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Abstract 

Cellular senescence is a major hurdle for primary cell-based tissue engineering and regenerative medicine. Telomere 
erosion, oxidative stress, the expression of oncogenes and the loss of tumor suppressor genes all may account for 
the cellular senescence process with the involvement of various signaling pathways. To establish immortalized cell 
lines for research and clinical use, strategies have been applied including internal genomic or external matrix micro-
environment modification. Considering the potential risks of malignant transformation and tumorigenesis of genetic 
manipulation, environmental modification methods, especially the decellularized cell-deposited extracellular matrix 
(dECM)-based preconditioning strategy, appear to be promising for tissue engineering-aimed cell immortalization. 
Due to few review articles focusing on this topic, this review provides a summary of cell senescence and immortaliza-
tion and discusses advantages and limitations of tissue engineering and regeneration with the use of immortalized 
cells as well as a potential rejuvenation strategy through combination with the dECM approach.
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Background
Tissue and organ failure is a prominent health issue that 
cannot be ignored. Surgical intervention, organ trans-
plantation, artificial substitutes and mechanical devices 
are methods to address this issue but all have undesir-
able short- and long-term consequences [1]. Tissue engi-
neering is an attractive method that enables fabrication 
of functional tissue for tissue regeneration as well as the 
establishment of physiological and pathological mod-
els for mechanistic studies [2]. This technique can har-
ness the intrinsic regenerative potential of primary cells 
and expand them in a controlled environment before 

reintroduction into the patient’s body. These natural, 
synthetic or semisynthetic tissue and organ mimics are 
expected to function normally in a tissue-specific pat-
tern as required [1, 3]. However, primary cells derived 
from non-cancerous tissues have a finite lifespan and 
decreased proliferation ability when cultured in  vitro. 
After a limited number of divisions, cells enter a viable 
state of permanent quiescence, termed cellular senes-
cence [4]. Cellular senescence, regulated by both intrinsic 
and extrinsic factors, is characterized as two key pheno-
types, a stable proliferation arrest and altered secretory 
pathway, the senescence-associated secretory phenotype 
(SASP) [5].

In order to acquire an abundant number of cells for 
functional tissue engineering, cellular senescence is 
the major obstacle that needs to be overcome. Numer-
ous attempts have been made in past decades to deal 
with cellular senescence in order to achieve success-
ful immortalization of primary cells. To establish 
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immortalized cell lines for research and clinical use, 
strategies have been applied including internal genomic 
or external matrix microenvironment modification. 
Considering the potential risks of malignant trans-
formation and tumorigenesis of genetic manipula-
tion, environmental modification methods, especially 
the decellularized cell-deposited extracellular matrix 
(dECM)-based preconditioning strategy, appear to be 

promising for tissue engineering-aimed cell immor-
talization. Due to few review articles focusing on this 
topic, this review provides a summary of cell senes-
cence and immortalization and discusses advantages 
and limitations of tissue engineering and regeneration 
with the use of immortalized cells as well as a potential 
rejuvenation strategy when combined with the dECM 
approach (Fig. 1).

Fig. 1  A schematic diagram of immortalization strategy combined with the decellularized cell-deposited extracellular matrix approach to 
overcome cell senescence and promote tissue regeneration
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Cellular senescence
Cellular senescence is a process that imposes irrevers-
ible proliferative arrest on cells in response to internal 
and external environmental changes. Various stress-
ors, including progressive telomere erosion, oxida-
tive stress, the expression of oncogenes and the loss of 
tumor suppressors, contribute to the occurrence of cel-
lular senescence.

Replicative senescence
As vital structures that cap and protect the ends of lin-
ear chromosomes [6], shortening of telomeres happens 
at every fission which eventually causes cells to reach 
their “Hayflick limit” which halts growth after approxi-
mately 60 population doublings [4, 7]. When telom-
eres are too short to function normally for capping, 
replicative senescence (M1 stage, a cellular growth 
arrest) occurs [8–10]. The critically short telomeres 
are detected by cells as double-strand breaks and trig-
ger a deoxyribonucleic acid (DNA) damage response 
(DDR) that consists of a series of signaling events cen-
tered on two anti-proliferative mechanisms, the p53/
p21 and p16/tumor suppressor retinoblastoma protein 
(Rb) pathways. This cessation allows cells to repair the 
DNA damage, but if the damage continues to exceed a 
certain limit, apoptosis or senescence may occur [11]. 
Regulated by its upstream partner p16, one of the cyc-
lin-dependent kinase inhibitors (CKIs), Rb controls cell 
cycle progression from G1 into S phase by binding to 
and suppressing the activity of E2F transcription factor 
1 (E2F1) [10, 12, 13].

Many researchers have verified the importance of both 
pathways in directing senescence as the suppression of 
either p53 or Rb alone failed to achieve cell immortaliza-
tion [14–17]. However, there were still reports showing 
that, in human mammary epithelial cells and mesenchy-
mal stem cells (MSCs), inactivation of p16 alone allows 
human cells to avoid senescence [18, 19]. Meanwhile, in 
human diploid fibroblasts, the p53 mutant alone is able 
to suppress cellular senescence [20]. These findings raise 
the possibility that these two pathways may function dif-
ferently among different cell strains.

However, abrogation of the p53/p21 and p16/Rb path-
ways will only lead to a “pre-immortal” state instead of an 
“immortal” status for cells. Terminal telomere shortening 
still exists and will eventually lead to the M2 stage, char-
acterized as massive cell death [10, 15, 21]. In most cases, 
the stabilization of telomeres is achieved through the 
introduction of telomerase, an enzyme that synthesizes 
telomeric repeats and adds them to the ends of chromo-
somes for the compensation of inevitable loss with each 
round of DNA replication [22].

Premature senescence
Senescence also happens in conditions that are not 
dependent on telomere erosion or dysfunction. This pro-
cess is often referred to as “premature” since it can arrest 
growth prior to reaching the “Hayflick limit” [23]. Vari-
ous conditions have been identified that may result in 
premature cellular senescence.

