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Abstract 

Cancer, the main cause of human deaths in the modern world is a group of diseases. Anticancer drug discovery is a 
challenge for scientists because of involvement of multiple survival pathways of cancer cells. An extensive study on 
the regulation of each step of these pathways may help find a potential cancer target. Up-regulated HIF-1 expression 
and altered metabolic pathways are two classical characteristics of cancer. Oxygen-dependent (through pVHL, PHDs, 
calcium-mediated) and independent (through growth factor signaling pathway, mdm2 pathway, HSP90) regulation 
of HIF-1α leads to angiogenesis, metastasis, and cell survival. The two subunits of HIF-1 regulates in the same fashion 
through different mechanisms. HIF-1α translation upregulates via mammalian target of rapamycin and mitogen-acti-
vated protein kinase signaling pathways, whereas HIF-1β through calmodulin kinase. Further, the stabilized interac-
tions of these two subunits are important for proper functioning. Also, metabolic pathways crucial for the formation 
of building blocks (pentose phosphate pathway) and energy generation (glycolysis, TCA cycle and catabolism of glu-
tamine) are altered in cancer cells to protect them from oxidative stress and to meet the reduced oxygen and nutrient 
supply. Up-regulated anaerobic metabolism occurs through enhanced expression of hexokinase, phosphofructoki-
nase, triosephosphate isomerase, glucose 6-phosphate dehydrogenase and down-regulation of aerobic metabolism 
via pyruvate dehydrogenase kinase and lactate dehydrogenase which compensate energy requirements along with 
high glucose intake. Controlled expression of these two pathways through their common intermediate may serve as 
potent cancer target in future.
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Background
Cancer is a known worldwide threat responsible for ~ 7.6 
million deaths per year, which is expected to reach 13.1 
million by 2030 [1]. Cancer, a multifactorial disease is the 
second main cause of human deaths after cardiovascu-
lar diseases. Biological systems have various pathways to 
suppress cancer propagation such as tumor suppresser 
genes, cell cycle check points, DNA error repair system 
etc. Down regulation or malfunctioning of these system 
results in initiation of cancer. Over expression of hypoxia 
inducible factor (HIF) and altered metabolic pathways are 

two classical features of cancer [2]. HIF-1 is a transcrip-
tion factor regulating many pivotal pathways in normal 
as well as cancerous cells. It is over expressed in organs 
or tissues where oxygen level drops below threshold 
level [3]. High level of HIF-1 points towards angiogen-
esis, cell proliferation, survival and tumor progression 
through regulation of growth promoters, oncogenes, gly-
colytic pathways and pH regulation. A large number of 
studies support the relation of increased level of HIF-1 
with aggressive tumor growth and poor patient prog-
nosis [4–8]. Metabolic pathways are crucial for growth 
and survival of cells. Intensively proliferating cells (as 
in cancer) needs high rate of energy and thus metabolic 
pathways are modified to match the need. The anaerobic 
condition results in drastic drop of energy production 
as lower number of ATPs are produced. Up-regulation 
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of glycolysis and regulated feedback systems solve this 
problem. These two factors (HIF-1 and metabolic path-
ways) help cancer cells in rapid proliferation and also 
for angiogenesis, metastasis and evading apoptosis. This 
review is thus compiled to analyze the role of HIF-1 and 
altered metabolic regulation in cancer.

Hypoxia‑inducible factor
Structure
HIF is a heterodimer protein consisting of two subu-
nits, HIF-α and HIF-β. There are two other substitutes of 
HIF-1α such as HIF-2α and HIF-3α [9, 10]. Both HIF-1α 
and HIF-2α have the ability to heterodimerize to HIF-1β 
subunit because of 85% sequence similarity in bHLH 
domain [11]. Expression of HIF-α subunit is oxygen 
dependent while HIF-β constitutively expresses inde-
pendent of oxygen level. HIF-β subunit is also known as 
aryl hydrocarbon receptor nuclear translocator (ARNT) 
and binds to aryl hydrocarbon receptor (AhR) to pro-
mote its translocation to the nucleus [12]. Both HIF-α 
and HIF-β subunits belong to bHLH-PAS (basic helix 
loop helix-Per ARNT Sim) protein family found in Dros-
ophila [13]. All three HIF-α subunits contain oxygen-
dependent degradation domain (ODD) and N-terminal 
transactivational domain (N-TAD). In addition, HIF-1α 
and HIF-2α also contain a C-terminal transactivational 
domain (C-TAD) [14], but HIF-1β lacks all regulatory 
regions (Fig. 1). The ODD domain is crucial for activity 
and stability of HIF-α subunits as it contains proline and 
asparagine for hydroxylation under normoxic conditions 
[15]. Some co-activators such as C-TAD binding pro-
tein (CBP) and P300 bind with C-TAD and regulate HIF 
expression by altering local chromatin structure through 
lysine acetyltransferase (KAT) activity and interaction 
with core transcriptional machinery [16].

