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Regional methylome profiling reveals 
dynamic epigenetic heterogeneity 
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Abstract 

Background:  Neoadjuvant chemotherapy (NAC) induces a pathological complete response (pCR) in ~ 30% of 
patients with breast cancer. However, aberrant DNA methylation alterations are frequent events during breast cancer 
progression and acquisition of chemoresistance. We aimed to characterize the inter- and intra-tumor methylation 
heterogeneity (MH) in breast cancer following NAC.

Methods:  DNA methylation profiles of spatially separated regions of breast tumors before and after NAC treatment 
were investigated using high-density methylation microarray. Methylation levels of genes of interest were further 
examined using multiplexed MethyLight droplet digital PCR (ddPCR).

Results:  We have discovered different levels of intra-tumor MH in breast cancer patients. Moreover, NAC dramatically 
altered the methylation profiles and such changes were highly heterogeneous between the patients. Despite the 
high inter-patient heterogeneity, we identified that stem cell quiescence-associated genes ALDH1L1, HOPX, WNT5A 
and SOX9 were convergently hypomethylated across all the samples after NAC treatment. Furthermore, by using 
MethyLight ddPCR, we verified that the methylation levels of these 4 genes were significantly lower in breast tumor 
samples after NAC than those before NAC.

Conclusions:  Our study has revealed that NAC dramatically alters epigenetic heterogeneity in breast cancer and 
induces convergent hypomethylation of stem cell quiescence-associated genes, ALDH1L1, HOPX, WNT5A and SOX9, 
which can potentially be developed as therapeutic targets or biomarkers for chemoresistance.
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Background
DNA methylation is a key mechanism for transcriptional 
regulation and is the best-studied epigenetic modifica-
tion. Dramatic methylation changes of gene regulatory 
regions are associated with gene silencing or expression 
in promoters and enhancers. Recent large-scale genomic 
studies have shown that perturbations of methylation 
patterning are frequent events during breast cancer 
(BRCA) progression, and these aberrantly methylated 
genes are involved in cell cycle regulation, DNA repair, 
transformation, detoxification, adhesion and metasta-
sis, such as BRCA1, CDH1, MGMT etc. [1]. Also, lots 
of published studies confirmed the important roles of 
DNA methylation modifications in patients’ resistance to 
standard chemotherapy treatments of BRCA. For exam-
ple, hypermethylation of BRCA1 could predict the sen-
sitivity to PARP inhibitors and alkylating agents [2, 3]; 
hypermethylation of GSTP1, ABCB1 and DUSP4 could 
predict the sensitivity to doxorubicin [4–6]; and hyper-
methylation of ESR1, CDK10 and PITX2 could predict 
the resistance to estrogen inhibitors [7, 8]. It is increas-
ingly recognized that such epimutations can provide 
more insights to stratify subpopulations of tumor cells 
and evaluate treatment response when there are no well-
known genetic mutations in specific tumors. Moreover, it 
is intriguing to consider epimutations as potential targets 
since it is less stable compared to genetic mutations and 
easier to be modified. Hence, DNA methylation profiling 
draws great interests to be used to evaluate chemother-
apy response of BRCA in clinics.

Current availability of high-density DNA methylation 
microarray technology has enabled us to profile genome-
wide DNA methylation signatures associated with drug 
response more efficiently. Moreover, the high density of 
probes also enables us to examine copy number variation 
(CNV) in the tumor tissue with comparable sensitivity of 
SNP arrays [9, 10]. Furthermore, it is reported that the 
arrays are sufficiently sensitive to evaluate the abundance 
of tumor-infiltrated lymphocytes (TILs) in BRCA tumors 
based on certain methylation signature, which reflects 
the strength of antitumor immune response and can 
serve as a potential biomarker of survival and response of 
chemotherapy [11].

However, intra-tumor heterogeneity may lead to sam-
pling bias and pose a major challenge to biomarker devel-
opment and precision medicine [12]. Generally, there are 
two levels of methylation heterogeneity (MH), including 
inter- and intra-tumor MH. People often pay more atten-
tion to the former through collecting more and more 
samples from different backgrounds [13]. However, there 
are growing evidences showing that intra-tumor MH is 
more dominant for evaluating the response upon treat-
ment for an individual patient [14]. Despite many studies 

characterizing intra-tumor genetic heterogeneity, epige-
netic heterogeneity of DNA methylation has been less 
investigated in BRCA.

