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Abstract

Background: Schizophrenia is a common psychiatric disease with high hereditary. The identification of schizophre-
nia risk genes (SRG) has shed light on its pathophysiological mechanisms. Mouse genetic models have been widely
used to study the function of SRG in the brain with a cell type specific fashion. However, whether the cellular expres-
sion pattern of SRG is conserved between human and mouse brain is not thoroughly studied.

Results: We analyzed the single-cell transcription of 180 SRG from human and mouse primary visual cortex (V1).
We compared the percentage of glutamatergic, GABAergic and non-neuronal cells that express each SRG between
mouse and human V1 cortex. Thirty percent (54/180) of SRG had significantly different expression rate in glutamater-
gic neurons between mouse and human V1 cortex. By contrast, only 5.6% (10/180) of SRG showed significantly dif-
ferent expression in GABAergic neurons, which is similar with the ratio of SRG (15/180) with species difference in total
cell populations. Strikingly, the percentage of non-neuronal cells expressing all SRG are indistinguishable between
human and mouse V1 cortex. We further analyzed the biological significance of differentially expressed SRG by gene

GABAergic neuron, Non-neuronal cell

ontology. The species-different SRG in glutamatergic neurons are highly expressed in dendrite and axon. They are
enriched in the biological process of response to stimulus. However, the differentially expressed SRG in GABAergic
neurons are enriched in the regulation of organelle organization.

Conclusion: GABAergic neurons are more conserved in the expression of SRG than glutamatergic neurons while the
non-neuronal cells show the species conservation for the expression of all SRG. It should be cautious to use mouse
models to study those SRG which show different cellular expression pattern between human and mouse cortex.
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Background

Schizophrenia (SZ) is a severe, disabling mental illness
affecting about 1% of population [1]. It is estimated that
the heritability of SZ is about 0.8 [2], which indicate
the substantial genetic contribution to the disease. To

*Correspondence: dmyin@brain.ecnu.edu.cn

Hai-Long Zhang, Jia-Wen Long and Wei Han contributed equally to this
work

! Key Laboratory of Brain Functional Genomics, Ministry of Education
and Shanghai, School of Life Science, East China Normal University,
Shanghai 200062, China

Full list of author information is available at the end of the article

B BMC

illustrate the complex genetic etiology, large amount of
genetic studies, both genome-wide and small scale, have
been conducted on SZ [2]. Although hypothesis-free,
genome-wide studies are capable of discovering schizo-
phrenia risk genes (SRG) [3], it is necessary to validate
the genetic results through functional studies [4]. To
this end, mouse models are frequently used to study bio-
logical function and pathological consequence of SRG
[5]. The convenience and accessibility of mouse models
(transgenic, knock in/out, optogenetics, etc.) promoted
to understand the function of SRG in the brain at the cel-
lular and circuit levels.
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Using mouse models to study SZ have been challenged
due to the species difference [6]. On one hand, human
brain may be unique for some high-level functions which
are affected in SZ (for example, cognition, decision, etc.)
[7]. Efforts have been made to evaluate and decrease the
difference between human and psychiatric mouse model
in terms of behavioral assessment and pharmacology [8,
9]. On the other hand, the cellular expression pattern of
SRG may have species difference in human versus mouse
brain. However, a comprehensive assessment of species
difference of SRG in cortex of human and mouse is still
lacking.

Assessing species difference of brain genetic architec-
ture is a complex multi-dimensional task [10]. In this
study, we managed to evaluate the species difference
from the aspect of gene expression profile. We assume
that, mouse models could properly reflect the function of
a gene only if this gene has similar expression profile in
mouse and human brain; or more specifically, percentage
of cells that express this gene should be similar in human
and mouse. Based on this hypothesis, we curated an SRG
list with 180 genes and compared their expression profile
in three cell types (glutamatergic, GABAergic and non-
neuronal cell) from human and mouse cortex. The results
from this study would allow us to evaluate the reliabil-
ity of mouse models to study the function of SRG in the
brain.

Methods

Schizophrenia risk gene list

We included two types of SRG into our list: (1) Data-driven
SRG inferred from PGC GWAS [11]. SNP annotation and
disease genes filtration were accomplished by Lin et al. [12].
A total of 132 SRG were identified. (2) Literature-curated
SRG from multiple database [13]. Most of these SRG were
identified by previous candidate gene studies [14-21]. A
total of 54 literature-oriented SRG were identified. We
removed overlapped genes and genes without mouse
homolog from the total gene list. 180 SRG were obtained
for further analysis.

