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Transcriptome analysis reveals 
an important candidate gene involved 
in both nodal metastasis and prognosis in lung 
adenocarcinoma
Xiao Zhu1,2*  , Hui Luo1* and Ying Xu2*

Abstract 

Lymph node metastasis of lung cancer is a serious problem. Therefore, there is a need for a detailed transcriptome 
study of metastatic lung adenocarcinoma. The lung adenocarcinoma RNA-seq data and the corresponding clinical 
information available from TCGA were analyzed. Differential expression, gradient changes, and biological pathways 
were carried out. Potential gene(s) associated with tumor metastasis and survival were validated by Cox regression. 
A total of 406 and 439 differentially expressed genes were identified for lymph node metastasis and TNM stages, 
respectively. Of the 296 intersection genes, 112 were associated with nodal metastasis and/or staging. Only 25 of 
these 112 genes with gradient changes were involved in nodal metastasis, and 13 were involved in staging. Only one 
gene, RN7SL494P, might be involved in lung adenocarcinoma development and poor outcome. Finally, Cox regression 
results verified that age, pathology classification, radiotherapy and chemotherapy are all the independent prognostic 
factors. In particular, RN7SL494P was further verified to be an independent factor affecting lymph node metastasis 
and patient survival. Furthermore, we verified the RN7SL494P function using simulation data generated by mixing cell 
lines of the Cancer Cell Line Encyclopedia (CCLE) and obtained consistent results. Our findings suggest a potential 
clinical application of the RN7SL494P as a promising marker in the evaluation of patients with primary lung adenocar-
cinoma, not only for predicting nodal metastasis, but also for the prognosis of the outcome.
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Introduction
Lung adenocarcinoma, a histological subtype of non-
small cell lung cancer (NSCLC), arises when healthy 
cells change and uncontrolled growth occurs in the outer 
region of the lung.  Lung adenocarcinoma is the most 
common type of lung cancer and accounts for approxi-
mately 40% of all lung-derived cancers [1].

Lung adenocarcinoma tends to develop in smaller air-
ways, such as bronchioles, and develops more slowly than 
any other types of lung cancer. Once cancerous tissues 

begin to grow, cancer cells may slough off. These cells 
may be carried in the blood or float in the lymph fluid 
that encompasses the lung tissue [2]. The lymph flows 
through lymphatic vessels into collecting lymph nodes [3, 
4]. When a cancer cell spreads to a lymph node or passes 
through the bloodstream to a distant body site, it is called 
metastasis.

The Cancer Genome Atlas (TCGA) project was started 
in 2006 [5] and a joint research project between the 
National Human Genome Research Institute and the 
National Cancer Institute. In the current study, we per-
formed a comprehensive screening of TCGA databases 
for transcriptome and clinical data regarding nodal 
metastasis and TNM staging for patients with lung ade-
nocarcinoma. According to the primary results, we fur-
ther verify the gene(s)’ function in independent data sets 
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from the Cancer Cell Line Encyclopedia (CCLE) project 
[6].

Results
Differentially expressed genes in lung adenocarcinoma
Gene differential expression analysis between lung 
adenocarcinoma tissues and matched normal controls 
identified a total of 13,118 genes that were differen-
tially expressed of which 2800 were down-regulated and 
10,318 were up-regulated. The top 10 most significantly 
down-regulated and top 10 most significantly up-regu-
lated genes are shown in Additional file 1: Table S1. We 
included all the significantly up-regulated and down-reg-
ulated mRNAs to generate a heatmap and volcanic map 
to demonstrate their relative expression levels (Addi-
tional file 2: Figure S1A, B).

GO and KEGG analyses of differentially expressed genes
We conducted GO analysis for all the differentially 
expressed genes in the lung adenocarcinoma cases in the 
current study and found that the gene RN7SL494P was 
not involved in any biological functions or processes in 
the DAVID database, nor was it related to any cellular 
components of the database (Fig. 1a, b). KEGG pathway 

analysis and KOBAS was used to functionally annotate 
the differentially expressed genes. After identifying the 
key KEGG pathways, we determined that RN7SL494P 
was not associated with any of the KEGG pathways 
(Additional file  3: Table  S2). Functional annotation of 
the differentially expressed genes using the clusterPro-
filer Supplement R package also failed to identify any 
RN7SL494P-related KEGG pathways (Additional file  4: 
Table  S3). GO analysis results showed that upregulated 
DEGs were significantly enriched in extracellular exo-
some, membrane, and mitochondrion (Fig.  1a). Down-
regulated DEGs were mainly significantly enriched in the 
cytoplasm, nucleus, cytosol, nucleoplasm, and protein 
binding (Fig.  1b). Therefore, we concluded that a single 
gene functional enrichment method associated with the 
specific gene would be used as a subsequent step of the 
study.