In this study, we profiled MH of spatially separated 
regions of breast tumors prior to and post neoadjuvant 
chemotherapy (NAC) treatment using the high-density 
Infinium HumanMethylation450K bead arrays. Overall, 
we have discovered different levels of intra-tumor MH 
in BRCA patients. Moreover, NAC dramatically altered 
the methylation profiles and changes were heterogeneous 
between different individuals. Despite the high inter- and 
intra-tumor heterogeneity, we identified that stem cell 
quiescence-associated genes ALDH1L1, HOPX, WNT5A 
and SOX9 were commonly hypomethylated across all the 
samples post NAC treatment, which holds the potential 
to be developed as therapeutic targets or biomarkers for 
chemoresistance.

Methods
Patient materials
This study had obtained the approval of the Ethics Com-
mittee of the Third Affiliated Hospital of Guangzhou 
Medical University (2017/056). Patients were enrolled 
at the Third Affiliated Hospital of Guangzhou Medical 
University (Guangzhou, China) and had signed informed 
consents. 3 BRCA patients (Patients 602, 676 and 164) 
who received NAC treatments but failed to achieve path-
ologic complete response (pCR) were selected. These 
patients underwent core needle biopsy sampling, fol-
lowed by Cyclophosphamide, Epirubicin and Docetaxel 
neoadjuvant chemotherapy regimens, and finally surgical 
removal of the breast tumors. Each patient derived 3–4 
core needle biopsy specimens prior to NAC, and each 
post-NAC tumor tissue was spatially dissected into 6–7 
sectors (Additional file 1: Figure S5A). Another 5 breast 
cancer patients (Patients 161, 486, 168, 533 and 847) were 
selected whose breast tumors were surgically removed 
without NAC treatment. Each tumor tissue was spatially 
dissected into six sectors (Additional file 1: Figure S5B). 
DNA of the samples was isolated using the DNeasy Blood 
& Tissue Kit (Qiagen) and then bisulfite converted using 
the EZ DNA Methylation Kit (ZymoResearch) according 
to the manufacturers’ instructions.

DNA methylation profiling
Genome-wide methylation profiling of 47 breast cancer 
tissue samples derived from the 8 patients was performed 
using the Illumina Infinium HumanMethylation450k 
Bead Chip according to the manufacturer’s instruction. 
IDAT raw data files were imported for processing using 
the R/Bioconductor package methylumi pipeline with the 
default parameters [15]. The output of methylumi pipe-
line contains beta values (methylation signal density/total 
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signal density) with annotations for the HUGO Gene 
Nomenclature Committee (HGNC) gene symbol, chro-
mosome, and genomic coordinate of each CpG/CpH site 
(UCSC hg19). Methylation levels (beta values) were used 
for the subsequent analyses.

Copy number alteration analysis
ChAMP [16], an R package available through Biocon-
ductor, was used for evaluating copy number variation 
(CNV) with default options, by comparing each sample 
with internal 450k blood control samples. Segmentation 
was performed by champ. CNA function, which utilized 
the intensity values from HumanMethylation450 Bead-
Chip probes to count copy number and determined if 
copy number alterations were present. Copy number was 
determined using the CopyNumber package. The log2-
ratio value for each segment was calculated by using the 
sum of the methylated and unmethylated signal density. 
The CNVs for each sample were plotted according to the 
log2-ratio from each segment, and classified as amplifica-
tions (> 0.08) or deletions (< − 0.08).

Differential methylation analysis and functional 
enrichment analysis
DMRcate [17], an R package available through Biocon-
ductor, was employed for detecting differentially meth-
ylated regions (DMR) between samples before and after 
NAC for each patient individually. DMRs were defined as 
regions with a maximal 1000 bp containing two or more 
CpGs. FDR were calculated with Benjamini–Hochberg 
procedure, and FDR cutoff 0.05 was used to determine 
DMRs. Genomic locations for all DMRs were assigned 
by DMRcate to Illumina hg19 annotation. Genes whose 
promoter region overlap with DMRs in all samples were 
selected as common DM genes for the downstream anal-
ysis. Functional analysis was performed on DM genes 
with DAVID (version 6.8) [18] and KEGG pathways with 
enrichment P < 0.05 were selected as overrepresented 
functions.

