GDF11) and peroxi-
some proliferator-activated receptor gamma (PPARγ) in 
a C/EBPα-dependent manner [116]. Interestingly, FTO 
expression in the bone is up-regulated during aging and 
osteoporosis, while the expression of METTL3 is not 
affected by age [116]. In the contrast, FTO in osteoblasts 
can enhance the stability of mRNAs which protect osteo-
blasts from genotoxic damage through Hspa1a–NF-κB 
signaling way [120]. Besides, bone mineral density-
associated m6A-SNPs may also play significant roles 
in the pathology of osteoporosis, including m6A-SNP 
rs17787930. rs1110720 and rs11614913 [117]. All in all, 
the levels of m6A methylation or regulators are strongly 
associated with osteoporosis.

m6A methylation and immune‑related MDs
The interactions between immune and metabolic 
responses play an important role in pathological devel-
opment and chronic inflammation [121], including 
insulin resistance, insulin unresponsiveness, hepatic fat 
deposition and excessive adipose tissue development 
[122]. m6A methylation emerges as an significant role in 
immune-related MDs, for example, ALKBH5 is highly 
up-expressed in organs enriched in immune cells with 
frequent immune reactions, including thymus, spleen 
and thyroid [10, 123]. Also, METTL3-mediated m6A of 
CD40, CD80 and toll-like receptors 4 (TLR4) signaling 
adaptor TIR domain containing adaptor protein (TIRAP) 
transcripts enhance their translation in dendritic cells 
for stimulating T cell activation and the development of 
T lymphocytes in the thymus [124, 125]. Furthermore, 
the deletion of METTL3 in mouse T cells disrupts T cell 
homeostasis and differentiation by targeting the interleu-
kin 7 (IL-7)/STAT5/cytokine inducible SH2 containing 
protein (SOCS) pathways [126]. In addition, m6A modi-
fication prevents TLRs activation upon binding of native 
mRNAs such as mRNAs with m5C, 5-methyluridine, 
2-thiouridine substrate, m6A, which cannot active TLR3, 
TLR7 or TLR8, while unmodified RNA could activate all 
these human TLRs [127]. Thus, the study of m6A methyl-
ation on immune response may provide a new insight for 
the treatment of immune-related MDs, and more related 
mechanisms need to be clarified.

Conclusions and perspectives
m6A modification is highly involved in RNA stability, 
localization, turnover and translation efficiency, which 
is crucial for the biological functions [128]. The mRNA 
m6A methylation has a wide range of effects on MDs. 
The researches can be conducted by many experimen-
tal methods such as m6A-seq (m6A-specific methyl-
ated RNA immunoprecipitation with next-generation 
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sequencing), PA-m6A-seq (photo-crosslinking-assisted 
m6A-sequencing), and LC–MS/MS (liquid chromatogra-
phy linked to tandem mass spectrometry) [4, 129, 130]. 
Apart from the expensive experimental screening of 
m6A sites in RNAs, some bioinformatics tools have been 
developed for large-scale identification of m6A modifica-
tion sites, including SCARLET (site-specific cleavage and 
radioactive-labeling followed by ligation-assisted extrac-
tion and thin-layer chromatography), TargetM6A, RNA-
methylPred, iRNA-Methyl and pRNAm-PC [131–135]. 
This m6A related regulatory system will promote targeted 
therapy for MDs.

Strategies for m6A-targeted drugs design are on the fol-
lowing: Firstly, virtual screening can be used to discover 
the potential compounds for experimental validation by 
using the drug-like SPECS database which contains about 
100,000 compounds [136]; Secondly, the mechanistic 
study and kinetics analysis can be used to select the best 
m6A inhibitor or methyl donor [136]; In addition, differ-
ential scanning fluorometry- and liquid chromatography-
based assays are applied to screen related compounds 
[55]; Furthermore, we can also synthetize m6A related 
compounds by utilizing a modular approach [137].

Currently, several promising agents may have poten-
tials to treat MDs by targeting m6A, such as m6A inhibi-
tors. It is known that FTO negatively regulated m6A 
levels and positively regulated adipogenesis, thus we can 
use FTO inhibitors (rhein, radicicol, epigallocatechin gal-
late, entacapone and meclofenamic acid) [91, 136, 138–
140] to remove the potential effect of FTO. In addition, 
ALKBH5 is positively related to the frequent immune 
reactions [123], if we rule out the effects of ALKBH5 
on immune cells via using ALKBH5 inhibitor (IOX3) 
[141], the immune-related MDs will be improved. Also, 
cycloleucine (a methylation inhibitor), S-adenosylhomo-
cysteine (a competitive inhibitor for some adenosylme-
thionine-dependent methyltransferases) can be applied 
to downregulate m6A methylation directly [88, 101, 142]. 
In the contrast, many m6A regulators are useful for the 
improvement of MDs, for instance, METTL3, METTL14, 
YTHDF2 are negatively correlated with adipogenesis [87, 
89]. Therefore, betaine, a methyl donor [88, 101], could 
be employed to upregulate m6A methylation directly. All 
in all, it’s still a long journey for the special m6A-targeted 
drugs for MDs, but the development and application 
of more m6A inhibitors or methyl donors will provide 
important clues to the development of m6A special drugs 
for MDs.

So far, the studies on mRNA m6A methylation 
remain poorly understood. For example, almost all 
the known demethylases belong to the AlkB family, 
and whether other proteins in or out the AlkB family 
are also involved in mRNA demethylation needs to be 

further studied. Variations in methylated and demeth-
ylated genes need to be further explored. The func-
tions of m6A modification on non-coding RNAs, such 
as miRNA, circRNA, piRNA and lncRNA need to be 
unveiled in the metabolic processing. Accordingly, 
m6A—as one of the abundant basic modifications of 
circRNAs, lncRNA and miRNA [143–145], may have 
a promising future in early diagnosis on MDs through 
identifying downregulated or upregulated m6A methyl-
ation levels or mediators levels. The RNA m6A methyl-
transferases and demethylases can selectively methylate 
or demethylate the MDs-related genes [146, 147]. The 
immune cell responses play an important role in the 
pathological development of MDs, however, the roles of 
m6A modifications in immune-related MDs are poorly 
understood. Based on the functions of m6A modifica-
tions in immune responses, thus we speculated that 
m6A modifications in immune-related MDs might be 
important.

There are many problems in the m6A dominated diag-
nosis and therapies of MDs. Firstly, the biological func-
tions of m6A modification in MDs needs to be further 
clarified. Secondly, the functions of m6A modification 
on risk factors of MDs such as aging, infection and can-
cers are still a tip of the iceberg. Finally, the m6A related 
treatment of MDs merely focus on FTO inhibitors, so 
the novel therapeutics targeting m6A related potents 
and specific small-molecule m6A modification inhibi-
tors need to be further identified or developed through 
small-molecule compound library screening or chemical 
synthesis.
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