Stress‑induced senescence
During a long-term in  vitro cell expansion, laboratory 
culture conditions, generally defined as a lack of sur-
rounding cell types and support from extracellular matrix 
(ECM), abnormal growth factors and oxygen (O2) level, 
expose the cell to excessive oxidative stress and induce 
oxidant production [24–27]. The excessive levels of reac-
tive oxygen species (ROS), including hydrogen peroxide 
(H2O2), hydroxyl radical (OH−) and superoxide anion 
(O2

−), are detectable during long-term culturing of 
MSCs, accounting for stress-induced senescence [24–
26]. H2O2 could directly affect cellular DNA, trigger DDR 
and subsequent p16/Rb and p53 pathways, leading to cell 
cycle arrest [28–32].

Oncogene‑induced senescence
There is accumulating evidence showing both in  vitro 
[33–35] and in vivo [36, 37] oncogene activation, includ-
ing Ras, Raf, BRAF (human gene that encodes a protein 
called B-Raf )  and E2F1, can cause an irreversible cell 
growth arrest, termed oncogene-induced senescence. In 
normal primary cells, Ras activation leads to compulsory 
replication, triggering DDR and the subsequent senes-
cence-based pathways [33, 38, 39]. Raf encodes proteins 
that function as a downstream effector of the Ras fam-
ily and activate the extracellular signal-regulated kinase 
(MAPK) kinase (MEK) in cascade, which in turn, acti-
vates extracellular signal regulated kinase 1/2 (ERK1/2) 
[40]. Interestingly, Raf itself is able to elicit senescence 
in IMR-90 cells [34]. The p16/Rb and p53 pathways are 
crucial mediators of oncogene-induced senescence; how-
ever, the p16/Rb pathway in oncogene-induced senes-
cence acts differently than in replicative senescence [33, 
41, 42]. The BRAF gene, a downstream effector of Ras, is 
an intracellular effector of the MAPK signaling cascade 
that facilitates transmembrane signal transduction [43]. 
In primary cells, the expression of BRAFV600E is known 
to induce transient stimulation of proliferation and sub-
sequently trigger cellular senescence as demonstrated 
in normal cells including melanocytes [44], fibroblasts 
[45] and stem cells [46]. E2F1 is the founding member of 
the E2F family, a regulatory protein that drives cell cycle 
progression through interaction with Rb [47]. When a 
cell prepares to enter the S phase of the cell cycle, E2F1 
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is released from the Rb-E2F1 complex, activating the 
downstream target genes regulating normal entry into 
S phase [48]. Interestingly, in normal human fibroblasts, 
E2F1 and its target gene p14 (ARF) are responsible for 
the induction of cellular senescence [35]. Meanwhile, 
E2F1 knock-out mouse embryonic fibroblasts demon-
strated attenuated senescence and ROS levels [49].

Tumor suppressor loss‑induced senescence
Tumor suppressors are the counterpart of oncogenes, and 
their loss can elicit cellular senescence. Depletion of NF1 
(Neurofibromatosis 1), a tumor suppressor gene, induces 
senescence in human fibroblasts [50]. Similarly, loss of 
BTG3 (B-cell translocation gene 3), a member of the anti-
proliferative BTG gene family and a downstream target of 
p53, triggers cellular senescence as well [51]. Inactivation 
of VHL (von Hippel-Lindau tumor suppressor) induces 
an efficient senescence in mouse fibroblasts and primary 
renal epithelial cells under atmospheric conditions (21% 
O2); however, loss of VHL only causes a decreased cell 
proliferation instead of cell arrest in human renal epithe-
lial cells [52, 53]. Similarly, acute loss of tumor suppressor 
gene PTEN (phosphatase and tensin homolog) induces 
growth arrest through the p53-dependent cellular senes-
cence pathway in mouse prostate both in vitro and in vivo 
whereas, in systemic lupus erythematosus patients, the 
complete loss is significantly related to advanced cancer 
and poor outcomes [54–56]. These findings raise the pos-
sibility that tumor suppressors may function differently 
according to different species and cell types.

Signaling pathways involved in cellular senescence
Despite the abovementioned p53/p21 and p16/Rb path-
ways, other signaling pathways are also involved in 
cellular senescence, including, but not limited to, trans-
forming growth factor β (TGFβ)/bone morphogenetic 
protein (BMP), Wingless/Int (Wnt)/β-catenin, MAPK, 
phosphatidylinostitide 3 kinase (PI3K)/protein kinase B 
(AKT)/mammalian target of rapamycin (mTOR), Hippo, 
NOTCH, fibroblast growth factor (FGF) and insulin-like 
growth factor (IGF) and hypoxia inducible factor (HIF) 
(Fig. 2).

TGFβ/BMP signaling pathways
TGFβ is a classic regulator for chondrogenic differentia-
tion but its role in cell expansion remains controversial 
[57, 58]. TGFβ activation is positively involved in the 
induction of cellular senescence of all kinds of species 
[59–61]. In human breast cancer cells, TGFβ negatively 
mediates telomerase activity through its downstream 
effector, Smad3 [62, 63]. For stress-induced senescence, 
TGFβ contributes to ROS production and activation of 
DDR during the senescence of human fibroblasts and 

bone marrow-derived MSCs (BMSCs) [64, 65]. The 
kinase ataxia-telangiectasia mutated (ATM) is a key 
player in nuclear DDR [66]. Meanwhile, TGFβ is required 
for oncogene-induced senescence that is independent 
of the p16/Rb and p53 pathways; attenuation of TGFβ 
inhibits premature senescence in human mammary epi-
thelial cells [67, 68].

BMPs are secreted signal factors belonging to the TGFβ 
superfamily and are involved in embryonic development 
and cellular processes [69]. Similar to the function of 
TGFβ, BMP receptor II/Smad3 contributes to telomerase 
inhibition and telomere shortening in human breast can-
cer cells, leading to replicative senescence [70]. Similar 
results were observed in primary cells as the BMP sign-
aling axis plays an important role in oncogene-induced 
senescence of mouse fibroblasts [71].