MethyLight droplet digital PCR
MethyLight droplet digital PCR (ddPCR) was performed 
to validate the methylation levels of the genes of interest 
in tumor biopsies derived from additional NAC-treated 
breast cancer patients. The ddPCR reaction mixture con-
sisted of the bisulfite-converted DNA sample, ddPCR 
Supermix for Probes (BioRad), and locus-specific Meth-
yLight primers and probes in a final volume of 20  µL. 
The primer and probe sequences were designed using 
Beacon Designer version 8.20 (Premier Biosoft). The 
sequences of the primers and probes are listed in Addi-
tional file  1: Table  S2. The locations of the primers and 
probes are shown in Additional file  1: Figure S11A. A 

multiplexed MethyLight ddPCR assay, as described in 
Additional file 1: Figure S11B, was established to simul-
taneously quantified 2 genes of interest (2 gene-specific 
FAM-labelled probes adjusted at different concentra-
tions) and the C-LESS-C1 reaction (HEX-labelled probe), 
which amplified a DNA strand without any cytosine to 
determine the total DNA amounts of each sample [19]. 
This multiplexed method enabled us to quantify the 4 
genes with only 2 reactions. The ddPCR reaction mix-
tures were loaded into sample wells on a DG8 Cartridge 
(BioRad). A volume of 70  µL of droplet generation oil 
was loaded into adjacent oil wells on the cartridge. Then 
the cartridge was loaded into a QX200 Droplet Genera-
tor (BioRad) for droplet generation. The resulting water-
in-oil droplets were gently transferred from the droplet 
wells on the cartridge to a 96-well PCR plate (BioRad). 
The plate was heat-sealed with PX1TM PCR Plate Sealer 
(BioRad), placed on a T100TM Thermal Cycler (BioRad) 
and amplified to the endpoint. After PCR amplification, 
the plate was loaded into a QX200 Droplet Reader (Bio-
Rad) to determine how many droplets were positive for 
the genes of interest, as well as for the control reaction 
C-LESS-C1. Data were analyzed using QuantaSoft ver-
sion 1.4.0 (BioRad). The methylation levels of the genes 
of interest in each sample were normalized by the total 
DNA amounts based on the C-LESS-C1 reaction.

Results
DNA methylation provides independent information 
from current BRCA classification systems
It is well known that BRCA has clinical and genomic 
heterogeneity. Traditionally, BRCA has been staged by 
histopathological criteria that are based on size, lymph 
node infiltration and level of invasiveness (TNM), or by 
immunohistochemical characterization of cell surface 
receptors, including estrogen receptor (ER), progester-
one receptor (PR) and human epidermal growth factor 
receptor 2 (HER2) [20]. Recently, gene expression profiles 
are employed to expand the molecular classification of 
BRCA. One of the most well-known signatures is PAM50, 
which is used to distinguish 5 intrinsic subtypes, includ-
ing luminal A, luminal B, HER2-enriched, basal-like and 
normal-like [21]. Considering that DNA methylation is 
one of the critical regulators of gene expression, we seek 
to study if subtypes of BRCA based on current classifica-
tions display consistent DNA methylation changes.

To fulfill this task, we downloaded 450K array data 
of 870 patients from the TCGA-BRCA study and per-
formed unsupervised clustering analysis with the most 
variable probes (top 1%). Generally, we observed great 
inter-patient MH across the whole cohort and no sig-
nificant correlation between certain methylation patterns 
and PAM50 subtypes, surface receptors or TNM stages 
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was found (Additional file  1: Figures  S1–S3). Thus, all 
current classification methods, no matter based on gene 
expression profiles, surface receptors or histopathologi-
cal criteria, were not significantly correlated with DNA 
methylation landscapes. Therefore, it is intriguing to uti-
lize DNA methylation to expand the prediction power to 
clinical outcomes of NAC treatment since DNA meth-
ylation can provide independent information from tradi-
tional classifiers.

Primary BRCA tumors display different levels 
of intra‑tumor MH
To investigate the intra-tumor MH in BRCA patients 
and the impact of NAC on it, we have selected 3 BRCA 
patients (Patients 602, 676 and 164) who received NAC 
treatment but failed to achieve pCR (Additional file  1: 
Figure S4, Table S1). Each patient derived 3–4 pre-NAC 
biopsies and the post-NAC surgically-excised tumors 
were spatially dissected into 6–7 sectors (Additional 
file  1: Figure S5A). We also included another 5 patients 
(Patients 161, 486, 168, 533 and 847) with their tumor 
surgically excised without any NAC treatment (Addi-
tional file 1: Figure S4, Table S1). Each tumor tissue was 
spatially dissected into 6 sectors (Additional file 1: Figure 
S5B). Samples with successful DNA exaction were used 
for DNA methylation array assays.