Single cell transcriptome of human and mouse brain

Single cell RNA-seq data were obtained from Allen Insti-
tute [22] (https://celltypes.brain-map.org/download#trans
criptomics). Following data were chosen for analysis: (1)
Single cell transcriptome of adult human primary visual
cortex (V1) with 8988 nuclei. (2) Single cell transcriptome
of adult mouse V1 with 15,413 cells.

Characterization of cell type
Cell type characterization is based on the identification of
reference datasets and the specific expression of marker
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genes. First, we calculate the Spearman correlation value
between the expression profile of each cell to be identified
and the expression profile of each cell annotated in the ref-
erence data set by SingleR software package. Then, accord-
ing to the correlation score, we select the cell type which
has the greatest correlation with the expression profile
of the cell to be identified in the data set as the final cell
type. The reference data set used in this project is Human
Cell Landscape: a total of 1300 cell types collected by Guo
Guoji's team (http://bis.zju.edu.cn/HCL/index.html). The
final annotation results of cell type were obtained accord-
ing to the specific expression distribution of marker genes
of known cell types (feature plot) and the identification
results of data sets. Cell types were summarized to three
main types: glutamatergic neuron, GABAergic neuron and
non-neuronal cells.

Statistical analysis of expression profile

We defined that a gene e was expressed in a cell when>0
of reads from a cell were aligned to e. For each cell type
and each SRG e, we counted the number of cells for each
type that expressed or did not expressed gene e and put the
numbers in the following table.

Human cortex Mouse cortex Total
Expressed a b a+b
Non-expressed c d c+d
Total a+c b+d a+b+c+d

Whether the percentage of cells for each type that
express SRG e was significantly different between human
and mouse cortex was determined by x test:

X2= Z (a—dae)2

{ab,c.d}

where a, represents expected frequency of grid a:

_(@+o@+b)
T a+b+c+d

Calculated x* values were adjusted for multiple test-
ing by 180 x 3=540. SRG with p value smaller than 0.05
were considered as species difference. All analysis was
conducted using chisg. test R function.

Biological significance of gene sets

To test whether different gene sets obtained from pre-
vious analysis are enriched in any biological pathways,
we applied Gene Ontology [23] enrichment analysis by
DAVID online tool [24]. Biological Process (GO-BP),
Cell Component (GO-CC) and Molecular Function (GO-
MF) were analyzed. Enrichment analysis was achieved
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by hypergeometric test. Suppose n is the size of tested
gene set s, K is the total number of genes in a biological
pathway P, N is the total number of background genes
(genes with GO annotation). If we randomly selected n
genes from background N, we expected to select k genes
from pathway p with a probability P,(x = k) that follows
a hypergeometric distribution.

K N -K
k n—k
Pr(x =k) = N
n
If k is large enough such that p = P,(x > k) is small,
we could draw the conclusion that tested gene set s is
enriched in pathway P. p-value for hypergeometric tests
were adjusted for multiple testing by Benjamin-Hochberg

method. Pathways (GO-BP, CC or MF) with adjusted
p <0.05 were considered enriched pathways.

Results

Cell type calls from the human and mouse primary visual
cortex (V1)

We sought to compare the cellular expression pattern of
SRG from matched brain regions in human versus mouse.
We focused on the primary visual cortex (V1) because V1
is the only brain region where the single cell RNA-seq
data is currently available for both human and mouse
cortex in Allen Brain Institute. Analysis of the single cell
RNA-seq data of human V1 cortex reveals approximately
16 transcriptionally distinct cell types, subdivided into 3
GABAergic neuron types, 9 glutamatergic neuron types
and 4 non-neuronal cell types (Fig. 1a, b). Assay of the
RNA-Seq data from mouse V1 cortex reveals 15 tran-
scriptomic cell types, divided into 4 GABAergic neuron
types, 7 glutamatergic neuron types and 4 non-neuronal
cell types (Fig. 1c, d). The number of SRG-positive and
SRG-negative cells in the population of glutamatergic
neuron, GABAergic neuron and non-neuronal cell were
listed in Additional file 1: Table S1.