Differentially expressed genes associated with nodal 
metastasis or TNM stage
Based on the features of lymph node metastasis for 
the subjects listed in Additional file  5: Table  S4, a 
total of 406 differentially expressed genes were identi-
fied. Of the differentially expressed genes, 312 were 

Fig. 1  GO analyses of all differentially expressed genes in lung adenocarcinoma. a The biological functions, biological processes or cellular 
components in DAVID database by GOplot analysis. b The enrichment of differentially expressed genes
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significantly up-regulated and 94 were significantly 
down-regulated (Additional file 2: Figure S1C, D). The 
top 10 most significantly down-regulated and top 10 
most significantly up-regulated genes associated with 
cancer metastasis are shown in Table  1. Similarly, the 

TNM staging-related differentially expressed genes are 
shown in Additional file 2: Figure S1E, F with the top 10 
most significantly down-regulated and top 10 most sig-
nificantly up-regulated genes shown in Table 1.

Table 1  The top 10 significant down- and up-regulated genes associated with lymph node metastasis or TNM stages

Genes logFC logCPM p value FDR

Lymph node metastasis

 Down-regulated 7SK − 6.38529 5.376253 1.92E−54 1.62E−50

SNORA73B − 4.89863 3.941633 2.30E−47 1.29E−43

SNORD17 − 4.59669 2.395325 2.50E−44 1.20E−40

SCARNA6 − 4.33589 − 0.05263 1.57E−42 5.85E−39

SCARNA5 − 6.21022 2.186735 1.80E−42 6.05E−39

SCARNA10 − 5.72043 1.274605 4.91E−41 1.45E−37

MSTN − 4.5735 1.589033 3.65E−39 9.44E−36

SCARNA7 − 3.88216 − 0.07935 7.12E−37 1.68E−33

SCARNA13 − 3.0861 0.701175 3.84E−36 7.73E−33

RNU4-1 − 6.06981 1.417159 3.91E−36 7.73E−33

 Up-regulated NNAT 3.773884 2.325209 2.37E−89 7.97E−85

LRRC38 5.827189 1.230182 1.32E−68 2.23E−64

VSX2 4.728637 − 1.57565 1.85E−55 2.07E−51

AC087257.2 3.860068 − 2.07862 1.84E−52 1.24E−48

LINC01433 3.163173 − 2.46671 3.82E−43 1.61E−39

FAM205C 3.293196 − 2.91757 7.49E−37 1.68E−33

AL161668.1 4.428092 − 3.68113 1.56E−35 2.77E−32

RTP1 3.811513 − 2.18471 1.65E−34 2.64E−31

GSG1L2 4.357816 − 3.36664 1.11E−31 1.44E−28

CALB1 3.446571 3.71567 4.30E−31 5.16E−28

TNM stages

 Down-regulated 7SK − 6.062979794 5.353737093 6.74E−31 6.13E−28

SNORA73B − 4.647298488 3.923197774 1.76E−27 1.26E−24

SNORD17 − 4.325760083 2.373029662 1.51E−25 9.39E−23

SCARNA5 − 5.981744956 2.167025263 5.95E−25 3.63E−22

SCARNA6 − 4.052245334 − 0.070346602 2.75E−24 1.62E−21

SCARNA10 − 5.377554867 1.251887603 1.35E−23 7.42E−21

MSTN − 4.340706495 1.520356478 1.70E−23 8.96E−21

SCARNA7 − 3.7237236 − 0.10084326 2.81E−22 1.26E−19

RNU4-1 − 5.712216563 1.396659528 6.97E−21 2.79E−18

RNU4-2 − 5.357340472 2.502793386 1.26E−20 4.94E−18

 Up-regulated PPIAP46 4.012250624 − 0.902056299 1.92E−100 6.46E−96

HNRNPA1P52 3.896195799 − 1.852379148 4.95E−96 8.32E−92

LRRC38 6.291094962 1.168289657 3.92E−92 4.39E−88

AC087257.2 4.527651209 − 2.097876396 1.53E−81 1.28E−77

VSX2 5.232030072 − 1.594431836 1.90E−76 1.28E−72

PSG11 7.901940389 − 1.563148972 2.93E−58 1.64E−54

FAM205C 3.883821429 − 2.930755861 6.97E−55 3.35E−51

FXNP2 3.718917178 − 3.212051642 1.45E−53 6.09E−50

MARCH4 2.823672408 0.803655353 1.61E−45 6.02E−42

RTP1 4.254620305 − 2.219012962 5.41E−45 1.82E−41
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Overlapping differentially expressed genes associated 
with nodal metastasis and TNM stages
Venn diagram analysis was performed to visualize 
the overlapping differentially expressed genes between 
lymph node metastasis and TNM stages. The VennDi-
agram R package was used and 296 overlapping genes 
were identified (Fig. 2a).