Firstly, we characterized the DNA methylation profiles 
of pre-NAC samples with top 1% most variable CpGs 
cross all the samples. As expected, we observed high lev-
els of inter-patient MH, which was consistent with our 
conclusions from the TCGA cohort (Fig.  1, top panel). 
By comparing different samples in each patient individ-
ually, we observed different levels of intra-tumor MH. 
Some patients had relatively lower levels of intra-tumor 
MH, such as Patients 161, 602, 676 and 164. All the sam-
ples from the same patient shared very similar methyla-
tion profiles. Some patients had relatively higher levels 
of intra-tumor MH, such as Patients 486, 168 and 847. 
In these patients, samples from the same patient show 
different methylation profiles in partial CpGs. However, 
these samples were still clustered together by individuals, 
which indicated such intra-tumor MH level was lower 
than inter-patient MH. For patient 533, one of the sam-
ples was quite different from the others. These results 
indicated that primary BRCA patients had different levels 
of intra-tumor MH. Besides the overall analysis based on 
all samples, we also performed the unsupervised cluster-
ing on samples from each patient individually. The top 1% 
most variable CpGs from each patient showed very dif-
ferent profiles, which indicated that each patient carried 
distinct MH patterns (Additional file 1: Figure S6).

Leveraging the power of high-density probes of 450K 
array, we also evaluated the genetic heterogeneity of 
CNV at the same time. Similar with methylation profiles, 
we observed high levels of inter-patient genetic heteroge-
neity, and different patients had different levels of CNVs 
and different focal CNVs in almost every chromosome 
(Fig.  1, bottom panel). However, we found the levels of 
intra-tumor genetic heterogeneity were not correlated 
to those of intra-tumor MH. For example, Patient 161 
had almost homogeneous methylation profiles but quite 
diverse CNV landscapes, especially on chromosomes 5, 
6 and 13; Patient 847 had high levels of both genetic and 
epigenetic intra-tumor heterogeneities.

To further examine the effects of intra-tumor MH on 
detecting known methylation-based biomarkers, we per-
formed unsupervised clustering analysis on the 450K 
array probes mapped to 7 reported chemotherapy-resist-
ant genes that were epigenetically regulated, including 
DUSP4, GSTP1, ABCB1, PTEN, FOXC1, TGM2 and 
ETS1 [4–6, 22]. We observed that most samples were 
clustered by individuals. However, samples from Patients 
486, 847 and 533, who had relatively higher intra-tumor 
MH, were fallen into two different clusters (Additional 
file 1: Figure S7). We also tested another 5-probe meth-
ylation signature of TIL (MeTIL) that was reported to 
reflect TIL abundance and predict chemotherapy out-
comes [11]. Similarly, we observed that the samples from 
Patients 168, 847 and 533, whose intra-tumor MHs were 
relatively higher, were even separated into three differ-
ent clusters (Additional file 1: Figure S8). These observa-
tions indicated that higher intra-tumor MH might cause 
higher inter-sample variance of the methylation markers, 
thus leading to sampling bias. Therefore, intra-tumor 
MH needs to be taken into consideration when we strat-
ify BRCA patients and perform personalized medicine.

BRCA tumors exhibit heterogeneous DNA methylation 
changes in response to NAC
To investigate how NAC changes DNA methylation pro-
files in BRCA patients, we applied unsupervised clus-
tering analysis to the 3 NAC-treated patients. As the 
result, we observed that NAC treatment changed meth-
ylation profiles dramatically in all the 3 patients (Fig.  2, 
top panel). Surprisingly, the top 1% variable CpGs were 
altered very differently across the patients, indicating 
that NAC changed methylation profiles in divergent 
ways. In Patients 602 and 676, the majority of top vari-
able CpGs were hypo-methylated after NAC. However, 
in Patient 164, the methylation changes were almost bal-
anced, with nearly half of CpGs hyper-methylated and 
the others hypo-methylated after NAC. Taken together, 
these results provided the evidence that NAC could sig-
nificantly alter the overall methylation profiles and cause 
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heterogeneous methylation changes in different BRCA 
patients.