Wnt/β‑catenin pathway
Wnts are highly conservative proteins that participate 
in embryonic development and homeostatic mecha-
nisms in adult tissues [72]. Wnt signals appear to be an 
important regulator of both premature senescence and 
replicative senescence. On one hand, the Wnt/β-catenin 
signaling pathway interacts with the p53/p21 pathway 
for ROS production to induce MSC senescence [73–76]. 
On the other hand, Wnt3a/β-catenin also plays a critical 
role in hedging replicative senescence of MSCs, probably 
through regulation of a telomerase subunit—telomerase 
reverse transcriptase (TERT) [72, 77]. Meanwhile, Wnt/
β-catenin signaling enhances rat nucleus pulposus cell 
senescence as well as induces the expression of TGFβ, 
another strong promoter of cellular senescence [78].

MAPK pathway
The MAPK signaling cascade, mainly including ERK, 
c-Jun N-terminal kinase (JNK) and p38, regulates sev-
eral physiological and pathological processes [40]. p38 
is well-recognized to be involved in premature cellular 
senescence [79, 80]. The major role of the p38 pathway 
in oncogene-induced senescence is induced by the onco-
gene Ras or its downstream effector, Raf-1 [81, 82]. Ras 
provokes premature senescence through activation of 
the MEK/ERK pathway, followed by p38 activation [81]. 
Shin and colleagues found that ERK2 is responsible for 
Ras-induced senescence in mouse embryonic fibro-
blasts [83]. Despite premature senescence, ERK is also 
actively involved in replicative senescence and suppres-
sion of ERK signaling rescues cardiac progenitor cells 
from replicative senescence when expanded in vitro [84]. 
The JNK signal was reported to be active in respond-
ing to a wide range of DNA-damaging agents from both 
endogenous and exogenous causes and JNK phospho-
rylation is involved in senescence-associated matrix 
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metalloproteinase-1 production in response to ROS in 
IMPR-90 cells [85–89]. However, the senescence-pro-
moting role of JNK was challenged as it was also revealed 
to antagonize p38-induced p16 activation [90]. Moreover, 
JNK acts as a negative regulator of p53 tumor suppressor 
to suppress p53-dependent senescence in mouse embry-
onic fibroblasts [91]. An increase of intracellular ROS 
levels can suppress the growth of cancer cells and induce 
cellular apoptosis by mediating MAPK signaling compo-
nents [92].

PI3K/AKT/mTOR pathways
PI3Ks and their downstream mediators AKT and mTOR 
constitute the core component of the PI3K/AKT/mTOR 
signaling pathway which is precisely controlled under 

normal physiological conditions and is a frequently 
hyperactivated pathway in cancer [93]. Similar to the 
MEK-ERK pathway, PI3K is one of the main downstream 
effectors of Ras dependent signaling and its activation 
plays dual roles in cell cycle regulation as it can promote 
cell cycle progression as well as cause cell cycle arrest 
[94]. Recent studies reveal the involvement of PI3K/
AKT/mTOR in the regulation of replicative senescence 
in human vascular smooth muscle cells [95]. Moreover, 
a constitutively active, myristoylated form of AKT leads 
to oncogene-induced senescence in primary cultured 
human endothelial cells and murine fibroblasts; the loss 
of PTEN triggers senescence through activation of the 
PI3K/AKT pathway in mouse prostate [56, 96]. However, 
a recent report subverted the positive role of the PI3K/

Fig. 2  Signaling pathways mediating the cellular senescence process. In response to telomere erosion, ROS production, the expression of 
oncogenes and the loss of tumor suppressors, various signaling pathways including TGFβ, BMP, Wnt, MAPK, FGF, IGF, HIF and Hippo pathways are all 
actively involved in cell cycle regulation, which eventually influences the cellular senescence process of primary cells
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AKT/mTOR pathway in senescence-induction by intro-
ducing the fact that activation of this pathway abolished 
BRAFV600E-induced senescence in both primary human 
fibroblasts and primary human melanocytes [97]. Moreo-
ver, targets of the PI3K/AKT signaling pathway have been 
found to promote cell survival [98] and the activation of 
the PI3K/AKT pathway can be induced by TGFβ, lead-
ing to a pro-survival/anti-apoptotic effect in both human 
nasopharyngeal carcinoma cells [99] and mesenchymal 
cells/fibroblasts [100].

Hippo pathway
The Hippo pathway is a tumor suppressor pathway; dys-
regulation of this pathway can lead to uncontrolled cell 
proliferation and tumorigenesis [101]. Yes-associated 
protein 1 (YAP), a major downstream effector of the 
Hippo pathway, is phosphorylated and inactivated by 
the serine/threonine kinases large tumor suppressor 1 
(LATS1) and LATS2 [102, 103]. YAP dephosphorylation 
is associated with the senescence of rat nucleus pulpo-
sus cells and overexpression of YAP in primary human 
keratinocytes blocks clonal evolution and induces cell 
immortalization [104, 105]. Coordination of the Hippo 
pathway and p53 occurs in response to various types of 
stress signals including replication and oncogenic Ras. 
LATS2 cooperates with p53 to induce p21 expression, 
resulting in cellular senescence [106]. LATS2 also plays 
an important role in the oncogenic H-Ras induced stress 
checkpoint in a p53-dependent pathway [107].

