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Abstract 

Background and objective:  Chronic inflammatory is involved in the development of salt-sensitive hypertension and 
other cardiovascular diseases. PSGL-1 plays an important role in the inflammatory response.

Methods and results:  In this study, we used PSGL-1−/− and PSGL-1+/+ mice fed with high salt diet to measure the 
blood pressure, inflammatory response and vascular injury. We found that, in PSGL-1+/+ mice, high salt diet resulted 
in high blood pressure with the increased expression of serum inflammatory cytokines IL-6, IL-1β and TNFɑ, vascular 
injury markers MCP-1, ET-1, and VWF, and renal macrophages and T cells infiltration, and endothelium-dependent 
acetylcholine vasodilation dysfunction. However, the influence was not found in PSGL-1−/− mice. The deficiency of 
PSGL-1 prevented the increased adhesion of peripheral blood mononuclear cells to endothelial cells by high salt 
environment.

Conclusions:  Our results indicate that PSGL-1 is involved in the development of salt-sensitive hypertension via 
vascular inflammation and injury. The high salt induced inflammation may be initiated by leukocytes and endothelial 
cells adhesion through PSGL-1 binding with P-selectin or/and E-selectin.
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Background
Epidemiological and experimental studies have dem-
onstrated a close relationship between salt intake and 
hypertension [1]. It has been estimated that 30–50% 
of hypertensive humans are salt-sensitive and at least 
25% of normotensive individuals also show salt sensi-
tivity [2]. Salt-sensitivity confers an increased risk for 
the occurrence of hypertension, and for cardiovascular 
disease such as stroke, coronary heart disease, cardiac 
insufficiency, and kidney disease [3]. Although the etiol-
ogy of salt-sensitive hypertension is actually multifacto-
rial, including vasoconstriction and retention of renal 
sodium/water metabolism, but the blood pressures of 
a considerable proportion of patients with hyperten-
sion can not be effectively controlled by vasodilators and 

diuretics [4]. In recent years, it has been reported that 
chronic inflammatory reaction is involved in the devel-
opment of salt-sensitive hypertension and other car-
diovascular diseases [5]. The inflammatory reaction and 
vascular injury may be an important mechanism of salt-
sensitive hypertension and target organ injury [6].

P-selectin glycoprotein ligand-1 (PSGL-1), a trans-
membrane glycoprotein expressed on circulating leu-
kocytes, and participates in leukocyte recruitment and 
lymphocyte homing as a major selectin ligand. PSGL-1 
can significantly enhance platelet-activating factor-
induced leukocyte activation, and interact with cytokines 
such as integrins to promote leukocyte adhesion [7]. 
Studies have shown that PSGL-1 is involved in the reg-
ulation of T lymphocyte differentiation process and its 
induced immune response. Inflammatory cytokines 
released by leukocytes, such as TNFα and IL-1, also can 
induce the adhesion between leukocyte PSGL-1 and 
selectins in endothelial cells or platelets, which promote 
the development inflammation [8]. Therefore, PSGL-1 
plays an important role in the inflammatory response, 
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but whether it is involved in the pathological develop-
ment of salt-sensitive hypertension remains unknown. 
In order to detect the role and mechanism of PSGL-1 in 
the development of salt-sensitive hypertension, we used 
PSGL-1 knockout (PSGL-1−/−) and wild-type (PSGL-
1+/+) mice fed with high salt diet to measure the blood 
pressure, inflammatory response and vascular injury.

Methods
Materials
The mouse brain endothelial cell line (Bend3) cells 
were purchased from Feng Hui Biological Technology 
Company (China). PSGL-1+/+ and PSGL-1−/− mice 
were obtained from Department of Molecular Biol-
ogy and Biochemistry, University of Oklahoma Health 
Science Center. Rabbit anti-mouse CD68 (ab955), and 
CD3 (ab16669) were purchased from Abcam (United 
Kingdom); Rabbit anti-mouse IL6 (21865-1-AP), 
TNFɑ (60291-1-Ig) were from Proteintech (United 
Kingdom). Mouse anti-IL1 (sc-130325) was from 
Santa Cruz Biotechnology Inc (Texas, USA.). ELISA 
Kits (BMS6002, KMC0061, EH3TNFA) were from 
Thermo Fisher. Phenylephrine (P1240000-1EA) and 
Acetylcholine chloride (PHR1546) were purchased 
from Sigma-Aldrich.