Gradient changes of differentially expressed genes 
associated with nodal metastasis and TNM stages
We analyzed the gradient changes of differentially 
expressed genes in lymph node metastasis (from N0 to 
N2) and TNM stage (from I to IV) using the Kruskal–
Wallis test. Since there were only two samples with a 
metastasis score of N3, this subgroup was not considered 
in this analysis. A total of 112 differentially expressed 
genes were associated with the gradient changes of lymph 
node metastasis, TNM stage, or metastasis and TNM 
stage (Table  2). Among the 112 differentially expressed 
genes, 25 were associated with lymph node metastasis, 13 
with TNM stage, and 7 genes (SCARNA7, AC105999.2, 
RANBP20P, RN7SL151P, SYNPR, AL512638.1, and 

TMIGD1) were associated with both lymph node metas-
tasis and TNM stage.

Survival rates and differentially expressed genes 
associated with nodal metastasis and TNM stage
We analyzed patient survival time relative to all 30 dif-
ferentially expressed genes that were associated with 
the gradient changes on lymph node metastasis and/
or TNM stage. Only one gene (RN7SL494P) was found 
to correlate with patient survival time (Table  2 and 
Fig. 2b). RN7SL494P was also associated with the gradi-
ent changes of lymph node metastasis with p = 0.02587 
for N0 vs. N1 vs. N2 (Fig. 2c) and p = 0.006 for N0 vs. N1 
vs. N2 (Fig.  2d). However, RN7SL494P was not associ-
ated with the gradient changes of TNM stage (p = 0.057; 
Fig. 2e).

sGSEA of pathways
Evaluation of the associations between RN7SL494P 
expression and any cancer-related pathways was per-
formed and renin angiotensin system, JAK-STAT signal-
ing pathway, et al. were the enriched pathways associated 

Fig. 2  The overlapping differentially expressed genes associated with nodal metastasis and TNM staging. a The venn diagram of differentially 
expressed genes between nodal metastasis and TNM staging. b Survival analysis of differentially expressed RN7SL494P associated with nodal 
metastasis. c Kruskal–Wallis test for differentially expressed RN7SL494P associated with the gradient changes on lymph node metastasis (N0 vs. N1 
vs. N2). d Kruskal–Wallis test for differentially expressed RN7SL494P associated with the gradient changes on lymph node metastasis (N0 vs. N1 and 
N2). e Kruskal–Wallis test for differentially expressed RN7SL494P associated with the gradient changes on TNM staging
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Table 2  The gradient changes of  differentially expressed genes associated with  lymph node metastasis or TNM stages 
with the Kruskal–Wallis test, and the survival analysis of patients with the differentially expressed genes

Genes Lymph node metastasis (N0–N1–N2) TNM stages Log-rank test

(I–II–III–IV)