Notch pathway
The Notch pathway is an evolutionarily highly conserved 
signaling pathway that is associated with a variety of cel-
lular processes including cell-fate determination, prolif-
eration and death. In mammals, the Notch family has five 
ligands and four receptors [108, 109]. There is accumu-
lating evidence that abnormal Notch signaling has been 
implicated in multiple facets of cancer biology, and Notch 
can behave as either an oncogene or a tumor suppres-
sor depending on cell context [110, 111]. The oncogenic 
function of Notch has been demonstrated in several 
types of cancer including melanoma [112], breast cancer 
[113] and brain tumors [114]. Activated Notch 1 signifi-
cantly enhances the rate of glycolysis, which prevents cel-
lular senescence of human adipose-derived stromal cells 
(ADSCs) through HIF1 activation and p53 inactivation 
[115]. On the other hand, the Notch pathway is found to 
serve as a tumor suppressor in the progression of carci-
noma including bladder cancer [116], medullary thyroid 
carcinoma [117] and pancreatic cancer [118]. Enforced 
Notch activation in human endothelial cells is associ-
ated with cellular senescence with the involvement of p16 
[119]. Down-regulation of Notch 3 in human fibroblasts 

and mammary epithelial cells delays the onset of senes-
cence and extends cell lifespan [120, 121].

FGF and IGF pathways
FGFs are well-recognized for their critical roles in 
embryonic development [122]. The mitogenic effect of 
FGF has been demonstrated by promoting proliferation 
while maintaining stemness of MSCs in vitro [123–125]. 
FGF2 treatment led to an early increase in telomere size 
in MSCs, probably due to its ability to increase TERT 
mRNA expression [126, 127]. FGF signals negatively reg-
ulated MSC senescence through interaction with PI3K/
AKT/MDM2 (mouse double minute-2 homolog) in the 
mouse and through down-regulation of TGFβ expres-
sion in human MSCs [128, 129]. Surprisingly, FGF23 can 
also induce premature senescence in human MSCs from 
skeletal muscle via the p53/p21 oxidative-stress pathway 
[130].

IGFs are considered detrimental to cell survival due 
to their role in diminishing tissue resistance to oxidative 
stress and shortening lifespan [131, 132]. In mouse, rat 
and human primary vascular smooth muscle cells, IGFI 
induces cellular senescence dependent on the upregula-
tion of p53 [133]. Additional evidence has revealed that 
IGF binding protein-5 is upregulated in the regulation of 
premature senescence of umbilical vein endothelial cells 
through a p53-controlled mechanism [134, 135]. These 
findings may be due to the mechanism whereby IGFI is 
capable of inducing telomere shortening [136]. However, 
opposite results were found in human annulus fibrosus 
cells as IGFI alleviates cellular senescence [137]. In this 
scenario, the regulatory roles of both FGFs and IGFs 
relating to cellular senescence are context-dependent.

HIF pathway
HIFs are composed of two different basic-helix-loop-
helix-PAS transcription factors, HIF1α and HIF1β [138]. 
It has been proposed that a classic cellular response to 
hypoxia is cell cycle arrest at the G1/S interface through 
the regulation of p27 expression in which HIF1α is a 
major mediator [139, 140]. On the other hand, HIFs are 
involved in the promotion of cancer growth and the loss 
of HIFs induces the production of ROS and the activa-
tion of proteins p53 and p16 [141, 142]. HIF1α is involved 
in the suppression of senescence through regulation of 
p53 and p21 in human diploid fibroblasts [143]. When 
expanded in hypoxic conditions, human MSCs and the 
old human endothelial progenitor cells escape senescence 
through regulation of HIF1α-TWIST-p21 axis [144, 145]. 
Moreover, hypoxia led to PI3K/AKT pathway activation 
and elevated expression of Wnt coreceptor low-density 
lipoprotein receptor-related protein 5 (LRP5), contrib-
uting to the promotion of self-renewal and decreased 
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cellular senescence of marrow-isolated adult multilineage 
inducible cells [146].

Immortalization of cells through genetic 
modification
To achieve cell lifespan extension, biotechnological 
methods are often used for direct manipulation of a cell’s 
genome. However, concerns still exist regarding genomic 
stability and tumorigenicity after genetic modification. 
For MSCs and progenitor cells, the potential loss of dif-
ferentiation ability after genetic modification is a prob-
lem that cannot be overlooked.

Genetic modification
The introduction of viral oncogenes/oncoproteins and 
TERT are two typical methods for this type of genetic 
modification (Table 1).

Viral oncogenes/oncoproteins
Viral oncogenes that are able to inactivate both pRb and 
p53 can overcome M1 (a barrier in which normal cells 
senesce and cease replication) and significantly prolong 
cell lifespan. For several decades, simian virus 40 (SV40) 
early region genes have been commonly used for cell 
immortalization and cell line establishment [147, 148]. 
SV40 is limited to two proteins as the large T (LT) and 
small t antigen (ST). LT is mainly responsible for the 
SV40-extended lifespan based on its ability to interact 
with growth suppressors—pRb and p53. LT binds to the 
pRb-E2F complex via its pocket binding site including 
AA101–118 and the J domain that acts as a chaperone, 
leading to the dissociation of E2F from the LT-pRb com-
plex [149]. Meanwhile, LT binds to p53 therefore sup-
pressing the p53 pathway [150]. More interestingly, SV40 
was reported to induce telomerase activity in primary 

Table 1  Immortalization of primary cells for therapeutics and research

Immortalization Cell type References

Oncoprotein(s) Human Articular chondrocytes, bone marrow endothelial cells, cranial suture 
progenitors, foreskin keratinocytes, hepatocyte, keratinocytes, liver 
renal proximal tubular epithelial cells, mammary epithelial cells, 
marrow stromal cells, nucleus pulposus cells, podocyte cells, sinu-
soidal endothelial cells, umbilical cord blood endothelial progenitor 
cells, umbilical vein endothelial cells, uterine cervix epithelial cells

[154, 233, 238, 287–303]

Animal Mouse articular chondrocytes, rat renal proximal tubular epithelial 
cells

[304]

Oncogene(s) Human Prostate epithelial cells, neural precursors, embryonic stem cell-
derived MSCs

[160, 161, 305]

Oncoprotein(s) and oncogene(s) Human Embryonic fibroblasts, keratinocytes [162, 306]

