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Abstract 

Increasing evidence indicates that long non-coding RNAs (lncRNAs) regulate gene or protein expression; however, 
their function in the progression of hepatic fibrosis remains unclear. Hepatic fibrosis is a continuous wound-healing 
process caused by numerous chronic hepatic diseases, and the activation of hepatic stellate cells (HSCs) is generally 
considered to be a pivotal step in hepatic fibrosis. In the process of hepatic fibrosis, some lncRNAs regulates diverse 
cellular processes. Here are several examples: the lncRNA metastasis-associated lung adenocarcinoma transcript 1 
(MALAT1) and liver fibrosis-associated lncRNA1 (lnc-LFAR1) promote HSC activation in the progression of hepatic 
fibrosis via the transforming growth factor-β signaling pathway; the lncRNA HIF 1 alpha-antisense RNA 1 (HIF1A-AS1) 
and Maternally expressed gene 3 reduce HSC activation which are associated with DNA methylation; the lncRNA 
plasmacytoma variant translocation 1, Homeobox (HOX) transcript antisense RNA and MALAT1 promote HSC activa‑
tion as competing endogenous RNAs (ceRNAs); the long intergenic non-coding RNA-p21 (lncRNA-p21) and Growth 
arrest-specific transcript 5 reduce HSC activation as ceRNAs. As we get to know more about the function of lncRNAs in 
hepatic fibrosis, more and more ideas for the molecular targeted therapy in hepatic fibrosis will be put forward.
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Background
Hepatic fibrosis is a continuous wound-healing process 
that results in the dysregulation of extracellular matrix 
(ECM) proteins and the distortion of normal liver archi-
tecture [1]. Many chronic hepatic diseases, such as viral 
hepatitis, alcohol toxicity, drug abuse, metabolic syn-
drome, hereditary disorders of metabolism, autoimmune 
hepatitis and Clonorchis sinensis infection, lead to hepatic 
fibrosis and even cirrhosis [2], which is the primary stage 
of hepatic carcinoma, leading to one of the major causes 
of mortality in cancer worldwide.

Although extensive studies on hepatic fibrosis have 
been reported, their regulatory mechanisms are still par-
tially understood. The activation of hepatic stellate cells 
(HSCs), the resident perisinusoidal cell type, is generally 

considered to be a pivotal step in hepatic fibrosis [3]. In 
normal hepatic tissue, HSCs with abundant vitamin A 
stores are quiescent. Following with hepatic injury of any 
etiology, the quiescent HSCs lose their stored vitamin A 
and trans-differentiate into fibrogenic myofibroblast-like 
cells. The activated HSCs are identified as proliferative 
cells that express ECM, and secrete profibrogenic media-
tors, thereby contributing to the fibrosis [4]. Therefore, 
the suppression of the HSC activation is regarded to be a 
potential therapeutic target for hepatic fibrosis.

Genome tiling arrays and cap analysis gene expression 
showed that non-protein coding RNAs (ncRNAs), which 
were considered to be ‘‘evolutionary junk” in the past, 
have more functions in transcription [5, 6]. Recently, a 
large number of ncRNA molecules have been identified 
by RNA microarrays and next-generation sequencing 
of transcriptomes [7]. NcRNAs are classified into two 
types based on their relative sizes. Those less than 200 
nucleotides (nt) are called small or short non-coding 
RNAs, while those longer than 200  nt are called long 
non-coding RNAs (lncRNAs) [8]. LncRNAs are consid-
ered to play roles in physiological conditions as well as in 
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several human diseases, including cancer, metabolic dis-
eases, cardiovascular diseases and so on [9]. Increasing 
evidence has suggested that lncRNAs regulate gene or 
protein expression by coordinating epigenetic, transcrip-
tional, or post-transcriptional processes [10]. But the 
function of lncRNAs in hepatic fibrosis remains elusive.

The goal of this review is to summarize the roles of 
lncRNAs in hepatic fibrosis, including the regulation on 
transforming growth factor (TGF)-β signaling pathway, 
DNA methylation and competing endogenous RNAs 
(ceRNAs) (Fig. 1) according to current knowledge. It will 
illustrate some important information for the treatment 
hepatic fibrosis and present novel guidance in future 
researches.

The interaction of lncRNAs and the transforming growth 
factor (TGF)‑β signaling pathway in hepatic fibrosis
TGF-β is a key regulator of liver physiology and pathol-
ogy during the process of initial liver injury-inflamma-
tion-fibrosis [11]. TGF-β1, a potent fibrogenic cytokine 
from the autocrine or paracrine pathway, is a crucial sig-
nal that promotes HSC activation [12]. Some studies have 
shown that lncRNAs interact with the TGF-β signaling 
pathway to promote HSC activation and then induce 
hepatic fibrosis.