Gradient change p Gradient change p p

NNAT NA 0.019 NA 0.025 –

VSX2 Yes, downtrend 0.008 – 0.586 0.08025

SCARNA7 Yes, downtrend 0.011 Yes, downtrend 0.018 0.34227

AL161668.1 NA 0 NA 0.002 –

SNORA12 NA 0.013 NA 0.003 –

GSG1L2 Yes, upward 0 – 0.604 0.36278

CYP2B6 – 0.287 NA 0.032 –

ALB – 0.197 NA 0.008 –

VN1R35P Yes, upward 0.003 – 0.157 0.08025

SNORA71A NA 0.04 – 0.842 –

AL451054.3 NA 0 NA 0.012 –

AC105999.2 Yes, upward 0.042 Yes, upward 0.012 0.13752

RN7SL3 Yes, upward 0.048 – 0.266 0.09487

LINC01819 Yes, downtrend 0.016 NA 0.021 –

RANBP20P Yes, downtrend 0.019 Yes, downtrend 0.016 0.07001

RNU5A-1 – 0.066 Yes, downtrend 0.015 0.75953

RN7SKP255 – 0.101 NA 0.005 –

AL513304.1 Yes, upward 0.019 – 0.073 0.37489

HIST1H4F – 0.191 NA 0 –

RN7SKP203 NA 0.006 – 0.334 –

HIST1H4L – 0.342 NA 0.048 –

RN7SL769P NA 0.01 – 0.116 –

RN7SL151P Yes, downtrend 0.006 Yes, downtrend 0.009 0.28316

GKN1 NA 0.039 – 0.272 –

FXNP2 NA 0.006 – 0.508 –

RNY3 NA 0.003 – 0.067 –

AC112495.1 Yes, downtrend 0.012 NA 0.002 0.88522

SYNPR Yes, downtrend 0.034 Yes, downtrend 0.002 0.14163

RN7SL480P Yes, downtrend 0.03 – 0.169 0.97413

RN7SL116P Yes, downtrend 0.019 – 0.057 0.71102

AC036111.1 NA 0.004 – 0.195

RNA5-8SP2 NA 0 – 0.088

RN7SL300P NA 0.026 – 0.079

HIST1H2AH Yes, upward 0.014 NA 0.012 0.89036

PSG11 – 0.126 NA 0.002

GLRA4 Yes, downtrend 0.003 – 0.322 0.08082

RN7SL359P NA 0 – 0.052 –

AL135929.2 NA 0.006 – 0.14 –

CYP11B1 NA 0.029 – 0.123 –

RN7SL342P NA 0.02 – 0.062 –

SPAG11B Yes, upward 0.028 – 0.064 0.54783

RN7SL732P NA 0.005 – 0.082 –

CYP1D1P NA 0 NA 0.002 –

RN7SL791P NA 0 NA 0.002 –

RN7SKP189 NA 0.002 – 0.696 –

RN7SKP71 Yes, downtrend 0.011 NA 0.025 0.24259
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Table 2  (continued)

Genes Lymph node metastasis (N0–N1–N2) TNM stages Log-rank test

(I–II–III–IV)