PSGL‑1−/− mice and blood pressure measurement
PSGL-1+/+ and PSGL-1−/− mice at 8 weeks were fed with 
low salt diet (0.4% NaCl) and high salt diet (6% NaCl) for 
3 months. The blood pressures were measured from the 
aorta, via the left carotid artery, under isoflurane (1.5–
2.5%, inhaled) anesthesia. The kidneys and blood samples 
were collected for immunofluorescence and ELISA. Tho-
racic aortas were collected for immunoblotting and vas-
cular relaxation study.

Enzyme‑linked immunosorbent assay (ELISA)
Inflammatory cytokines TNF-α, IL-1β, and IL-6 in the 
serum from PSGL-1+/+ and PSGL-1−/− mice were tested 
by ELISA Kits. Briefly, serum samples were added in the 
coated wells with TNF-α, IL-1β, and IL-6 mAb of 96-well 
plates and incubated for 1  h at room temperature, 
washed four times and then incubated with an HRP-
linked streptavidin solution for 30 min at room tempera-
ture in the dark. All samples were tested by duplication, 
and absorbency was measured at 620 nm by a microplate 
reader (Sunrise Remote, Switzerland).

Immunofluorescence staining
The kidneys of the mice were formalin-fixed, paraffin-
embedded, and cut into 4-μm sections. Sections were 
deparaffinized with xylene and alcohol series, and 
antigen unmasking was performed through pressure 

cooker treatment in sodium citrate buffer. Sections were 
blocked using goat serum for 30 min at room tempera-
ture and then stained with antibodies against CD68 and 
CD3 respectively overnight at 4  °C, washed with PBS 
3 times for 3  min each time. Sections next were incu-
bated with Alexa Fluor 488 or 568 conjugated phalloi-
din. Fluorescent signals were captured using a confocal 
microscope.

Vascular relaxation
Thoracic aortas were harvested from PSGL-1+/+ and 
PSGL-1−/− mice, and placed in chilled buffer. The ves-
sel rings were suspended in 5-mL organ baths contain-
ing oxygenated Krebs–Henseleit buffer (118  mM NaCl, 
25 mM NaHCO3, 4.6 mM KCl, 1.2 mM MgSO4, 1.2 mM 
KH2PO4, 1.25  mM CaCl2, 10  mM glucose, 0.025  mM 
EDTA, PH 7.4 at 37  °C). After equilibration for 60 min, 
contractile responses were recorded. Aortic rings were 
exposed to a 100 μM KCl-depolaring solution and, after 
washout, they were then exposed to a range of concentra-
tions of PE (10−10 to 10−6 mol/L). The functional integrity 
of this structure was confirmed by the dose response to 
Ach (10−9 to 10−6 mol/L).

Immunoblotting
Mouse thoracic aortas homogenates were prepared for 
immunoblotting according to our previously published 
procedure [9] The samples were immunoblotted with 
well characterized anti-mouse MCP-1, ET-1, and VWF 
antibodies. Uniformity of protein loading and mem-
brane transfer were determined by immunoblotting for 
GAPDH.

Cell culture and adhesion test
The Bend3 cells were cultured with DMEM high glu-
cose medium, supplemented with 10% fetal bovine serum, 
100  μg/mL penicillin and 10  μg/mL streptomycin, and 
grown in 96-well plates treated with normal salt medium 
(133 mM) and additional 40 mM NaCl for 3 h. Peripheral 
blood mononuclear cells (PBMC) were isolated from PSGL-
1+/+ and PSGL-1−/− mice. Peripheral blood collected in 
EDTA-coated tubes was mixed with 1% methylcellulose and 
centrifuged at 25g for 15  min. The upper phase was then 
diluted with PBS to the original volume of blood/methylcel-
lulose mixture, carefully layered onto a Histopaque 1.077 
gradient and centrifuged at 250g for 30 min without brake. 
The PBMC-containing layer was collected, washed, and 
resuspended in RPMI-1640 medium for further incubation. 
The PBMC was stained with the ratio-fluorometric 2′,7′-bis-
(2-carboxyethyl)-5-carboxyfluorescein acetoxymethyl ester 
(BCEC-F-AM) for 30  min at 37  °C, and then co-cultured 
with Bend3 cell for 30 min at 37 °C. Fluorescent signals were 
captured using a confocal microscope (Leica).
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Statistics
The data were expressed as mean ± SEM. Significant 
difference between two groups was determined by the 
Student’s t test. A value of P < 0.05 was considered statis-
tically significant.