Metastasis-associated lung adenocarcinoma tran-
script 1 (MALAT1) which is located in human chromo-
some 11q13.1 (mouse chromosome 19qA), also known 
as nuclear-enriched abundant transcript 2 (NEAT2), 
is a widely expressed lncRNA, and was firstly identified 
through subtractive hybridization in stage I of non-small 
cell lung cancer [13, 14]. A growing number of evidence 
indicated that MALAT1 was closely related to various 
pathological processes, including diabetes complications 
and hepatic carcinoma [15], and could influence the pro-
gression of hepatic fibrosis by repressing the expression 
and function of silent information regulator 1 [SIRT1, a 

Nicotinamide adenine dinucleotide (NAD)-dependent 
class III protein deacetylase] [16]. As one of the best 
characterized deacetylase enzymes, SIRT1 can protect 
cultured cells against metabolic, geneotoxic, hypoxic, and 
heat stress by deacetylating a number of key transcrip-
tion factors [17], while it can induce the deacetylation 
of Smad3 (a downstream mediator of TGF-β signaling 
pathway) and weaken the ability of Smad3 binding to 
the promoter of fibrogenic genes, such as collagen type 
I gene promoters, which means that the activation of 
SIRT1 attenuates TGF-β signaling and then reduces 
TGF-β-stimulated collagen expression [18, 19]. In sum-
mary, MALAT1 can promote the HSC activation through 
blocking the SIRT1 mediated inhibition of TGF-β sign-
aling pathway in the progression of hepatic fibrosis 
(Fig. 2a). What’s more, MALAT1 is also reported that it 
acts as a competing endogenous RNA for miR-101b to 
regulate RAS-related C3 botulinum substrate 1 (Rac1) 
and contributes to hepatic fibrosis [20] (Fig. 4).

The liver fibrosis-associated lncRNA1 (lnc-LFAR1) is 
a 734  nt transcript and it was originally identified as a 
liver-enriched lncRNA in fibrotic liver of mice. The lnc-
LFAR1 of mice is located in chromosome 4q25, and it 
adjacents to the CYP2U1 and HADH genes which are 
the same as human [21]. ALGGEN-PROMO and JAS-
PAR software analysis have shown that there are three 
potential Smad2/3 binding sites (SBE) in the promoter 
of lnc-LFAR1, which means that Smad2/3 can bind to 

Fig. 1  It is the summary of the mechanism of lncRNAs that regulate 
hepatic fibrosis through TGF-β signaling pathway, DNA methylation 
and ceRNA in this review

Fig. 2  lncRNAs regulate hepatic fibrosis via TGF-β signaling pathway. 
a MALAT1 represses SIRT1 to inhibit the deacetylation of Smad3. 
Then the deacetylation of Smad3 binds to fibrogenic genes, such as 
colIα1, to induce the expression of colIα1. b lnc-LFAR1 is induced by 
Smad2/3 and in turn to promote the phosphorylation of Smad2/3, 
that provides a positive feedback loop to enhance Smad2/3 binding 
to the target gene, therefore causing the high expression of colIα1 
and α-SMA. The deposition of ECM and activation of HSCs contribute 
to the hepatic fibrosis
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the promoter of lnc-LFAR1 to increase its expression. 
Furthermore, the lnc-LFAR1 in turn up regulates the 
expression of Smad2/3 and promotes Smad2/3 phospho-
rylation in liver fibrogenesis [21]. The phosphorylation of 
Smad2/3 promotes its nuclear translocation and the abil-
ity binding to the target promoters, such as collagen type 
I gene [22]. All in all, lnc-LFAR1 induces the activation 
of HSCs to promote hepatic fibrosis by interacting with 
TGF-β signaling pathway (Fig. 2b).

lncRNA associates with DNA methylation to inhibit 
the activation of HSCs in hepatic fibrosis
DNA methylation is a type of epigenetic modification in 
mammals and involves in numerous biological processes, 
including transposable element silencing, genomic 
imprinting and X chromosome inactivation [23]. The 
process of DNA methylation is regulated by methyltrans-
ferases, for examples, DNA methyltransferases (DNMT1, 
DNMT3a, DNMT3b) induce de novo methylation and 
ten–eleven translocation methylcytosine dioxygenase 
(TET) family member enzymes (TET1, 2 and 3) induce 
DNA demethylation re-activated or re-expressed silenced 
genes. DNMTs and TETs are critical in the cycle of DNA 
methylation and demethylation [24]. Advancing studies 
indicate that DNMTs and TETs play significant roles to 
change 5-methylcytosine and 5-hydroxymethylcytosine 
during HSC transdifferentiation to myofibroblast-like 
cells [25]. Increasing evidence shows that several lncR-
NAs are associated with DNA methylation to inhibit the 
activation of HSCs in hepatic fibrosis.