Functions
Human tissues need ample supply of oxygen to maintain 
constant energy level through aerobic metabolic path-
ways. In some disorders such as cancer, chronic obstruc-
tive pulmonary disorders, ischemia or heart diseases, the 
oxygen level is drained, thus leading to hypoxic condi-
tion [17]. These conditions up-regulate HIF expression 
and down-regulate its degradation. HIF plays an impor-
tant role in various cell signaling pathways besides three 
major roles, to regulate angiogenesis, metabolic path-
ways and pH (Fig. 2). Hypoxia is mainly common in solid 
tumors, where cells proliferate very fast, resulting in com-
pression of blood vessels. To compensate this problem, 

Fig. 1  Structure of HIF-1α and HIF-1β gene. These genes contain a common basic helix-loop-helix and PAS domain for DNA binding and dimeriza-
tion. HIF-1β lacks an N-TAD, C-TAD and ODD regulatory regions

Fig. 2  Major roles of HIF-1; regulation of angiogenesis through VEGF, 
pH through sodium hydrogen pumps and glycolysis through glyco-
lytic enzymes as well as glucose transporters
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HIF up-regulates the angiogenic growth factors such as 
vascular endothelial growth factor (VEGF) [18] and epi-
dermal growth factor (EGF) through transcriptional acti-
vation. HIF enhances endothelial cell migration towards 
tissues with low oxygen level. These cells aid to form 
new blood vessels to overcome oxygen requirement [19]. 
VEGF enhances the infiltration of macrophages through 
macrophage receptors (flt-1). These macrophages release 
more VEGF and tumor necrosis factor- alpha (TNF-α) 
indicating positive regulation. HIF-1 also regulates gly-
colysis which is a vital pathway for energy production. 
It regulates the uptake of glucose through glucose trans-
porters, i.e. glucose transporter 1 (GLUT1) and sodium–
glucose transporters (SGLT) [20]. In absence of oxygen, 
metabolic pathways shift from more productive oxidative 
phosphorylation to less efficient anaerobic metabolism 
for maintenance of ATP production (Warburg effect) 
[21]. This shift is done through up-regulation of hexoki-
nase, aldolase, pyruvate kinase and down-regulation of 
pyruvate dehydrogenase which promotes the conversion 
of pyruvate to acetyl CoA to enter the citric acid cycle 
[22]. Recently, it has been observed that the embryonic 
stem cells go through metabolic shift during develop-
ment towards glycolysis which is regulated by HIF-1 [23].

Tumor cells have acidic extracellular pH (6.2–6.8) than 
normal cells (7.2–7.4) [24, 25]. More lactic acid pro-
duction and poor removal, as well as the production of 
carbonic acid, are main reasons for this condition. Mono-
carboxylate transporters (MCT4) upregulates by hypoxic 
conditions, which secrete more lactic acid from tumor 
cells [26]. Also, HIF-induced ectoenzyme CA (carbonic 
anhydrase) IX or XII converts diffused carbon dioxide 
into carbonic acid to reduce extracellular pH [27]. His-
tochemical studies have shown that CA IX and CA XII 
isoforms expressed highly in tumor cells, which are thus 
a suggestive diagnostic marker for cancer.