Gradient change p Gradient change p p

RN7SL217P NA 0.029 NA 0.041 –

RN7SL272P NA 0 NA 0.016 –

RHOXF2B NA 0 – 0.093 –

RN7SL464P NA 0.003 – 0.214 –

CRISP1 NA 0.007 – 0.074 –

FGF4 – 0.379 NA 0.019 –

CRP NA 0.026 – 0.066 –

PSG2 – 0.347 NA 0.03 –

RN7SL197P NA 0.017 – 0.644 –

RN7SL646P NA 0.003 – 0.111 –

RN7SL554P NA 0.001 – 0.317 –

PPP1R3A NA 0.009 – 0.226 –

RN7SL597P – 0.056 NA 0.017 –

RN7SL308P NA 0.001 NA 0.003 –

AC106872.1 NA 0 NA 0.003 –

AL135929.1 NA 0.007 – 0.086 –

AL512638.1 Yes, upward 0.002 Yes, upward 0 0.80925

RN7SL711P – 0.104 Yes, downtrend 0.022 0.6968

HMGB3P18 NA 0.018 NA 0.022 –

RN7SL126P NA 0.021 – 0.106 –

RN7SL630P NA 0.002 – 0.066 –

RN7SL494P Yes, downtrend 0.025 – 0.057 0.02587

RN7SL7P NA 0.024 – 0.23 –

RN7SL786P NA 0.021 – 0.118 –

AC108515.1 NA 0 NA 0.005 –

RN7SKP185 NA 0.023 Yes, downtrend 0.02 0.66366

RN7SKP90 NA 0 Yes, downtrend 0.017 0.91288

AC008808.2 – 0.814 NA 0.024 –

RN7SL390P NA 0.012 – 0.445 –

SCARNA3 NA 0 NA 0.007 –

MIR124-2HG NA 0.002 NA 0.012 –

RN7SL297P NA 0.001 NA 0.002 –

RNU1-88P NA 0.004 – 0.35 –

RN7SL314P NA 0.078 NA 0.038 –

RN7SL575P NA 0.049 – 0.272 –

RN7SL302P NA 0.04 – 0.099 –

AL513475.2 NA 0.046 – 0.401 –

KRT38 – 0.148 Yes, upward 0.031 0.30421

OR4A16 NA 0.004 NA 0.003 –

FRG2 NA 0.003 – 0.699 –

LINC02557 NA 0.001 – 0.462 –

LINC01221 NA 0.002 – 0.076 –

AC012065.1 Yes, upward 0 NA 0 0.25382

LINC01040 NA 0.014 NA 0.024 –

IGLV3-26 NA 0.003 NA 0.011 –

CRCT1 Yes, upward 0.019 NA 0.013 0.51194

GAGE12 J NA 0.017 NA 0.007 –
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with higher expression of the gene RN7SL494P (Fig. 3a). 
On the other hand, the genes co-expressed with the low-
expression of RN7SL494P were associated with biological 
or pathological pathways including basal transcription 
factors, spliceosome, oxidative phosphorylation, nucleo-
tide excision repair, DNA replication and among others 
(Fig. 3b). These typical results are shown on a GSEA dia-
gram at the same time (Fig. 3c). These findings suggested 
that low-expression of RN7SL494P might be associated 
with cancer development and poor outcome in patients 
with lung adenocarcinoma.

Cox regression models
Univariate Cox analysis found that the increased expres-
sion of RN7SL494P would reduce the risk of death in 
patients (HR 0.78, p = 0.020). The patients who did 
receive radiotherapy, or who had a higher grade of 
pathology, or who had metastasis, or who had lymph 
node involvement, had a greater risk of death (all HR > 1, 
all p < 0.05) (Additional file 6: Table S5).

In multivariate Cox regression analysis, we found the 
expression of RN7SL494P still was an independent prog-
nostic factor (HR 0.78, p = 0.028). This further proves 
that this gene is a prognostic factor of lung cancer. In 
addition, age, stage_T and stage_N were the fisk factors, 
these further suggest that lymph node metastasis will 

lead to a worsening prognosis in patients with lung ade-
nocarcinoma. Interestingly, the effects of radiotherapy 
and chemotherapy may be reversed, that is, radiotherapy 
may result in reduced efficacy and poor prognosis; but 
chemotherapy can significantly extend the survival time 
of such patients (Fig. 4).

Co‑expressions genes of RN7SL494P in CCLE
We downloaded the lung cancer cell lines’ raw counts of 
the expression profiling from the CCLE database. The co-
expression genes with RN7SL494P were calculated with 
a 0.2 co-expression coefficient threshold. The 30 up co-
expression genes and 30 down co-expression genes were 
selected to construct a co-expression heatmap (Fig. 5a).

The functional verification of enrichment and pathway 
of the co‑expression genes in CCLE
GO analysis results showed that the above co-expression 
genes of RN7SL494P were significantly enriched in cho-
lesterol and lipid transport and homeostasis, cell mem-
brane transport function, and so on (Fig. 5b).

KEGG analyses were performed to investigate the 
biological functions and pathways associated with the 
RN7SL494P identified. The results show that the co-
expression genes of RN7SL494P were mainly enriched 
in ABC transporters, Hedgehog signaling pathway, PPAR 

Table 2  (continued)

Genes Lymph node metastasis (N0–N1–N2) TNM stages Log-rank test

(I–II–III–IV)

Gradient change p Gradient change p p

CELA3A Yes, downtrend 0.035 NA 0.003 0.60893

RN7SL260P NA 0.005 – 0.102 –

AC245291.3 – 0.105 NA 0.018 –

AC105031.2 Yes, upward 0.001 NA 0.013 0.88735

AC245128.1 NA 0.008 NA 0.043 –

AC008517.1 NA 0.002 – 0.357 –

DRAXINP1 – 0.111 NA 0 –

RN7SL14P NA 0.032 – 0.214 –

DDX11L16 NA 0.002 NA 0.02 –

ANHX NA 0.043 NA 0.007 –

FAM9A NA 0.018 NA 0 –

TMIGD1 Yes, upward 0.001 Yes, upward 0.027 0.42473

PSG7 – 0.251 Yes, upward 0.001 0.74669

AC105460.1 NA 0.01 NA 0.001 –

AC080128.1 – 0.215 NA 0.036 –

BX510359.3 – 0.064 NA 0.002 –

AL139002.1 NA 0.022 – 0.747 –

MIR3976HG – 0.195 NA 0.002 –

SPAG11A NA 0.003 NA 0.008 –

d the deleted base, Pcorrected multiple testing by the Bonferroni correction, NA not applicable
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signaling pathway, and non-homologous end-joining 
(p < 0.05) (Additional file 7: Table S6, and Fig. 5c).