TERT Human Adipose-derived stromal cells, amnion-derived stem cells, bone 
marrow-derived MSCs, cementum-lining cells, cord blood MSCs, 
dermal microvascular endothelial cells, embryonic stem cells, fetal 
hepatocytes, hepatic stellate scavenger cells, neural progenitor cells, 
osteoblasts, periodontal ligament progenitor cells, renal proximal 
tubule epithelial cells, vocal fold fibroblasts

[178, 215, 307–318]

Animal Mouse temporomandibular joint disc cells [319]

TERT and oncoprotein(s) Human Adipose-derived stromal cells, amniotic fluid-derived mesenchymal 
stem cells, bone marrow-derived MSCs, ovarian surface epithelial 
cells, pancreatic β cells, pancreatic islet cells, periodontal ligament 
fibroblasts, pulmonary microvascular endothelial cells, renal proxi-
mal tubule epithelial cells

[244, 247, 320–328]

Animal Rat ventricular cardiomyocytes [329]

TERT and oncogene(s) Human Fetal pancreatic epithelial cells, placenta-derived MSCs, adipose-
derived stromal cells

[246, 330–332]

Animal Bovine germ line stem cells [163]

TERT, oncoprotein(s) and oncogene(s) Human Bone marrow-derived MSCs [333]

TERT and suppression of p53 or Rb pathway Human Mammary epithelial cells, ovarian surface epithelial cells [176, 334, 335]

TERT and cyclin-dependent kinase 4 Human Bronchial epithelial cells [336]

Mutant p53 Human Mammary epithelial cells [337, 338]

Irradiation and oxidative stress Human Mammary epithelial cells [339, 340]

Chemical carcinogens Human Mammary epithelial cells [341]

Animal Syrian hamster dermal fibroblasts and embryo cells, rat hepatocytes [342–344]

TERT and cytotoxic T lymphocyte-associ-
ated antigen 4-Ig

Human Bone marrow-derived MSCs [345]
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human mesothelial cells, but not in primary fibroblasts 
[151].

Human papillomavirus (HPV) is a small, double-
stranded DNA virus that infects mucosal and cutaneous 
epithelial tissue [152]. The high-risk strains including 
HPV-8, -16, -18 and -31 cause malignant progression of 
lesions, whereas the low-risk strains including HPV-6 
and -11 cause benign warts and lesions [153]. The E6 
and E7 proteins encoded by “high-risk” strains including 
HPV-16 and -18 are oncoproteins that have been shown 
to have transformation properties [154]. When used in 
immortalization, E6 causes telomerase activation as well 
as accelerating the degradation of p53 by the 26S protea-
some, whereas E7 inactivates Rb by preventing the bind-
ing of pRb to the E2F transcription factor [155, 156].

Human T-lymphotropic virus type 1 (HTLV-1) is 
the etiologic agent of adult T cell leukemia. Although 
HTLV-2 is less pathogenic than HTLV-1, both of the 
HTLV-1 and -2 Tax proteins, p40tax (Tax1) and p37tax 
(Tax2), share the capacity to immortalize lymphocytes 
in vitro [157]. HTLV-2 protein Tax2 demonstrates much 
stronger efficacy than that of Tax1 in immortalizing 
human T cells [158].

The myc oncogene family consists of several different 
members including c-myc, N-myc, L-myc and B- myc. 
c-myc expression is restricted to proliferating cells while 
N-myc and L-myc expression is associated with cellu-
lar differentiation [159, 160]. Moreover, the oncogene 
myc fulfils many of the expectations for a gene involved 
in immortalization of primary cells alone [160, 161] or 
cooperates with oncoproteins [162] or TERT [163].

B cell-specific Moloney murine leukemia virus integra-
tion site 1 (BMI1) which was identified as a c-myc-coop-
erating oncogene, is a critical transcriptional repressor 
for maintenance of proper gene expression during devel-
opment [164–166]. INK4a locus, which encodes p16 and 
p19Arf, is an important target of BMI1 and overexpres-
sion of BMI1 extends replicative lifespan of human fibro-
blasts, probably through suppressing the p16-mediated 
senescence pathway [167, 168].

TERT
Telomerase is composed of two core components: the 
small nuclear ribonucleic acid (RNA) human telomerase 
RNA, which serves as an internal template for the syn-
thesis of telomeric repeats, and the protein TERT (or 
hTERT in humans), which serves as a catalytic subunit 
that synthesizes the new telomeric DNA from the RNA 
template [22]. In most human primary cells, telomerase 
is either absent or present at an insufficient level for tel-
omere maintenance [169]. TERT is the determinant for 
the presence of active telomerase [170, 171]. The intro-
duction of ectopic expression of TERT is necessary for 

telomere-dependent senescence as it is able to signifi-
cantly extend the lifespan of a variety of cell types, but 
it alone is not sufficient to immortalize them [172–174]. 
Theoretically, the abrogation of the Rb and p53 pathways 
with oncogenes or at a minimum, low p16 expression, is 
indispensable for cell immortalization [175, 176]. How-
ever, there are still investigations showing that TERT 
bypassed Rb and p53 pathway-dependent barriers to 
immortalize cells alone [176–180].

Carcinogenic limitations and strategies
Despite the increasingly sophisticated strategies to 
immortalize human cells, there is still some debate over 
the risks upon integration of oncogenes into chromo-
somes. The primary safety concern with the use of a cell 
line is the transmission of an oncogenic factor to the 
host cells. Indeed, cells transduced with these oncogenes 
underwent additional changes including full carcinogen-
esis-associated changes (Table  2). The persistent infec-
tion by a subset of HPVs, especially HPV-16 and HPV-18, 
is etiologically linked to cervical cancer in women [181]. 
Deregulated overexpression of HPV E6 and E7 led to sev-
eral alterations in cellular pathways and functions, which 
is associated with malignant transformation of cells and 
tumorigenesis [182]. In addition, HPV E6 oncoprotein 
can interact with hTERT to promote carcinogenesis in 
keratinocytes [183, 184].