Results
PSGL‑1 deficiency prevents the increased blood pressure 
induced by high salt intake
The blood pressure of PSGL-1+/+ mice fed with high salt 
diet was significantly higher than normal salt diet group. 
However, the increased blood pressure was not found 
in PSGL-1−/− mice with high salt diet (Fig.  1), which 
means that PSGL-1 is involved in the development of salt 
induced hypertension.

PSGL‑1 deficiency inhibits the increased serum 
inflammatory cytokines expression by high salt intake
Vascular inflammation is closely related to salt sensitive 
hypertension, therefore we explored the expression of 
inflammatory cytokines in the serum of PSGL-1+/+ and 
PSGL-1−/− mice. The serum levels of TNF-α, IL-1, and 

IL-6 were significantly elevated in PSGL-1+/+ mice with 
high salt diet compared with normal salt group. However, 
the increased expression of these inflammation cytokines 
was not observed in PSGL-1−/− mice with high salt diet 
(Fig. 2).

PSGL‑1 deficiency inhibits high salt‑induced inflammatory 
cells infiltration
In order to further test the inflammation regulated by 
PSGL-1, we measured the number of macrophages and T 
cells in kidney tissue by immunofluorescence. We found 
that the number of macrophages (CD68) (Fig. 3a–d) and 
T cells (CD3) (Fig.  3e–h) in kidney were significantly 
increased after high salt intake than normal salt diet in 
PSGL-1+/+ mice, while the increased number of infil-
trated inflammatory cells by high salt diet was not found 
in PSGL-1−/− mice.

PSGL‑1 deficiency alleviates the high salt induced vascular 
dysfunction and injury
To examine the effect of PSGL-1 on vascular function 
injured by high salt diet, we measured ex  vivo vascular 
function in PSGL-1+/+ and PSGL-1−/− mice fed with 
high salt and normal salt diet respectively by recording 
concentration-relaxation curves using powerlab system. 
We found that high-salt diet resulted in endothelium-
dependent acetylcholine (Ach) vasodilation dysfunc-
tion (Fig. 4a) and increased expression of vascular injury 
markers MCP-1, ET-1, and VWF in the thoracic aortas of 
PSGL-1+/+ mice (Fig.  4b). However these phenomenon 
was not found in PSGL-1−/− mice.

PSGL‑1 deficiency inhibits high salt‑induced 
leukocyte‑endothelial adhesion
To detect of the mechanism of inflammation regulated 
by PSGL-1, we tested the leukocyte-endothelial adhe-
sion by using PBMC and Bend3 cells co-culture system. 
We found that the number of PBMC (green color) from 
PSGL-1+/+ mice adhering to Bend3 cells was significantly 
increased in high salt medium (173  mM NaCl) than in 
normal saline medium (133  mM NaCl). The number 
of PBMC from PSGL-1−/− adhering to Bend3 cells was 
not increased by high salt medium (Fig.  5), which indi-
cates that PSGL-1 may play an important role in the high 
salt induced inflammation by regulating the adhesion of 
peripheral blood mononuclear cells to endothelial cells.

Discussion
In recent years, salt sensitive hypertension is consid-
ered to be a chronic inflammatory disease [5]. In this 
study, we found that high salt diet increased blood 
pressure in PSGL-1+/+ but not in PSGL-1−/− mice. 
The increased blood pressure in PSGL-1+/+ mice with 

Fig. 1  Systolic blood pressure in PSGL-1+/+ and PSGL-1−/− mice. Sys-
tolic blood pressure was measured from the aorta, via the left carotid 
artery, under isoflurane anesthesia. *P < 0.05 versus PSGL-1+/+ with 
normal salt diet; #P < 0.05 vs PSGL-1+/+ with high salt diet, t test, n = 6