Discussion
Many patients are diagnosed with cancer metastasis, 
which usually makes treatment more difficult. The 5-year 
survival rate for patients with metastatic lung cancer is 
approximately 1% [7]. When tumors spread outside the 
lungs, they may be difficult to successfully treat and cure. 
Since no single best treatment exists for patients with 
metastatic lung cancer, the choice of treatment strategies 

depends on the tumor location, size, and stage, as well as 
the cancer subtype and the lymph nodes involved.

Scientists and clinicians have attempted to exploit 
methods that allow cancer patients to be screened for 
metastasis. The main goal of screening is to reduce 
the number of people that die from cancer, especially 
metastatic cancer. To investigate the “drive genes” in 
metastatic lung adenocarcinoma, we examined the differ-
entially expressed genes in the RNA-seq repository data 
of TCGA. We comprehensively analyzed gene expres-
sion in patients included in the database that had lung 

Fig. 3  sGSEA analyses. a The genes co-expressed with higher expressions of RN7SL494P were enriched in biological pathways associated with 
KEGG_RENIN_ANGIOTENSIN_SYSTEM. b The genes co-expressed with lower expressions of RN7SL494P were enriched in 45 biological pathways. c 
The typical results of co-expressed with higher or lower expressions of RN7SL494P



Page 9 of 13Zhu et al. Cell Biosci            (2019) 9:92 

adenocarcinoma, especially gene expression in the course 
of tumor metastasis.

We identified the differentially expressed genes asso-
ciated with lymph node metastasis and TNM stage 
in lung adenocarcinoma. We also found that the gene 
RN7SL494P not only possessed the above characteris-
tics, but also demonstrated prognostic significance for 
metastatic lung adenocarcinoma. Subsequent analysis 
of RN7SL494P using sGSEA further demonstrated the 
functions and roles of RN7SL494P.

RN7SL494P (7SL) is located on chromosome 15q21.2 
and belongs to a long noncoding RNA  (lncRNA) class 
pseudogene. As a small eukaryotic cytoplasmic RNA, 
7SL RNA is essential for translocation of a protein that 
binds to the ribosome and targets the nascent protein 
in the endoplasmic reticulum to be secreted or inserted 
into the membrane during the assembly of human sig-
nal recognition particles (SRP) [8, 9]. A study using RNA 
sequencing data from 11 human tissues showed that 7SL 
was the highest expressed non-coding RNA (ncRNAs) 

and was an order of magnitude higher than any mRNA 
detected [10]. 7SL stimulates GTPase activity of SRP and 
its signal receptor (SR) complex [11, 12].

Defines a set of genes based on previous biological 
experiments, for example, knowledge about co-expres-
sion or biochemical pathways. A recent study showed 
the S-structure domain of 7SL RNA is related to cellular 
activity in mitochondria [13]. Furthermore, in addition 
to the nucleotide excision repair function, the results of 
sGSEA demonstrated that RN7SL494P was associated 
with DNA replication, transcription factor, spliceosome, 
oxidative phosphorylation and JAK-STAT signaling 
pathway. Thus, RN7SL494P (7SL) may play a role in the 
DNA replication, transcription, translation and assem-
bly of peptides and its dysfunction may have pathologi-
cal consequences. CCLE can be a good complement to 
the TCGA database to improve tumor data mining. We 
set a validation cohort to attain external validation, and 
the subsequent results of RN7SL494P’s function were 
supportive.

Fig. 4  The multivariate Cox regression analysis of related clinical parameters and RN7SL494P in lung adenocarcinoma
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We found that the high expression of RN7SL494P 
improved tumor survival rates in patients with lung ade-
nocarcinoma (high-expression  41.80% vs. low-expres-
sion  39.70%; Fig.  2b). Yang et  al. [14] found that the 
over-expression of FOXP3 is able to inhibit the transcrip-
tion of 7SL mRNA by binding to its promoter and sub-
sequently increases the translation of p53, which results 
in suppressing the growth of multiple tumors (lung can-
cer was not included). The findings from the current 
study suggest that  the 7SL  mRNA transcribed from the 
RN7SL494P gene may be a direct target of FOXP3 and 
may be enmeshed in the FOXP3/p53 feedback loop. If 
true, this would be consistent with the fact that there 
are many complex regulatory networks involved in the 
process of tumor formation. We speculate that the gene 
RN7SL494P may exhibit “inconsistent functions” in dif-
ferent tumor microenvironments.