Regulation of HIF‑1
HIF-1α constitutively expresses independently of oxy-
gen level through various signaling pathways in cancer 
[28]. Most post-translational modification accounts for 
HIF-1α stability and transcriptional activity via ubiqui-
tination, acetylation, sumoylation, hydroxylation, and 
phosphorylation [28]. There are two types of the pathway 
which regulate the expression of HIF-1α, oxygen depend-
ent and oxygen independent pathway (Fig. 3).

Oxygen‑dependent regulation
pVHL dependent pathway
In normoxic conditions, level of HIF-1 is tightly regu-
lated by von Hippel-Lindau protein (pVHL), a tumor 
suppressor protein through proteasomal degrada-
tion and ubiquitination [29]. Another enzyme called 

prolyl-4-hydroxylases (PHDs) or HIF-1 prolyl hydroxy-
lases (HPH) also participates in the degradation of 
HIF-1α. Two proline residues (P402/P564) present on 
KXXLAP amino acid motif of ODD domain acts as a sub-
strate for PHDs [30, 31]. This degradation requires 2-oxo-
glutarate (2-OG), oxygen and ascorbate [32]. An enzyme, 
arrest defective-1 (ARD-1) plays an important role by 
acetylating lysine (K532) residue in the ODD domain 
[33]. Hypoxic condition inhibits the activity of both the 
enzymes resulting in up-regulation of HIF-1α activ-
ity. Hypoxia disrupts the electron transport chain, thus 
accumulating reactive oxygen species (ROS), which in 
turn oxidizes Fe2+ to Fe3+ resulting in inhibition of PHD 
activity and stabilization of HIF-1α. Knockdown of trans-
ferrin receptor-1 through small hairpin RNA (shRNA) 
leads to decrease in iron uptake, high HIF expression and 
extensive angiogenesis in breast cancer cell lines [34]. 
Antioxidant response from junD in Ki-Ras transformed 
fibroblast cells have been reported to reduce HIF expres-
sion and angiogenesis by enhancing PHDs expression 
[35]. Both antioxidant N-acetylcysteine and ascorbate 
abolish HIF activation through increased hydroxylation 
[36]. These findings propose the involvement of hypoxia 
and reactive oxygen species in altering HIF expression 
through various mechanisms. HIF-1α promoter contains 
a binding site for necrosis factor-kappa B (NF-ĸB) which 
conveys up-regulation by oxidative stress [37]. Transcrip-
tion of HIF-1β is also regulated directly by NF-ĸB [38]. 
So, it is concluded that PHDs, ARD and VHL all require 
oxygen to stabilize the HIF-1α structure.

pVHL independent pathway
Another regulatory pathway is post-translational modifi-
cations of HIF-1 in the presence of oxygen but without 
the involvement of pVHL protein. Binding of C-TAD 
and co-activators CBP/p300 are must for transcriptional 
activation of HIF-1α target genes. In the presence of oxy-
gen, asparagine residue (N803) of HIF-1α C-TAD domain 
gets hydroxylated by factor inhibiting HIF-1 (FIH-1), an 
asparagine hydroxyl, hinders the interaction between two 
domains and results in the down-regulation of HIF-1α 
mediated gene transcription [39–42]. Hypoxic conditions 
hinder hydroxylation of asparagine and hence establish 
transactivation of HIF-1α [40–42]. Hence, pVHL depend-
ent pathway stabilizes HIF-1α, while pVHL independent 
pathway regulates its transactivation.

Calcium‑mediated regulation
Hypoxia-induced accumulation of calcium also promotes 
the expression of HIF-1α. Various targets of Ca2+/CAM 
such as CAM kinase II, actin and calcineurin increase the 
transcriptional expression of HIF-1α. Therefore suppres-
sion of Ca2+/CAM by CAM-dominant mutants, Ca2+ 
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antagonists, i.e. HBC or Ca2+ chelators reduces tran-
scriptional activity of HIF and thus angiogenesis [43, 44].

Oxygen‑independent regulation
Despite the role of hydroxylases, there are some other 
oncogenic regulatory pathways which play an important 
role in oxygen independent regulation of HIF-1α activity.