SV40 or SV40 sequences were found in several types of 
human cancers located in bone, brain, chest, etc. [185–
188]. Evidence has shown that SV40 can successfully 
transform cell lines in  vitro and induce tumors in neo-
natal hamsters in vivo [189–192]. The injection of SV40-
transformed cells into terminally ill human patients 
caused subcutaneous tumor nodules [193]. Moreover, 
SV40-transduced cells contained integrated SV40 DNA, 
which was integrated at random positions on the cellular 
chromosomes of host cells [194, 195], leading to the con-
troversial question of whether the virus poses a threat for 
further in vivo use.

Although introduction of hTERT is associated with 
fewer phenotypic and karyotypic changes of cells com-
pared with SV40, the tumorigenicity of hTERT-trans-
fected human cells remains controversial as well [176]. 
Previous studies have claimed that the hTERT-trans-
duced primary human fetal lung fibroblasts, ameloblas-
toma cells and bovine mammary epithelial cells showed 
no malignant transformation [180, 196, 197]. Similarly, 
the hTERT-immortalized human MSCs past 290 popu-
lation doublings showed no sign of malignant transfor-
mation or tumorigenesis in vitro and in vivo as the cells 
maintain contact inhibition and a stable protein expres-
sion profile as well as no tumor-like activity in immune-
deficient mice [198–200]. Meanwhile, after subcutaneous 
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injection with HPV-16 E6/E7 immortalized BMSCs into 
Nonobese Diabetic/Severe Combined Immunodefi-
ciency (NOD/SCID) mice for 3 days, no tumor mass was 
observed compared to those injected with Hela cells in 
which tumor mass was observable [201]. Even the intro-
duction of TERT and SV40 or HPV-16 E6/E7 was suffi-
cient to immortalize ovarian surface epithelial cells and 
dermal papilla cells but not enough for tumor formation 
[179, 202–205].

However, other groups argue about the increased 
potential for tumor development in TERT-immortalized 
cells. On monolayer cultures, human MSCs and fibro-
blasts avoid cell-to-cell contact inhibition, anchor to 
culture dishes and tend to proliferate limitlessly [206, 
207]. In clinical practice, elevated hTERT expression is 
a diagnostic marker for tumor and the overexpression 
of hTERT is claimed to be associated with an advanced 
invasive stage of tumor progression and poor progno-
sis [208–210]. Moreover, there are still concerns about 
genetic instability after TERT transfection or transduc-
tion. Spontaneous changes in c-myc proto-oncogene 
expression and other genetic alterations have been 
observed during in vitro culture of hTERT-immortalized 
human cells [211, 212].

Despite safety concerns for the immortalized cells, there 
are still some cases that successfully applied these cells for 
in vivo organ and tissue restoration. For liver impairment, 
Guo et al. [213] found that SV40-immortalized marmo-
set hepatic progenitor cells (MHPCs) injected into the 
injured liver of fumarylacetoacetate hydrolase-deficient 
mice repopulated with hepatocyte-like cells and MHPCs 
were also implanted as cholangiocytes into bile ducts of 
3.5-diethoxycarbonyl-1,4-dihydrocollodine-induced bile 

ductular injured mice. Meanwhile, SV40-immortalized 
human fetal liver cells differentiated into mature hepat-
ocytes after being transplanted into liver injured mice 
[214]. For brain damage, hTERT-immortalized cord 
blood MSCs were injected into the traumatically injured 
brain of a rat model and proliferated efficiently at the 
injury site for 2 weeks and showed no tumor formation in 
SCID mice after a 6-month observation [215].

To avoid persistent oncogene expression, conditional 
immortalization technology was developed. Conditional 
immortalization includes inserting a reagent mediate, 
operator controllable gene to create a cell line that can 
be expanded in a consistent fashion when the transgene 
is active. When desired clinical quantities of cell mate-
rial are achieved, the transgene can be deactivated by 
the operator and the cells will return to a normal, post-
mitotic state. The conditional immortalization technol-
ogy c-MycERTAM uses a combination of growth factor 
and 4-hydroxytamoxifen (4-HT) to activate the c-MycER 
transgene. In the absence of 4-HT, c-MycER is inacti-
vated and the cells return to a normal phenotype [216]. 
Inactivation of SV40 LT was achieved using a tempera-
ture-sensitive mutant of the LT (SV40 tsA58) that is bio-
logically active at permissive temperature (33.5  °C) but 
inactive at a non-permissive temperature (39  °C) [217]. 
Different vectors can have influence on the expression 
of transgenes. Unlike lentivirus, adenovirus does not 
integrate transgenes into the host genome and thereby 
can only provide a transient expression of the transgenes 
[218]. However, this kind of expression time is not 
controllable.

To acquire more accurate excision of oncogenes, site-
specific recombination systems were developed. Cre/

Table 2  Malignant transformation and tumorigenesis during immortalization of primary cells

Immortalization Cell type or animal References

Oncoprotein(s) Human Biliary epithelial cells, fetal keratinocytes, fibroblasts, keratinocytes, 
mesothelial cells

[190, 346–349]

Animal Chinese hamster embryo fibroblasts, rabbit chondrocytes [191, 350]

Oncoprotein(s) and oncogene(s) Human Colon smooth muscle cells, embryonic esophageal epithelial cell, 
epidermal keratinocytes, hepatocytes, primary fibroblasts, prostatic 
epithelial cells, mammary epithelial cells

[351–358]

TERT Human Astrocytes [359]

TERT and viral oncoprotein(s) Human Airway (bronchial) epithelial cells, endothelial cells, esophageal epi-
thelial cells, fibroblasts, hematopoietic progenitor cells, mammary 
epithelial cells, MSCs, ovarian surface epithelial cells

[202, 240, 360–368]

Animal Bovine adrenocortical cells [369]