In terms of CNVs, we also observed heterogeneous 
changes induced by NAC in different patients (Fig.  2, 
bottom panel). In Patients 244676 and 248164, post-
NAC samples gained more CNVs compared to pre-NAC 
samples. In Patient 602, the opposite CNV change was 

observed. Even more interestingly, in Patients 676 and 
164, the post-NAC samples actually gained CNVs to dif-
ferent extends, indicating increased intra-tumor genetic 
heterogeneity caused by NAC treatment. All these obser-
vations proposed that BRCA patients would exhibit het-
erogeneous responses to NAC treatment at both genetic 

Fig. 1  Differences of genetic and epigenetic profiles between baseline samples from different patients. Top panel: unsupervised clustering of top 
1% most variable probes of 450K data from baseline samples prior to NAC; Bottom panel: copy number plots of corresponding samples
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and epigenetic levels, and DNA methylation changes 
were independent with CNV changes.

Heterogeneous epigenetic regulations on cancer‑related 
pathways by NAC
To investigate the genes involved in NAC-induced DNA 
methylation alterations, we performed supervised analy-
sis on the DNA methylation levels of CpGs and defined 
DMRs between samples prior to and post NAC for each 
patient. Thus, we detected 9348, 3685 and 9034 DMRs for 
Patients 164, 676 and 602, respectively (Fig. 3a). Finally, 
2257 common DMRs were found among all the 3 patients 
and these DMRs were assigned to the nearest genes with 
hg19 annotation. This indicated that NAC could pro-
foundly lead to the robust epigenetic changes on a group 
of genes regardless of patients’ genomic and epigenetic 
variances. To better understand the underlying mecha-
nism of these regulations, pathway enrichment analy-
sis was performed on above differentially methylated 
(DM) genes. Interestingly, as the most prominent func-
tional categories of DM genes, a group of cancer-related 

pathways were significantly altered by NAC, including 
cAMP signaling pathway, PI3K–AKT signaling pathway, 
ECM-receptor interaction etc. (Fig.  3b). A closer look 
at the cAMP signaling pathway showed that although 
many genes in the pathway were differentially methyl-
ated across all the 3 patients (Fig. 3c), most of them were 
altered in divergent ways (Additional file  1: Figure S9). 
For instance, in Patient 676, most of the DM genes were 
hypomethylated; while the other 2 patients displayed 
the opposite. A further look at the other cancer-related 
pathways in each patient showed that different pathways 
were regulated in divergent ways as well, which implied 
that breast tumors in different patients might gain NAC 
resistance via different molecular mechanisms (Addi-
tional file 1: Figure S10).

Four stem cell quiescence‑associated genes were 
convergently hypomethylated by NAC
Despite the high inter- and intra-tumor heterogeneity, 
we hypothesize that there might be a small but com-
mon methylation signature for NAC resistance in which 

Fig. 2  Differences of genetic and epigenetic profiles between baseline and chemo samples from three different patients. Top panel: unsupervised 
clustering of top 1% most variable probes of 450K data for each patient who participated chemotherapy separately; Bottom panel: copy number 
plots of corresponding samples
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Fig. 3  Differential methylation analysis of the 3 NAC-treated patients. a Venn diagram of DM gene numbers of each patient; b top enriched KEGG 
pathways based on common DM genes; c common DM genes in the cAMP signaling pathway
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selective pressure by chemotherapy converges at specific 
genes. We looked into the top DM genes and found that 4 
genes, ALDH1L1, HOPX, WNT5A and SOX9, were con-
vergently hypomethylated across all the post-NAC sam-
ples (Fig. 4). From the literature, the functions of these 4 
genes are associated with stem cell quiescence [23–27].

We further examined the methylation status of these 4 
genes in additional 24 NAC-treated BRCA using multi-
plexed MethyLight droplet digital PCR (ddPCR) assays 
(Additional file 1: Figure S11). At least 3 pieces of spatially 
separated pre- and post-NAC tumor biopsies were col-
lected from each patient. The results confirmed that these 
4 genes are significantly less methylated in post-NAC 
tumor samples (Fig. 5). We also looked into the alteration 
in intra-tumor MH of these 4 genes under NAC pressure. 
All genes except SOX9 displayed decreased intra-tumor 
variance of methylation levels after NAC treatment, indi-
cating most of them were subjected to convergent selec-
tion pressure by NAC (Fig. 5). The pre-NAC intra-tumor 
variance of SOX9 was already much lower than those of 
the other 3 genes, so it was reasonable that the post-NAC 
variance did not lower more (Fig. 5). Further, we looked 
into the alteration in inter-tumor MH of these 4 genes 
under NAC pressure. Among the 4 genes, ALDH1L1 
and HOPX exhibited decreased inter-tumor variance 