Expression of SRG in total cell population from human
versus mouse V1 cortex

In the human and mouse V1 cortex, a total of 8998 and
15,413 cells were RNA-sequenced, respectively. The per-
centage of cells that expressed SRG was determined by
the ratio of SRG-positive cells to total cells (Additional
file 2: Table S2). The percentages of cells expressing most
SRG (165 out of 180) were similar between human and
mouse V1 cortex (Additional file 2: Table S2). The per-
centage of cells that express Aktl, Amacr, Btgl, CD34,
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Comt, Dtnbpl, IL18, Lsm1, Mapk3, Mcll, Ptn, Sigmarl,
Slclal, Srr, Vipr2 was significantly lower in human V1
cortex than mouse V1 cortex (Additional file 2: Table S2).
We did gene ontology (GO) assay for these 15 SRG with
species difference: they were highly expressed in the
plasma membrane and synaptic region (Fig. 2a) and were
overrepresented in biological processes such as regula-
tion of neurotransmitter levels (Fig. 2b). The analysis of
molecular function (MF) indicated that these 15 SRG
were significantly presented in racemase (p=1.41 x 107?)
and kinase activity (p=4.3 x 107?) (Fig. 2c). KEGG assay
showed that these 15 SRG were enriched in cAMP sign-
aling pathway (p=1.98 x 107?) (Fig. 2d).

Expression of SRG in glutamatergic neurons from human
versus mouse V1 cortex

We next compare the expression of SRG in glutamater-
gic neurons between human versus mouse V1 cortex.
The percentage of glutamatergic neurons expressing SRG
was determined by the ratio of SRG-positive glutamater-
gic neurons to total glutamatergic neurons (Additional
file 3: Table S3). Strikingly, the percentages of glutamater-
gic neurons expressing 54 out of 180 SRG were signifi-
cantly lower in human V1 cortex than mouse V1 cortex
(Additional file 3: Table S3). Having identified the subset
of SRG that exhibited species difference in glutamatergic
neurons, we sought to explore their biological charac-
teristics using pathway analysis. GO-CC analysis of SRG
with species difference in glutamatergic neurons revealed
that they were enriched in the dendrite and axon (Fig. 3a).
Species-different SRG in glutamatergic neurons showed
unique enrichment in biological processes such as regula-
tion of multicellular organismal process (p=2.56 x 1077)
and response to stimulus (p=4.72x1077) (Fig. 3b).
GO-MF analysis indicated that species-different SRG in
glutamatergic neurons were highly presented in protein
binding pathway (p=2.01 x 10~%) (Fig. 3c). KEGG assay
showed that species-different SRG in glutamatergic neu-
rons were enriched in dopaminergic (p=1.5 x 10~%) and
glutamatergic synapse (p=1.5 x 103 (Fig. 3d).

Expression of SRG in GABAergic neurons from human
versus mouse V1 cortex

In the following study we sought to compare the expres-
sion of SRG in GABAergic neurons between human
versus mouse V1 cortex. The percentage of GABAergic
neurons expressing SRG was determined by the ratio
of SRG-positive GABAergic neurons to total GABAe-
rgic neurons (Additional file 4: Table S4). Unlike glu-
tamatergic neurons, the percentages of GABAergic
neurons expressing most SRG (170 out of 180) were
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Fig. 1 Cell-type taxonomy in human and mouse V1 cortex. a, b t-distributed stochastic neighbor embedding (tSNE) visualization of 8998 nuclei
from human V1 cortex grouped by expression similarity and colored by cluster (a) and cell type (b). ¢, d tSNE visualization of 15,413 cells from
mouse V1 cortex grouped by expression similarity and colored by cluster (c) and cell type (d). 14,048 out of 15,413 cells can be grouped into three
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similar between human versus mouse V1 cortex (Addi-
tional file 4: Table S4). Only ten SRG showed differ-
ent expression in GABAergic neurons between human
versus mouse V1 cortex (Additional file 4: Table S4).
GO-CC analysis of species-different SRG in GABAe-
rgic neurons did not reveal any enrichment. Species-
different SRG in GABAergic neurons showed unique
enrichment in biological processes such as response to
epidermal growth factor (p=2.1x107%) and regula-
tion of organelle organization (p=>5 x 107%) (Fig. 4a).

GO-MF analysis indicated that species-different SRG
in GABAergic neurons were highly presented in kinase
binding pathway (p=1.3 x 10~3) (Fig. 4b). KEGG assay
showed that these species-different SRG were enriched
in FoxO signaling pathway (p=4.3 x 10~?) (Fig. 4c).