Maternally expressed gene 3 [MEG3, which is also 
known as gene trap locus 2 (GTL2)], is a lncRNA 
with the length of 1.6 kb nucleotides. It is a part of the 
DLK1–MEG3 imprinting locus and located at human 
chromosome 14q32 and at mouse distal chromosome 
12 [26]. It is expressed in virous human tissues and 
acts as a tumor suppressor [27]. Recently, the loss of 
MEG3 expression has been gradually proved in vari-
ous types of human cancers, such as hepatic cancer, 
gastric cancer, lung cancer, glioma, cervical cancer, 
bladder cancer [28–34]. On the one hand, MEG3 can 
selectively regulate p53 target gene expression result-
ing in the accumulation of p53 protein, and leading to 
cell growth inhibition [35]; on the other hand, MEG3 
activates p53, and then intervenes in the p53-depend-
ent mitochondrial apoptosis pathway to increase mito-
chondrial cytochrome c release and to culminate in 
direct caspase activation [35]. The expression of MEG3 
was negatively correlated with the differentially methyl-
ated regions (DMRs) hypermethylation level, suggest-
ing that DNA methylation plays an important role in 
silencing the MGE3 gene [28]. DNA methyltransferase 
1 (DNMT1) can maintain methylation pattern on the 

daughter strand after DNA methylation and contrib-
ute to hypermethylation of MEG3 gene promoter and 
decrease the expression of MEG3 [30]. MEG3 could 
activate p53 to cause caspase-3-dependent apopto-
sis and reduce the expression of alpha-1  type I col-
lagen (colIα1) and α-smooth muscle actin (α-SMA) in 
activeted HSCs induced by TGF-β1 [36]. It is indicated 
that MEG3 plays a critical role in HSC activation and 
hepatic fibrogenesis (Fig.  3). Therefore, it reveals that 
high-expression of MEG3 are potentially regarded as a 
novel therapeutic target for treating liver fibrosis.

The lncRNA HIF 1 alpha-antisense RNA 1 (HIF1A-
AS1) was initially reported in human kidney cancers 
and it is located on chromosome 14, with 2100  nt 
[37]. It has been demonstrated that the HIF1A-AS1 
involves in the proliferation and apoptosis of vascular 
smooth muscle cells and the vascular endothelial cells 
[38, 39], and it is also related with the process of the 
non-small cell lung cancer and the colorectal carci-
noma [40, 41]. HIF1A-AS1 acts as an inhibitor or an 
activator of cell proliferation and apoptosis depend-
ing on its binding partners and cell types. As one of 
the ten to eleven translocation (TET) family members, 
TET3 can catalyze 5-methylcytosine (5-mC) demethyl-
ate to 5-hydroxymethylcytosines (5-hmCs), which leads 
to cancer suppression [42]. In hepatic fibrosis, TET3 
promotes the activation of HSCs through suppressing 
the expression of 1ncRNA1A-AS1 [43]. Thus, lncRNA 
HIF1A-AS1 interacts with the partner TET3 associ-
ated with DNA methylation to inhibit the activation of 
HSCs. These indicate that the up-regulation of lncRNA 
HIF1A-AS1 may be a potential therapy pathway for 
hepatic fibrosis (Fig. 3).

Fig. 3  The transform among Cytosine (C), 5-methylcytosine (5-mC) 
and 5-hydroxymethylcytosine (5-hmC) forms the basis of the cycle 
of DNA methylation and demethylation. As the critical regulation 
enzymes in the cycle of DNA methylation and demethylation, DNMT1 
and TET3 contribute to hepatic fibrosis through repressing MEG3 and 
lncRNA HIF1A-AS1
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lncRNAs act as ceRNAs in hepatic fibrosis
MicroRNAs (miRNAs) pair with miRNA response ele-
ments (MREs) on target RNA transcripts resulting in 
degradation or translational repression of the target tran-
scripts [44]. A competing endogenous RNA (ceRNA) is a 
endogenous origin transcript targeted by a miRNA that 
sequesters the activity of the bound miRNA, effectively 
de-repressing other targets of that miRNA [45]. LncR-
NAs have been gained substantial attention as ceRNAs to 
sponge miRNAs to consequently modulate the derepres-
sion of miRNA targets, thereby protecting their target 
mRNAs [46]. Recently, several studies have shown that 
lncRNAs act as ceRNAs which play an important regula-
tory role in the process of hepatic fibrosis.