TERT and oncogenes Human Mammary epithelial cells, MSCs [370, 371]

Oncoprotein(s), oncogene(s) and growth factors Human Oral keratinocytes [372]

Oncoprotein(s) and chemical carcinogens Human Ectocervical and endocervical cells, oral keratinocytes [373–377]

TERT, oncoprotein and alpha subunit of eukary-
otic initiation factor 2

Human Kidney cells [378]
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LoxP technology involves engineering a transgene 
flanked by LoxP sites. The transgene is activated until 
Cre recombinase is added. However, the cre-lox sys-
tem is not 100% efficient and cells that have not deleted 
the transgene might require elimination [219, 220]. In 
addition, a Tet on/off system uses tetracycline respon-
sive elements (TRE) that consist of a Tet operator and 
minimal promoter. The activation of the transgene and 
the subsequent cell division is related to tetracycline or 
doxycycline, which acts as a cue for activation (Tet-On) 
or inactivation (Tet-Off) [221, 222]. However, this tech-
nology still has the evident limitation termed “leakiness”, 
where the transgene continues to express at a low level 
even when the system is off [223]. Moreover, the tran-
sient activation of β-catenin was used to efficiently induce 
hTERT activation while silencing β-catenin suppresses 
the expression of hTERT [224]. Meanwhile, therapeutic 
strategies concerning transient activation of telomerase 
with small molecules, including the administration of 1% 
N-acetylcarnosine lubricant eye drops for prevention and 
treatment of cataracts, have been proven beneficial for 
dogs and other animals [225]. Huang et al. have identified 
that anthraquinone derivatives might be able to activate 
hTERT expression without causing genetic alterations in 
cells, whereas these cells fail to possess potent prolifera-
tive ability [226]. Interestingly, the introduction of some 
adenovirus derived genes, including the early 4 region 
(E4) of the adenoviral vector (AdE4), augments survival 
of human endothelial cells [227, 228]. However, investi-
gations into AdE4 gene products were largely overshad-
owed by the fact that these proteins not only orchestrated 
many viral processes, but also overlapped with oncogenic 
transformation of primary cells [229, 230]. Although 
creation of conditionally immortalized cell lines has the 
potential for therapeutic application, complete silence of 
the transgene before introduction into the patient’s body 
is still a concern that needs to be addressed.

Potential loss of differentiation capacity
Differentiation capacity of MSCs and progenitor cells 
after immortalization is another concern that deserves 
more attention. A variety of reports has claimed that 
immortalization of progenitor cells will retain prolif-
erative activity without compromising multipotent or 
specific differentiation potential of primary cells from 
species including human, mouse and porcine [231–237]. 
A similar phenomenon has been mentioned in human 
MSCs immortalized with SV40 [238, 239]. After serial 
transduction with hTERT, SV40 and H-Ras, human 
MSCs still retain their multilineage differentiation poten-
tial even during tumorigenesis [240, 241]. Moreover, 
Yang et al. [242] showed that hTERT-transduced human 
BMSCs seeded on porous polylactic glycolic acid (PLGA) 

scaffold have better osteogenic differentiation ability than 
primary human BMSCs seeded on scaffold. Similarly, 
human BMSCs immortalized with hTERT and HPV16 
E6/E7 displayed greater differentiation potential far 
beyond the primary human BMSCs or even when human 
BMSCs expressed HPV-16 E6/E7 alone [243]. Interest-
ingly, Okamoto et al. [244] reported that human BMSCs 
immortalized with hTERT and HPV-16 E6/E7 demon-
strated significant clonal heterogeneity in differentiation 
potential. A similar phenomenon was found in mouse 
melanocyte progenitors that displayed distinct melano-
genic differentiation potential [232]. More interestingly, 
there were opposite results as human primary dental 
pulp stem cells (DPSCs) are found to be approximately 
60% more effective than hTERT-immortalized DPSCs 
in osteogenic differentiation [245]. For human placenta-
derived MSCs immortalized with hTERT and BMI1, the 
differentiation potential was lost [246]. This discrep-
ancy may partially be due to different immortalization 
strategies as the lost differentiation potential in ADSCs 
due to “SV40+hTERT” introduction can be preserved 
by “hTERT+BMI1” [247]. Moreover, cellular senes-
cence counteracts the induction and reprogramming of 
induced pluripotent stem cells and senescence related 
INK4A/ARF and p53/p21 pathways are considered to be 
involved in these processes [248–251].

Preconditioning of cells through matrix 
microenvironment optimization
Although genetic manipulation is a popular strategy for 
functional tissue engineering, it has limited clinical ben-
efit due to its inherent risks [189, 193, 194]. For human 
cells that are sensitive to external changes, matrix micro-
environmental alterations may modify intercellular com-
munication, leading to enhanced proliferation ability 
without carcinogenic mutation [252, 253].

Cells in the body reside in a niche, a dynamic and com-
plex environment, where extracellular cues provided 
allow cells to survive and maintain their balance between 
quiescence, self-renewal and differentiation [254, 255]. 
ECM, a versatile component that plays a key role in the 
stem cell niche, interacts with the resident cells by modu-
lating cell behavior through its physical, biochemical and 
biomechanical properties [256, 257]. There is an increas-
ing number of reports indicating that dECM is a prom-
ising substrate to maintain the stemness of expanded 
cells by mimicking the in  vivo niche [258, 259]. dECM 
was found to improve the expansion capacity of human 
BMSCs [260], human and porcine SDSCs [261, 262], 
human umbilical cord MSCs [263] and porcine adipose 
stem cells derived from the infrapatellar fat pad [264]. 
Interestingly, dECM deposited by SDSCs could also reju-
venate somatic cells such as porcine nucleus pulposus 
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cells [265, 266] and replicatively senescent porcine chon-
drocytes [267]. These dECM-expanded cells were smaller 
in size compared to those grown on plastic flasks. These 
results are in accordance with the finding from White-
field and coworkers in which, under time-lapse video 
microscopy, the smaller cells were observed to continue 
proliferation, while the larger cells became senescent and 
exited the cell proliferation cycle [268].