Growth factor signaling pathway
Various growth factors regulate the expression of HIF-1α 
through a wide range of signaling cascades, i.e. PI3K/
PTEN/AKT or RAS/RAF/MAPK [45]. Most of them 
regulate translation of HIF-1α while some also regulate 
transcription. Phosphatidylinositol-4,5-bisphosphate 
3-kinase (PI3K) regulates the expression of HIF-1α 
through its target protein kinase B (AKT) a serine/thre-
onine kinase and further downstream mTOR. mTOR 
phosphorylates the eukaryotic translation initiation fac-
tor 4E (elF-4E) binding protein (4E-BP). 4E-BP disrupts 
cap-dependent mRNA translation. mTOR depend-
ent phosphorylation of P70S6K (S6K) enhances the 

activity of its substrate ribosomal protein S6 and pro-
motes HIF-1α translation [46]. The AKT signaling may 
regulate HIF-1α expression by both mTOR dependent 
and independent pathways [47]. This pathway is hindered 
by PTEN, which dephosphorylates PI3K products [47]. 
Certain growth factors activate RAS which further stim-
ulates MAPK pathway [48]. This pathway involves RAS/
RAF/MEK/ERK kinase cascade. An activated extracel-
lular signal-regulated kinase (ERK) phosphorylate MAP 
kinase-interacting kinase (NNK) and S6K to activate 
them and 4E-BP1 to inactivate it. MNK phosphorylates 
elF4E protein to enhance HIF-1α translation [49]. ERK 
also stimulates transcriptional activation of HIF-1α by 
phosphorylating CBP/P300 co-activators for enhancing 
HIF-1α/co-activators complex formation [50].

Mdm2 pathway
Mouse double minute 2 homolog (Mdm2) plays an 
important role along with p53 in cancer. In hypoxic con-
ditions binding of p53 with HIF-1α enhances its deg-
radation through Mdm2 mediated ubiquitination and 

Fig. 3  Oxygen-dependent and independent regulatory pathways of HIF-1
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proteasomal degradation [50]. This degradation occurs in 
the cytoplasm and controlled by PTEN/PI3K/AKT path-
way [51]. Undoubtedly, loss of p53 in the tumor is associ-
ated with the enhanced level of HIF-1α expression [52].

Through HSP90
Many other minor pathways play a key role in regulat-
ing HIF-1α level. Heat shock protein 90 (HSP90) is a 
molecular chaperone which facilitates synthesis and fold-
ing of proteins. Direct interaction of HSP90 with HIF-1α 
enhances its dimerization with HIF-1β through confor-
mational changes [53]. Geldanamycin, an HSP90 inhibi-
tor enhances HIF-1α degradation even in cells lacking 
pVHL [54]. Mutations in P402/P534 sites of HIF-1α do not 
secure it from Geldanamycin-induced degradation.

HIF induced metabolic alterations
The functional gain of oncogenes and loss of function of 
tumor suppressor genes are the main characteristic of 
cancer cells [55]. This causes uncontrolled proliferation 
to form a solid mass. So in order to maintain energy level 
for dividing cells, a continuous supply of anabolic build-
ing blocks and energy carriers are established. Altera-
tions of metabolic pathways were added to the six cancer 
hallmarks by Hanahan and Weinberg [55]. These path-
ways contain up-regulation of glycolysis, mitochondrial 
biogenesis, lipid and amino acid metabolism, pentose 
phosphate pathway and macromolecule biosynthesis. 
Some of them are shown in Fig. 4.

In comparison with normal cells, cancer cells prior-
itize lactic acid production (anaerobic glycolysis) instead 
oxidative phosphorylation even in normoxic conditions 
also known as Warburg effect [56]. In later studies, it was 
observed that the dividing lymphocytes also use 90% of 
their glucose carbon to form lactate, which rules out the 
probability that anaerobic glycolysis is only associated 
with cancer cells [57]. HIF-1 and c-Myc are two major 
regulators of glycolytic enzymes such as hexokinase 
(HK2), phosphofructokinase (PFK1), triosephosphate 
isomerase (TPI1) and lactate dehydrogenase (LDHA) [20, 

58–60]. At a low level of HIF-1, the end product of gly-
colysis is converted to acetyl-CoA, which enters into the 
citric acid cycle. In TCA cycle, high-energy molecules, 
i.e. FAD and NADH are generated, which further pro-
duce a high number of ATPs through electron transport 
chain in mitochondria. Normal cells prefer anaerobic 
glycolysis only in the absence of oxygen. In comparison, 
cancer cells use only anaerobic glycolysis even in abun-
dance of oxygen [58, 61, 62]. As per the research findings, 
if glucose influx is high enough, only then the percent-
age of ATP generated from glycolysis goes above that 
produced from oxidative phosphorylation [63]. Pyruvate 
kinase an enzyme which converts phosphoenolpyruvate 
to pyruvate was recently reported as a regulator of War-
burg effect [64].