of methylation levels after NAC treatment; meanwhile, 
WNT5A and SOX9 showed increased inter-tumor vari-
ance (Fig.  5). This indicated that there might be higher 
selection pressure on ALDH1L1 and HOPX by NAC 
treatment. In summary, the convergent hypomethylation 
of these 4 genes in tumor biopsies after NAC was vali-
dated by MethyLight ddPCR assays.

Discussion
Although as one of most well-studied cancer types, 
BRCA has been classified to distinct subtypes according 
to the different criteria for determining the treatment 
strategy [20], it is still not robust to predict progno-
sis or therapeutic response with either pathological 
or immunochemical characterization due to the het-
erogeneity of the disease. Recent large-scale genomic 
studies have shown that mutations in the epigenetic 
machinery and concomitant perturbation of epig-
enomic patterning are frequent events in BRCA [28]. 
The best-studied epigenetic modification is DNA meth-
ylation, hyper- or hypo-methylation of gene regulatory 
regions is associated with gene silence or activation. 
For example, methylation of the p16 tumor suppres-
sor gene was a potential early biomarker for detection 
of BRCA [29]. Tumor DNA methylation has two levels 

Fig. 4  Comparison of methylation levels between pre- and post-NAC samples in the promoter regions of the top DM genes a ALDH1L1; b HOPX; c 
WNT5A; d SOX9
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of heterogeneity, one is inter-patient MH and the other 
one is intra-tumor MH. Currently, lots of studies were 
focusing on inter-tumor MH, and lots of data were gen-
erated by large-scale projects, such as TCGA. However, 
studies focusing on intra-tumor MH patients are very 
limited so far due to limitations of technologies and 
cost. It has been reported that intra-tumor MH is pre-
dictive to tumor progression in many types of tumors 
especially in lymphomas [30]. Nevertheless, the intra-
tumor MH in BRCA and its potential impact on breast 
cancer progression and acquisition of drug resistance 
are less studied. Our study firstly addresses the intra-
tumor MH in primary breast tumors in a genome-wide 
manner and in the context of NAC.

Our results indicated that primary BRCA tumors had 
great inter-tumor MH and different levels of intra-tumor 
MH. Hence, if we want to use methylation-based bio-
markers to predict clinical outcomes, intra-tumor MH 
is one of the most important features to be considered. 
For heterogeneous patients, we need to evaluate different 
regions of the tumors and make predictions taking such 
variable information into consideration.

Moreover, we observed that the patients exhibited 
heterogeneous DNA methylation and CNV changes in 

response to NAC, suggesting that even the same regime 
might affect different patients in divergent ways at both 
genetic and epigenetic levels.

Furthermore, we observed heterogeneous epigenetic 
regulation on cancer-related pathways by NAC, includ-
ing cAMP signaling pathway, PI3K–AKT signaling path-
way, ECM-receptor interaction etc. It is reported that 
the cAMP signaling pathway has both pro- and anti-
apoptotic roles in cancers [31]. Some studies showed that 
anti-cancer drugs such as cisplatin, ABT-737 and thy-
moquinone induced cancer cell apoptosis via the cAMP/
PKA axis [32, 33]. Some other studies demonstrated that 
hyperactivation of the cAMP/PKA axis conferred mul-
tidrug resistance in ovarian cancer [34, 35]. Considering 
the other cancer-related pathways were also heteroge-
neously regulated in our study, we hypothesize that the 
cAMP signaling pathway functions in BRCA in a context-
dependent manner. Hence, our results indicated that it 
is important to gain genome-wide information when we 
perform precision medicine for BRCA patients.

In spite of the high inter-patient heterogeneity, we 
identified that 4 stem cell quiescence-associated genes, 
ALDH1L1, HOPX, WNT5A and SOX9, were conver-
gently hypomethylated in all the post-NAC samples. 