Fig. 2  Serum levels of inflammatory cytokines in PSGL-1+/+ and 
PSGL-1−/− mice with high salt or normal salt intake. Serum levels of 
TNF-α, IL-1β, and IL-6 were measured by ELISA kits. *P < 0.05 vs PSGL-
1+/+ with normal salt diet; #P < 0.05 versus PSGL-1+/+ with high salt 
diet, t test, n = 6
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high salt diet was accompanied with increased expres-
sion of serum inflammatory cytokines IL-6, IL-1β and 
TNFɑ, and renal macrophages and T cells infiltration. 
IL-6, IL-1β and TNFɑ are mainly secreted by activated 
macrophages and T cells that play an important role 
in the development of inflammatory response [10]. 
TNFɑ stimulates endothelial cells to secrete other 
inflammatory factors and then promotes inflamma-
tion, and induces vasodilatory dysfunction by inhibit-
ing the expression of eNOS [11]. The TonEBP-VEGF-C 
signaling in mononuclear phagocyte system (MPS) is 
involved in the development of salt-sensitive hyper-
tension via vascular eNOS secretion [12]. Therefore, 
PSGL-1 is involved in the development of salt-sensitive 
hypertension via inflammation.

The main purpose of hypertension control is to prevent 
the target organ injury. It was found that PSGL-1-p-selec-
tin interactions contributed to vascular injury and exac-
erbated atherosclerosis [13]. In this study, we found that 
high-salt diet caused endothelium-dependent acetylcho-
line vasodilation dysfunction and increased the expres-
sion of vascular injury markers MCP-1, ET-1, and VWF 
in PSGL-1+/+ mice, but not in PSGL-1−/− mice. There is 
evidence shows that each domain of the PSGL-1 molecule 
plays crucial roles in leukocyte activation and promote 
leukocyte rolling and extravasation to vascular endothelial 

and continuously aggravate endothelial injury [14]. Our 
finding indicates that PSGL-1 may participate in the reg-
ulation of vascular injury via inflammation by high salt 
intake, which may be the meaningful target of hyperten-
sion prevention.

PSGL-1 is responsible for the initial step of the inflam-
mation via mediating interactions with P-selectin and 
E-selectin expressed by endothelial cells to initiate the 
‘capture and rolling’ step in the leukocyte–endothelial 
cell adhesion cascade [15]. In this study, we found that 
the block of PSGL-1 prevented the increased adhesion 
of PBMC to endothelial cells by high salt environment 
with Endothelial Cells/PBMC co-culture system. The 
E-selectin expression was increased in the mouse brain 
endothelial cell line (Bend3) with high salt medium cul-
ture [16]. The interaction of PSGL-1 with P-selectin on 
activated platelet promoted the formation of leukocyte-
platelet aggregates that contribute to adhesion and infil-
tration of inflammatory cells [17]. We also found that 
platelet further increased the number of PBMC adhesion 
to endothelial cells in the Endothelial Cells/PBMC co-
culture system with high salt medium (data not shown). 
The inflammation caused by high salt intake may be initi-
ated by leukocytes and endothelial cells adhesion with or 
without platelet activation through PSGL-1 binding with 
P-selectin or/and E-selectin.

Fig. 3  The infiltrated macrophages and T cells in the kidney of PSGL1+/+ and PSGL1−/− mice. a–d Macrophages infiltration in the kidney of 
PSGL1+/+ and PSGL1−/− mice. e–h T cells infiltration in the kidney of PSGL1+/+ and PSGL1−/− mice. MPO: Neutrophil; CD68: macrophage; CD3: 
lymphocyte
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In conclusion, PSGL-1 plays an important role in the 
development of salt-sensitive hypertension via vascular 
inflammation and injury. The high salt induced inflam-
mation may be initiated by leukocytes and endothelial 

cells adhesion through PSGL-1 binding with P-selectin 
or/and E-selectin. However, the mechanism remains to 
be further studied.

Fig. 4  Regulation of PSGL-1 on high salt-induced vascular injury. a The vascular relaxation function was qualified by Powerlab system after Ach 
treatment. b The expression of vascular injury marker was quantified by immunoblotting in thoracic aortas of PSGL-1+/+ and PSGL-1−/− mice. 
Results were corrected for expression of GAPDH protein. *P < 0.05 versus PSGL-1+/+ mice with 0.4% NaCl; #P < 0.05 versus PSGL-1+/+mice with 6% 
NaCl, t-test, n = 6
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phrine; IL-1β: Interleukin 1β; TNFɑ: tumor necrosis factor α; IL-6: Interleukin 6; 
MCP-1: Monocyte Chemotactic Protein-1; ET-1: Endothelin-1; vWF: Von Wille-
brand factor; PBS: phosphate-buffered saline; DMEM: Dulbecco’s modification 
of Eagle’s medium Dulbecco; BCEC-F-AM: phorbol 12-myristate 13-acetate; 
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