Another glycolytic enzyme responsible for regula-
tory metabolic pathways at enhanced HIF-1α expres-
sion is pyruvate kinase (PK). It encodes by two genes, 
PKLR and PKM2. PKM2 gene codes for two alternatively 
spliced transcripts, PKM1 and PKM2. PKM1 is primarily 
restricted to brain and muscles while PKM2 to fast pro-
liferating cells like cancer [65, 66]. Some glucose depleted 
cell cultures have been shown to stabilize HIF-1α by 
inhibiting PHDs through Pyruvate formed from lactate 
by lactate dehydrogenase [67]. Accumulation of lactate 
(10 mM) in cancer has been suggested to activate HIF-1 
and VEGF [68]. Pyruvate and oxaloacetate inactivate the 
PHDs, reversal of which requires ascorbate [69]. Thus 
there are at least two mechanisms to inactivate HIF 
hydroxylases, one is competition with 2-OG and second 
by oxidation.

TCA cycle is the second pathway after glycolysis in 
the metabolism of glucose. Pyruvate, the end product of 
glycolysis enter TCA cycle only via production of acetyl-
CoA. HIF-1α mediated upregulation of pyruvate dehy-
drogenase kinase reduce acetyl-CoA production through 
inactivation of pyruvate dehydrogenase enzyme by phos-
phorylation [70]. Production of NADH by conversion of 
lactate from pyruvate with the help of lactate dehydro-
genase accelerates glycolysis [71]. Another benefit taken 

Fig. 4  Metabolic targets of HIF-1 in cancer cells. GLUT: glucose transporter; G6P: glucose 6-phosphate; G6PD: glucose 6-phosphate dehydrogenase; 
F6P: fructose 6-phosphate; F2,6BP: fructose 2,6-bisphosphate; PFK: phosphofructokinase; F1,6BP: fructose 2,6-bisphosphate; Gly3P: glyceralde-
hyde 3-phosphate; TPI1: triosphosphate isomerase1; DHAP: dihydroxyacetone phosphate; Gly3PD: glyceraldehyde 3-phosphate dehydrogenase; 
1,3BPGly: 1,3-bisphosphoglycerate; PEP: phosphoenol pyruvate; PK: pyruvate kinase; LDHA: lactate dehydrogenase; PDH: pyruvate dehydrogenase; 
PDK1: pyruvate dehydrogenase kinase-1
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by cancer cells from enhanced production of lactate is 
that they secrete it in tumor microenvironment through 
MCT4 transporters to other cancer cells, who have not 
sufficient fuel supply, so to feed them energy.

Pentose phosphate pathway (PPP) is a major pathway 
for nucleotide biosynthesis through ribose 5-phosphate 
(R5P) intermediate. p53 plays a major role in control-
ling both the oxidative and non-oxidative arms of PPP 
pathway. TP53-induced glycolysis and apoptosis regula-
tor (TIGAR), a target of p53 regulate glycolysis by sup-
pressing the expression of phosphofructokinase-1 and by 
increasing substrate delivery to citric acid pathway [72]. 
Cancer cells lacking or mutated p53 lose their control 
to regulate PPP pathway and hence increases in glyco-
lytic efflux. Glyceraldehyde-3-phosphate dehydrogenase 
(GAPDH) plays a major role in the regulation of this 
pathway. Suppressive oxidative phosphorylation reduces 
NAD+/NADH ratio and hence GAPDH activity. Hence 
down-regulated GAPDH expression creates a boundary 
for lower glycolytic pathways, creating a high pressure of 
upper glycolytic substrates, which then enhance revers-
ible non-oxidative PPP pathway for nucleotide biosyn-
thesis [73]. Glucose 6-phosphate dehydrogenase (G6PD) 
is another important enzyme of PPP pathway which 
promotes cancer formation by providing NADH [74]. 
P53 tightly regulate this enzyme by preventing its active 
dimerization [75]. G6PD is a direct target of HIF-1 to 
transactivate it [76]. Surprisingly, G6PD and VEGF cross-
talk in cancer cells and are highly associated with angio-
genesis [77, 78].