The long intergenic non-coding RNA-p21 (lncRNA-
p21), which resides 15  Kb upstream of the gene encod-
ing the critical cell cycle regulator Cdkn1a (also known 
as p21), contains two exons comprising 3.1  Kb [47]. 
LncRNA-p21 functions as a downstream transcriptional 
repressor in the p53 pathway via activating p53 to pro-
mote apoptosis [48]. It has been reported that lncRNA-
p21 has been deregulated in various human diseases, 
such as skin tumors, prostate cancer and hepatocellular 
carcinoma [49–51]. It also acts as a tumor suppressor 
in cancers, but the mechanism of the process remains 
unclear. LncRNA-p21 directly binds target mRNA to 
regulate the translation as a post-transcriptional inhibi-
tor [52], while it also acts as a locus-restricted coactiva-
tor for p53-mediated p21 expression in regulating the 
G1/S checkpoint [53]. Furthermore, it has been proposed 
that the lncRNA-p21 is also able to regulate gene expres-
sion by directing the chromatin localization of protein 
binding partners [54]. As a tumor suppressor, the phos-
phatase and tensin homologue deleted on chromosome 
10 (PTEN) is often deregulated in various cancers, and 
it is a direct target of miR-181b that has been reported 
in hepatic fibrosis [55]. Yu et  al. demonstrated that the 
lncRNA-p21 enhanced PTEN expression through com-
petitively binding miR-181b as a ceRNA and inhibited 
the activation of HSCs via PTEN/Akt pathway in hepatic 
fibrosis [56]. It is also reported that the lncRNA-p21 
sponges miR-17-5p to inhibit WIF1 through Wnt/β-
catenin pathway resulting in suppression the HSC acti-
vation [57]. According to the research results above, we 
conclude that the lncRNA-p21 acts as a ceRNA to pre-
vent the HSC activation in hepatic fibrosis.

Growth arrest-specific transcript 5 (GAS5) was ini-
tially discovered in a screen for potential tumor sup-
pressor genes which expressed at high levels during 
growth arrest and it was originally isolated from mouse 
embryo NIH 3T3 cells using subtraction hybridization 
[58]. GAS5 has been reported as a tumor suppressor in 
some kinds of cancers, and it has been shown the GAS5 

is involved in proliferation, apoptosis, and migration of 
tumor cells in breast cancer, gastric cancer and pros-
tate cancer [59–61]. The GAS5 directly binds miR-21 
to down-regulate its expression at exon 4 of GAS5 and 
negatively regulate the expression of miR-21 in hepato-
cellular carcinoma [62]. Moreover, it was also demon-
strated that the GAS5 acts as ceRNA to control cardiac 
fibroblast activation and cardiac fibrosis by targeting 
miR-21 through PTEN/MMP-2 signaling pathway [63]. 
In hepatic fibrosis, the GAS5 through interacting with 
miR-222 to promote the expression of p27 protein, 
thereby inhibiting the activation and proliferation of 
HSCs [64].

Plasmacytoma variant translocation 1 (PVT1) in 
size of > 300 nt is transcribed from a locus adjacent to 
the MYC locus on human chromosome 8q24 (mouse 
chromosome 15) [65]. Recently, the PVT1 is found to 
be up-regulated in a series of human tumors, such as 
hepatocellular carcinoma, ovarian cancer, malignant 
pleural mesothelioma, non-small lung cancer and renal 
cancer [66–70]. PVT1 was deemed as a mediator of 
ECM in the diabetic kidney [71], which suggested that 
the PVT1 might involve in fibrosis. Epithelial–mes-
enchymal transition (EMT) process is considered as a 
key event in the activation of HSCs and hepatic fibrosis 
via activating Hedgehog (Hh) signaling pathway [72]. 
Patched1 (PTCH1), a member of Hh family, is also a 
negative regulator of Hh pathway. PVT1 can indirectly 
enhance PTCH1 methylation and down-regulate the 
expression of PTCH1 via competitively binding miR-
152. Therefore, the PVT1 may serve as a ceRNA for 
miR-152 through Hh pathway to regulate the activation 
of HSC in hepatic fibrosis [65].