Fig. 5  MethyLight ddPCR analysis of methylation levels of the genes of interest in pre- and post-NAC tumor samples. The boxplots show the 
pre- and post-NAC methylation levels in the 24 tumor samples. The scatter plots show the inter-tumor variance and averaged intra-tumor variance 
of the pre- and post-NAC groups. a ALDH1L1; b HOPX; c WNT5A; d SOX9. **P < 0.01, ***P < 0.001



Page 10 of 12Luo et al. Cell Biosci            (2019) 9:16 

ALDH1L1 is a key enzyme that negatively regulate the 
one-carbon metabolism to limit cell proliferation [36, 
37] and is a marker for quiescent neuron stem cells [23]. 
WNT5A is a non-canonical Wnt ligand and functions to 
maintain the quiescent state of multiple adult stem cells, 
such as hematopoietic stem cells [24] and neural stem 
cells [25]. HOPX is a transcription factor that negatively 
regulates cell proliferation and is expressed in multiple 
quiescent adult stem and progenitor cells, such as intes-
tinal stem cells, hair follicle stem cells and cardiac pro-
genitors [26]. Similar with HOPX, SOX9 is transcription 
factor that regulates quiescence of intestinal stem cells 
and hair follicle stem cells [27]. More interestingly, it is 
reported to reprogram tumor cell into dormant status 
as well [38]. As NAC is more effective for rapidly pro-
liferating tumor cells, we hypothesize that the hypo-
methylation of these quiescence-associated genes might 
enable the tumor cells to escape NAC by driving them 
into dormancy. Novel synthetic biology tools, such as the 
CRISPR system [39, 40] and the combinatorial transgene 
expression system [41, 42], can be used to establish rel-
evant cellular models to further  investigate the underly-
ing mechanisms.

Conclusion
In conclusion, our findings have demonstrated that NAC 
dramatically alter both inter- and intra-tumor MH in 
BRCA tumors. Furthermore, 4 stem cell quiescence-
associated genes ALDH1L1, HOPX, WNT5A and SOX9 
are convergently hypomethylated in BRCA tumors after 
NAC treatment, which hold the potential to developed as 
therapeutic targets or biomarkers for chemoresistance.
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clustering of top 1% most variable probes of all the 870 TCGA-BRCA 450K 
samples with TNM annotations. Figure S4. Histopathological analysis 
of selected breast cancer patients. Figure S5. Sampling procedures. (A) 
Breast cancer patients were selected who underwent core needle biopsy 
sampling, followed by CET neoadjuvant chemotherapy regimens, and 
finally surgical removal of the breast tumors. Each patient derived 3-4 core 
needle biopsy specimens prior to NAC, and each post-NAC tumor tissue 
was spatially dissected into 6-7 sectors; (B) Breast cancer patients were 
selected whose breast tumors were surgically removed without neoadju-
vant chemotherapy treatment. Each tumor tissue was spatially dissected 
into 6 sectors. Figure S6. Unsupervised clustering of top 1% most variable 
probes of samples from 5 patients without chemotherapy separately. 
Figure S7. Unsupervised clustering of 450K array probes mapped to 
known genes associated to chemotherapy resistant: ABCB1, DUSP4, ETS1, 
FOXC1, GSTP1, PTEN and TGM2. Figure S8. Unsupervised clustering of 

MeTIL signature probes of all the samples. Figure S9. DM genes in KEGG 
cAMP signaling pathway in the 3 NAC-treated patients. Red color indicates 
hypermethylated genes; blue color indicates hypomethylated genes. 
Figure S10. DM genes in KEGG Pathways in Cancer in the 3 NAC-treated 
patients. Red color indicates hypermethylated genes; blue color indicates 
hypomethylated genes. Figure S11. Establishment of multiplexed 
Methylight ddPCR. (A) Locations of CpGs in the MethyLight primers and 
probes and the amplicons for methylated loci of interest, and the C-LESS-
C1 assay that amplifies a DNA strand without any cytosine to determine 
the total DNA amounts in each sample. Genomic coordinate is referred 
to UCSC hg19; (B) The C- LESS-C1 assay is measured by the HEX-labelled 
probe, meanwhile 2 genes of interest are measured by the 2 genespecific 
FAM-labelled probes adjusted at different concentrations. The accuracy 
of ddPCR is sufficient to display the 2 gene-specific FAM-positive droplets 
at 2 distinctively separated FAM altitudes, enabling quantification of the 2 
genes with 1 fluorescent channel. For the first assay, Gene A = ALDH1L1, 
Gene B = SOX9; for the second assay, Gene A = HOPX, Gene B = WNT5A. 
Thus, the 4 genes can be measured with only 2 assays.
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