Catabolism of glutamine is another key metabolic 
pathway for cancer cells. End products of glutaminoly-
sis serve as intermediates for TCA cycle. Like glycoly-
sis, glutaminolysis provides not only ATP but also some 
crucial precursors for cell proliferation [79–81]. C-Myc 
transactivates alanine–serine–cysteine (ASCT2) and 
system N (SN2) transporters for glutamine and up-reg-
ulates glutaminase (GLS1) expression [82]. The high rate 
of lactate and alanine excretion per mole of glutamine, 
like the evident insufficiency of Warburg effect, has been 
seen in proliferating cells [78, 83]. Rather than regular 
discernment that normal cells use glutamine as a nitro-
gen source, glutamine digestion in tumor cells bring 
high intracellular nitrogen that must be discharged as 
alanine or ammonia. Glutaminase enzyme removes its 
amido group as ammonia. In glioblastoma cells, a large 
part of glutamine’s amino groups was likewise lost in 
α-ketoglutarate (α-KG) producing reactions (glutamate 
dehydrogenase and alanine aminotransferase) [84]. In 
this way, usage of glutamine as an anaplerotic precur-
sor and source of NADPH results in the discharge of 
large fraction of glutamine-derived carbon and nitro-
gen. A portion of secreted molecules may, therefore, be 

utilized as precursors for hepatic gluconeogenesis, hence 
giving more fuel for tumor digestion. At first look, these 
seem, by all accounts, to be side effects of metabolic inef-
ficiency. However, they may actually give a logical and 
specialized metabolism that empower cell growth and 
metabolism. In this way, HIF-1α alter a number of meta-
bolic pathways that play their role in cancer by providing 
energy to the cell for proliferation, growth, and survival. 
Targeting specific substrates of these pathways may help 
to control cancer progression.

Conclusions
Both HIF-1 and metabolic pathways participate in can-
cer progression by giving an enhanced supply of energy 
(metabolic pathways) and sufficient oxygen (HIF-1). A 
sequence of signaling cascades is involved by these two 
factors to survive cancer cells through the harsh environ-
ment and immune surveillance. Both the pathways are 
up-regulated in cancer. Warburg effect, which is a char-
acteristic of altered glycolytic pathways in cancer, is also 
seen in dividing lymphocytes and embryonic stem cells. 
HIF-1, a mark of the hypoxic condition is also seemed 
to be regulated in an oxygen-independent manner. This 
complex regulation contributes to the propagation of 
cancer through multiple pathways.

Future perspectives
The involvement of HIF in cancer progression directs our 
intention to discover anticancer drugs which inhibit HIF-1 
expression directly or indirectly by regulating HIF-1α 
mRNA, HIF-1 α protein translation, HIF-1α protein deg-
radation, HIF-1α and HIF-1β subunit interactions and 
HIF-1α DNA binding activity. Numerous studies focused 
on cancer, entail discovery of drugs which are synthetic in 
nature. A number of studies are reported to compile mode 
of action of these anticancer drugs in contrast with the 
HIF-1 regulation [20, 85–91]. However, even after exten-
sive research, there is a gap to target cancer with a single 
molecule because of multiple survival pathways, different 
infected organs and huge side effects of synthetic drugs. 
From last decade, researchers have identified some natu-
ral plant compounds, i.e. vinca alkaloids, taxanes, camp-
tothecins [92] which have fewer side effects than synthetic 
ones. Recently, a new natural compound sulforaphane 
was identified, which eliminates cancer stem cells in many 
cancer types [93–95]. Multiple survival pathways make 
trouble for anticancer drug discovery. Some substrates 
which are common for multiple responsible pathways for 
cancer may help to target it with a novel universal drug in 
future. This requires extensive study of signaling cascades 
and its regulation on each step.
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