Furthermore, current data indicate that dECM depos-
ited by MSCs yields human adult SDSCs [269, 270] and 
porcine adipose stem cells derived from the infrapatellar 
fat pad [264] with better chondrogenic potential in vitro 
and with better repair capacity for cartilage defects 
in vivo [271]. Interestingly, BMSCs, a tissue-specific stem 
cell for endochondral bone formation, could be greatly 
recharged toward chondrogenic differentiation by expan-
sion on dECM deposited by nonchondrogenic human 
urine stem cells [272] or human BMSCs themselves [260]. 
More interestingly, a recent report showed that, despite 
dECMs deposited by BMSCs and ADSCs enhancing the 
proliferation ability of MSCs, they failed to yield expan-
sion of cancer cells (HeLa, MCF7 and MDA-MB-231) in 
terms of inhibiting the expansion ability of these cancer 
cells [273]. This finding indicates that normal cell derived 
dECM is not favorable for the growth of cancer cells. 
Given the undesirable potential of carcinogenesis after 
genetic modification from cell immortalization, dECM 
tends to be a better alternative.

In addition to rescuing replicative and differentiation 
capacities, dECM could reduce intracellular generation of 
ROS in aged murine BMSCs [274] and in human BMSCs 
[260] and umbilical cord MSCs [263]. Meanwhile, dECM 
could enhance the anti-oxidative capacity of human 
adult SDSCs [269] and protect umbilical cord MSCs 
from oxidative stress-induced premature senescence 
[275] to finally achieve better chondrogenic differentia-
tion. Moreover, dECM could repress osteoclastogenesis 
in bone marrow monocytes through the attenuation of 
intracellular ROS [276]. All the above mentioned studies 
confirmed the anti-senescence and anti-oxidative effect 
of dECM as a culture substrate.

Mechanical cues, including stiffness and elasticity from 
the surrounding matrix microenvironment, are impor-
tant cellular inputs that sustain cell proliferation and 
oppose cell senescence. Integrin-based focal adhesions 
are the main adhesion complex dominating mechano-
sensing [277]. In our previous study, dECM-expanded 
human BMSCs demonstrated increased expression of 
integrin α2 and β5 [260], which are potentially involved 
in the process of cell proliferation [278, 279]. As a power-
ful regulator of cell proliferation and survival, YAP/YAZ 
act as mechanotransducer that is regulated by F-actin 
cytoskeleton [280, 281]. Interestingly, dECM expansion 

was found to induce sustained activation of ERK1/2 as 
well as phosphorylated cyclin D1 human BMSCs [260] 
but decreased phosphorylated ERK in human adult 
source SDSCs [261]. A similar phenomenon was found 
in phosphorylated p38 expression in human SDSCs [261] 
and human umbilical cord MSCs [263] after dECM pre-
conditioning. These discrepancies might be explained 
by the dual role of ERK [282] and p38 [283] signals that 
play upon cell senescence. The expression of Wnt5a and 
Wnt11a were also found to be upregulated following 
dECM expansion [261].

Conclusions and perspective
Primary cells display a stable and long-term loss of pro-
liferative capacity upon in  vitro expansion despite con-
tinued viability and metabolic activity. This inability to 
proliferate is due to progressive shortening of telomeres 
during each replication which ultimately makes cells 
reach their “Hayflick limit”, termed telomere-dependent 
or replicative senescence. Meanwhile, there is another 
kind of senescence referred to as premature senescence 
since it can arrest cell growth long before reaching the 
“Hayflick limit”. One type is stress-induced senescence 
caused by the failure to simulate the in  vivo supportive 
environment, which puts pressure on cell proliferation 
through the generation of ROS. In addition, both onco-
genes and their counteracting tumor suppressors are 
proven to provoke premature senescence. A variety of 
signaling pathways are involved in all of these types of 
senescence, in which the p53/p21 and p16/Rb pathways 
are the two major signals involved. Oncogenes including 
SV40 and HPV-16 E6/E7 inhibit the p53/p21 and p16/Rb 
pathways, but are not able to immortalize primary cells 
unless followed by the introduction of TERT, which elon-
gates telomeres, thereby abrogating the effect of the end 
replication problem. However, all of these genetic modi-
fication methods have the risk of virus introduction and 
potential oncogenesis, which must be addressed before 
its application into tissue engineering.

Optimization of the laboratory culture environment 
[259], including modulation of oxygen level and cell den-
sity and the introduction of growth factors, and recently 
discovered dECM preconditioning, is also an effective 
strategy to fight against senescence. Despite the fact that 
dECM deposited by MSCs from fetal [261] or young 
donors [272] offers a better rejuvenation effect in pro-
moting aged MSCs in both expansion and differentia-
tion capacities compared to adult donors, the source of 
these young cells was either allogenic or xenogeneic, 
which might pose a potential risk of compromising the 
donor [284] or immune rejection [285]. In this scenario, 
cells donated by the patients themselves are considered 
the best candidate. However, the elderly primarily suffer 
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from degenerative disease and most of their autologous 
cells may suffer from senescence, which was identified as 
an influential factor in the quality of cells [286]. Given the 
demand for a younger cell population and the situation 
of carcinogenic transformation after genetic modification 
for immortalization purposes, it raises the possibility of 
combining genetic modification and environmental opti-
mization strategies. In other words, we can immortalize 
these senescent cells and utilize their deposited dECM 
instead of the cells themselves to achieve a reduced 
senescent status and enhanced proliferation potential 
of expanded cells. The combination strategy might also 
overcome the potential loss of differentiation capacity of 
stem cells with the use of immortalization strategy alone. 
Further investigation into this matrix microenvironmen-
tal preconditioning-based rejuvenation strategy may 
offer important insights into possible means of providing 
robust primary cells as therapeutic agents.
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