Expression of SRG in non-neuronal cells from human
versus mouse V1 cortex

We lastly compare the expression of SRG in non-neu-
ronal cells between human versus mouse V1 cortex.
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Fig. 2 GO and KEGG analysis of differential expressed SRG in total cell population between human versus mouse V1 cortex. Significantly
overrepresented cellular component (a), biological process (b) and molecular function (c). d Significantly overrepresented KEGG. The x-axis
represents the value of —logp, the y-axis indicates the item of GO or KEGG, the numbers after each bar indicate the list hits/pop hits
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Fig. 3 GO and KEGG analysis of differential expressed SRG in glutamatergic neurons between human versus mouse V1 cortex. Significantly
overrepresented cellular component (a), biological process (b) and molecular function (c). d significantly overrepresented KEGG. The x-axis
represents the value of —logop, the y-axis indicates the item of GO or KEGG, the numbers after each bar indicate the list hits/pop hits

The percentage of non-neuronal cells expressing SRG
was determined by the ratio of SRG-positive non-neu-
ronal cells to total non-neuronal cells (Additional file 5:
Table S5). Different from neurons, the percentages of
non-neuronal cells expressing all SRG were indistin-
guishable between human and mouse V1 cortex (Addi-
tional file 5: Table S5). These results indicated the species
conservation of SRG expression in non-neuronal cells
from human and mouse V1 cortex.

Discussion

Here we analyzed the expression profile of 180 schiz-
ophrenia risk genes (SRG) in three cell types from
human and mouse V1 cortex. We demonstrate that
the majority of SRG had a consistent expression profile
between mouse and human V1 cortex: 126 of 180 SRG
are expressed with similar ratios in glutamatergic neu-
rons, 170 out of 180 SRG are conserved in GABAergic
neurons and all SRG are conserved in non-neuronal
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Fig. 4 GO and KEGG analysis of differential expressed SRG in GABAergic neurons between human versus mouse V1 cortex. Significantly
overrepresented biological process (a) and molecular function (b). ¢ Significantly overrepresented KEGG. The x-axis represents the value of —log;op,
the y-axis indicates the item of GO or KEGG, the numbers after each bar indicate the list hits/pop hits

cells. These results support the rationality to use mouse
models to study the function of SRG with similar
expression pattern between human and mouse cortex.
However, the gene expression pattern may different
from brain regions [25]. It will be interesting to study
whether the cellular expression pattern of SRG were
conserved in other cortical brain regions such as pre-
frontal cortex and hippocampus. Such comparative
studies may rely on the single-cell RNA sequence data
from the matched brain regions which is not currently
available.

For 30% SRG, however, their expression in gluta-
matergic neurons were significantly different between
human and mouse V1 cortex. Only 10 SRG showed
species difference in GABAergic neurons. Strikingly,
the 10 SRG differently expressed in GABAergic neu-
rons between human and mouse cortex also exhibit
species difference in glutamatergic neurons. The differ-
ent expression pattern of certain SRG between mouse
and human V1 cortex may not due to the age because
both adult mice and human cortical tissue were
used for the assay in Allen Brain database. Near one-
third SRG showed species difference in glutamatergic

neurons, which may not result from the difference in
overall gene transcription between human and mouse
cortex because only a small proportion of genes exhibit
human-specific cortex transcriptome signature [26, 27].
Although the reason for the species-different cellular
expression pattern of certain SRG is not completely
clear, we reason that it should be cautious to use mouse
models to study the species-different SRG. Other mod-
els such as patient iPSC-derived neuronal culture or
brain organoids may be alternative approaches to study
the function of SRG.

Conclusion

Here we compared the cellular expression pattern of
SRG from matched brain regions of human versus mouse
cortex. Our results indicate that GABAergic neurons
are more conserved in the expression of SRG than glu-
tamatergic neurons while the non-neuronal cells show
the species conservation for the expression of all SRG. It
should be cautious to use mouse models to study those
SRG which show different cellular expression pattern
between human and mouse cortex.
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Supplementary information

Supplementary information accompanies this paper at https://doi.
0rg/10.1186/513578-019-0352-5.

Additional file 1: Table S1. The number of SRG-positive and SRG-nega-
tive cells in the population of glutamatergic neuron, GABAergic neuron
and non-neuronal cell.

Additional file 2: Table S2. The ratio of SRG-positive cells to total cells in
human versus mouse V1 cortex. The k? and p value were shown for each
SRG. The red color indicates significant difference between human and
mouse.

Additional file 3: Table S3. The ratio of SRG-positive glutamatergic
neurons to total glutamatergic neurons in human versus mouse V1 cortex.
The k% and p value were shown for each SRG. The red color indicates
significant difference between human and mouse.

Additional file 4: Table S4. The ratio of SRG-positive GABAergic neurons
to total GABAergic neurons in human versus mouse V1 cortex. The k? and
p value were shown for each SRG. The red color indicates significant differ-
ence between human and mouse.

Additional file 5: Table S5. The ratio of SRG-positive non-neuronal cell
to total non-neuronal cell in human versus mouse V1 cortex. The k? and p
value were shown for each SRG.
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