Homeobox (HOX) transcript antisense RNA 
(HOTAIR) is a 2158 nt lncRNA that locates to a bound-
ary of the HOXC locus, one of the four chromosomal 
loci (HOX A to D) containing the clustered HOX 
genes [73]. Accumulating studies have indicated that 
HOTAIR is up-regulated in multiple cancers, includ-
ing breast cancer, lung adenocarcinoma, renal cell car-
cinoma, pancreatic cancer, hepatocellular carcinoma 
[74–78]. MiR-29b can up-regulate the expression of 
PTEN via DNMT3b to suppress liver fibrosis [79]. The 
HOTAIR acts as a ceRNA to sponge miR-29b and then 
attenuates DNMT3b, leading to enhancement of PTEN 
methylation that contributes to liver fibrosis [80].

Whether ceRNA is an inhibitor or an activator to 
HSC activation depends on the spongy of miRNAs 
(Fig. 4). The model of how lncRNA works as ceRNA to 
sponge miRNAs may be widely accepted in (Fig. 5). The 
binding sites between lncRNA and miRNA shown in 
this review are displayed in the table (Table 1).
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Fig. 4  LncRNA represses miRNA to regulate the process of liver fibrosis. LncRNA-p21 inhibits the activation of HSCs through miR-181b and 
miR-17-5p; GAS5 inhibits the activation of HSCs through miR-222. PVT1, HOTAIR and MALAT1 promote the activation of HSCs through miR-152, 
miR-29b and miR-101 respectively

Fig. 5  a The pre-miRNA gets out from the nucleus to be the mature miRNA. The mature miRNA incorporates into the RISC and the target mRNA to 
the target mRNA. b The activity of the miRNAs is inhibited by the presence of lncRNAs, which act as ceRNAs by sharing common MREs. Low levels of 
available miRNAs for the target mRNA translations



Page 6 of 8Peng et al. Cell Biosci            (2018) 8:63 

Conclusion
Attention has been paid to lncRNA structure, function 
and evolution. Although there is a great interest in new 
lncRNAs, it is a scientific topic in the future. To explore 
new therapies of hepatic fibrosis, more lncRNAs have 
been found to be involved in the activation of HSCs.

MALAT1 and lncRNA-LFAR1 activate HSCs through 
the TGF-β signaling pathway. Some lncRNAs will be dis-
covered to induce the activation of HSCs via the TGF-β 
signaling pathway in the future. Other signaling path-
ways, such as Wnt, NF-κB and Notch signaling pathway, 
are also related with the HSC activation. The lncRNA 
AC067945.2 down-regulates collagen expression in skin 
fibroblasts and it possibly correlates with the VEGF and 
Wnt signalling pathways [81]. Therefore, it is worthwhile 
to explore some new lncRNAs via other signaling path-
ways that take part in the activation of HSCs.

MEG3 and HIF1A-AS1 inhabit the HSC activation with 
DNA methylation. MEG3 and HIF1A-AS1 are repressed 
by DNMT1 and TET3 respectively. MEG3 causes the 
accumulation and activation of p53 that decreases pro-
liferation and increases apoptosis of activated HSCs. 
The mechanism of HIF1A-AS1 inhabiting the HSC acti-
vation is still need to be explored. It is also possible that 
DNMT1 or TET3 regulates other lncRNAs in the process 
of hepatic fibrosis. Thus, the interaction between lncR-
NAs and other enzymes associated with methylation is 
also worth studying in hepatic fibrosis.

The last role of lncRNAs regulating the HSC activa-
tion is to be ceRNAs for miRNAs. PVT1, HOTAIR and 

MALAT1 promote the activation of HSCs. LncRNA-p21 
and GAS5 reduce the activation of HSCs. The miRNAs 
are inhibited by the lncRNAs which act as ceRNAs via 
sharing common MREs. The interaction between lncR-
NAs and miRNAs is not a one-to-one relationship, for 
example, lncRNA-p21 represses miR-181b and miR-
17-5p. In addition, lncRNA MIR100HG has been con-
firmed to encode miR-100, let-7a-2 and miR-125b-1. It 
is worth exploring whether any lncRNAs regulate miR-
cluster in liver fibrosis or not.

The differences in the expression of lncRNA between 
normal and hepatic fibrotic tissues not only imply that 
lncRNAs may take part in the progression of the hepatic 
fibrosis, but also suggest that lncRNAs may be the bio-
markers for the clinical diagnosis of hepatic fibrosis. 
Moreover, it is possible that not only lncRNAs itself, but 
also both the binding proteins and the target genes will 
be new therapeutic targets, which may lead to the devel-
opment of new anti-fibrosis treatments.
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