In the current study, we used the information available 
from the TCGA database to analyze the expression of 
genes in patients with lung adenocarcinoma. We found 
that the gradient change in expression of RN7SL494P 
(7SL) was clearly associated with nodal metastasis. In 
addition, its expression correlated with its prognostic 
value. These findings were validated by Cox regression 
analysis, in particular, the function of RN7SL494P (7SL) 
was verified by the independent CCLE data set.

The present study presented certain limitations. Firstly, 
data selection from the TCGA database may potentially 
cause selection bias, since this is prevalent in all non-
prospective, nonrandomized studies. Secondly, the CCLE 
database does not include clinically meaningful vari-
ables, therefore, only the function of genes and their co-
expressed gene sets can be verified, but the survival time 
can not be verified. Thirdly, due to technical reasons, it 

Fig. 5  The co-expressions genes of RN7SL494P and the functional verification in the CCLE. a The co-expression genes of RN7SL494P. The 30 
up co-expression genes and 30 down co-expression genes were selected to construct a co-expression heatmap. b The GO analysis of the 
co-expression genes of RN7SL494P. c KEGG analyses of the biological functions and pathways. The co-expression genes of RN7SL494P were mainly 
enriched in ABC transporters, Hedgehog signaling pathway, PPAR signaling pathway, and Non-homologous end-joining (p < 0.05)
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is impossible to establish a smooth working relation-
ship with the clinical departments of a hospital in a short 
term, so it is temporarily unable to conduct tests in clini-
cal practice.

In conclusion, our results suggest that the over-expres-
sion of RN7SL494P could significantly reduce lymph 
node metastasis and improve the survival of patients. 
Meanwhile, age, pathology classifications, and treatment 
(radiotherapy and chemotherapy) may also affect patient 
survival in lung adenocarcinoma.

Materials and methods
The lung adenocarcinoma data and pipeline
The lung adenocarcinoma data (mRNA expression data 
and clinical data) from the National Cancer Institute’s 
Genomic Data Commons (GDC) portal (https​://porta​
l.gdc.cance​r.gov/repos​itory​) were downloaded on August 
5, 2017, using GDC-client.exe software. This provided 

594 level-3 RNA-seq hits (515 cases) and 522 clinical 
XML datasets. The clinical data are shown in Additional 
file  5: Table  S4. The expression data were obtained for 
each of the lines using Affymetrix U133 Plus 2.0 arrays 
from the CCLE were downloaded from the website (https​
://porta​ls.broad​insti​tute.org/ccle) directly. The data 
are open to the public under certain guidelines. There-
fore, confirm that all written informed consent has been 
achieved. The pipeline and details of the study are shown 
in Fig. 6.

Differential gene expression analysis
Differential gene expression based on the RNA-seq data 
was analyzed using the edgeR software package [15], 
which involved empirical Bayesian estimations and 
accurate tests based on the negative binomial distribu-
tions. As edgeR suggested, genes with very low reads are 
often not of interest in differential expression analyses; 
therefore, the average count-per-million (CPM) was an 
important criterion used to define whether a gene was 
expressed at a reasonable level for inclusion. The edgeR 
software reported log2 fold change, log2 counts per mil-
lion, the corresponding statistical significance, and their 
corresponding error discovery rates. The up-regulated 
and down-regulated differentially expressed genes were 
selected based on these parameters.

Gene ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway analysis
GO provides a platform for the hierarchically sorting of 
genes or their products by terms that fall into the three 
following categories: molecular functions (molecular 
activity), cellular component (functional gene products), 
and biological processes (cellular or physiological effects) 
[16–18]. The Database for Annotation, Visualization, and 
Integrated Discovery (DAVID) version 6.7 was used to 
perform the functional annotation analysis [19] and the 
ggplot2 and the GOplot R packages were used to view 
the results.

We used the KEGG Orthology Based Annotation Sys-
tem (KOBAS) algorithm [20] and the R package cluster-
Profiler package to analyze the KEGG pathway of gene 
differential expression [21]. The genes from the lung ade-
nocarcinoma RNA-seq that exhibited significant upward 
and downward differential expression were analyzed. A 
difference with a p-value less than 0.05 was considered 
significant for the screening criterion.

Gene Set Variation Analysis (GSVA) of KEGG pathways
A comprehensive human gene annotations document 
(c5.all.v5.2.symbols.gmt) for the GO function category 
was downloaded from the Molecular Signatures Data-
base (MSigDB) [22]. The Gene Set Variation Analysis 

Fig. 6  The pipeline of this study. The RNAseq data and clinical data 
for lung adenocarcinoma were first downloaded from the TCGA. 
RNA-seq data were used to analyze gene differential expression, and 
perform GO and KEGG functional analysis. Clinical data combined 
with lymph node metastasis and TNM analysis of differential genes. 
And the gene set associated with both lymph node metastasis and 
TNM stage was obtained. Then the survivals of the intersection 
genes were analyzed by Kruskal–Wallis algorithm to find the target 
gene. The function of the single gene GSEA of the target gene was 
then studied. The prognosis between the gene and the clinical 
variable was verified by the Cox regression analysis of single gene 
and multivariables. Finally, in the CCLE database, the co-expression 
genes of the target gene and the enrichment and signaling pathway 
analysis in which these genes are involved are further verified

https://portal.gdc.cancer.gov/repository
https://portal.gdc.cancer.gov/repository
https://portals.broadinstitute.org/ccle
https://portals.broadinstitute.org/ccle
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(GSVA) algorithm [23] was used to perform an analysis 
of the mRNA-SEQ data according to enrichment scores 
to reduce the data from an abundance of transcrip-
tional activity at the gene level to transcriptional activity 
according to gene function.

The Kruskal–Wallis test
For the analysis of differential expression associated with 
cancer metastasis and cancer staging, the clinical data 
regarding lymph node metastasis and TNM stage were 
selected. The Kruskal–Wallis test was used to analyze 
the differential expression among multiple cancer groups 
(N0, N1, N2, and possibly N3; and TNM stage I, II, III, 
and IV). As shown in Eq.  1, the Kruskal–Wallis test by 
grade is a nonparametric substitution method for one-
way analysis of variance (ANOVA) that expands the dou-
ble-sample Wilcoxon test when more than two groups 
are compared [24].

where s2 is the sample variance; k is the number of 
groups; Ri is the total for the ith row; ni is the size of the 
ith group; and N is the total number of observations.

Survival analyses
Two risk groups were established according to the cut-
off values derived from the median expression levels of 
the corresponding genes in the analysis of the associa-
tion between gene expression and patient prognosis. The 
Kaplan–Meier test and the Kruskal–Wallis log-rank test 
were carried out to evaluate the differences in survival 
rates between the two risk groups. A p-value of less than 
0.05 was considered to be statistically significant.

Gene Set Enrichment Analysis (GSEA) and single‑GSEA 
(sGSEA)
GSEA was used to assess the data on genomic expres-
sion levels. Relative to the median expression of the 
hub genes, the 515 lung cancer samples from the RNA-
seq data were divided into two groups, high-expression 
and low-expression samples. These two GSEA groups 
were used to identify the potential functions of the hub 
genes with the c5.all.v5.2.symbols.gmt annotations being 
selected as the reference gene sets. Nominal differ-
ences with p < 0.05, false discovery rate (FDR) < 0.05, and 
enrichment score (ES) > 0.6 were defined as the cutoff 
standards.

The only gene related to the gene sets from the 
MSigDB [25] that was identified in the study to correlate 
with metastasis and prognosis (RN7SL494P) was used to 

(1)P =
1

s2

[

k
∑

i=1

Ri

ni
− N

(N + 1)2

4

]

determine whether the sets showed statistical differences 
between the low-expression and high-expression catego-
ries. The analysis was performed using the java-depend-
ent GSEA 3.0 software package [26].

Univariate and multivariate Cox analysis
Cox proportional risk regression analysis is applicable to 
quantitative prediction variables and classification vari-
ables. The aim of the model is to assess the impact of sev-
eral factors on survival simultaneously. In other words, it 
allows us to examine how specific factors affect the inci-
dence of specific events (e.g., infection, death) that occur 
at specific points in time. This rate is often called the 
risk rate. Predictors (or factors) are commonly referred 
to in the survival analysis literature as covariates. Pos-
sible variables affecting survival time and survival status 
of lung adenocarcinoma, including age, gender, smok-
ing, whether to receive radiotherapy, whether to receive 
chemotherapy, and tumor grading, were included in uni-
variate and multivariate Cox regression analysis to deter-
mine whether the target genes found above also affect the 
survival of lung adenocarcinoma.

The functional verification of RN7SL494P in CCLE lung 
cancer lines
Cell line name annotation and RNA-seq data were down-
loaded from the CCLE database, and the “lung cancer” 
matrix was extracted by Perl and R. The co-expression 
gene set of RN7SL494P was analyzed and the co-
expression heatmap was drawn. Finally, GO and KEGG 
functional enrichment analyses were performed on the 
co-expression genes of RN7SL494P.
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