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TGF‑β in pancreatic cancer initiation 
and progression: two sides of the same coin
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Abstract 

Pancreatic cancer is highly lethal malignant tumor with characterised rapid progression, invasiveness and resistance 
to radiochemotherapy. Transforming growth factor-β (TGF-β) signaling plays a dual role in both pro-tumorigenic 
and tumor suppressive of pancreatic cancer, depending on tumor stage and microenvironment. TGF-β signaling 
components alteration are common in pancreatic cancer, and its leading role in tumor formation and metastases has 
received increased attention. Many therapies have investigated to target TGF-β signaling in the preclinical and clinical 
setting. In this review, we highlight the dual roles of TGF-β and touch upon the perspectives on therapeutic target of 
TGF-β signaling in pancreatic cancer.
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Background
Pancreatic cancer is the fifth leading cause of death by 
cancer in the world [1]. The major histological subtype 
is pancreatic ductal adenocarcinoma, which comprises 
90% of all pancreatic cancers. Pancreatic cancer is highly 
aggressive malignancy with an increasing incidence, 
which features rapid progression, invasiveness and resist-
ance to radiochemotherapy [2]. At present the 5-year 
survival for pancreatic cancer is only 6% and the median 
survival from diagnosis is about 6  months [3]. Moreo-
ver, pancreatic cancer is expected to rise to the second 
leading cause of cancer-associated mortality by 2030 
according to incidence’s prediction [4]. Current treat-
ment choices available for pancreatic cancer show no 
significant improvement in overcoming the invasion and 
metastasis in the recent decades [5]. The key to improv-
ing is to control their local invasion, and distant metas-
tasis, and these features underscore the pressing need to 
develop new therapeutic strategies specifically [6].

Transforming growth factor-β (TGF-β) plays an 
important role in regulating numerous normal cellular, 

physiological, and developmental processes. More evi-
dence is emerging that TGF-β has a potential influence 
on the tumorigenic process. Deregulation of TGF-β 
signaling is involved in the pathophysiology of pancre-
atic cancer [7]. The insensitivity to growth inhibitory 
pathways is one of the hallmarks of cancer. Cancer genes 
consist of oncogenes and tumor-suppressor genes, but a 
growing number of them play a dual role and defy these 
categories. TGF-β signaling is one of the 12 core signal-
ing pathways involved in pancreatic cancer. Mutation in 
at least one of the TGF-β signaling genes occurs in 100% 
of the pancreatic cancer. The action of TGF-β in pan-
creatic cancer is now attracting considerable attention. 
The role of TGF-β during pancreatic cancer initiation 
and progression is complex and somewhat paradoxical. 
TGF-β plays a tumor suppressor in early-stage pancreatic 
cancer by promoting apoptosis and inhibiting epithelial 
cell cycle progression, but plays a tumor promoter in late-
stage by genomic instability, neoangiogenesis, immune 
evasion, cell motility, and metastasis [8].

In this review, we discuss recent insights into the regu-
lation of TGF-β signaling and focus more on dual roles 
of TGF-β in pancreatic cancer. We also highlight knowl-
edge on TGF-β signaling in cancer stem cells and tumor 
microenvironment of pancreatic cancer. We finally touch 
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upon the perspectives on therapeutic target of TGF-β 
signaling in pancreatic cancer.

TGF‑β signaling pathways
Recently, researchers are doing wide studies on the 
TGF-β signaling pathways. Three isoforms endow with 
the TGF-β of mammals, namely TGF-β1, TGF-β2, and 
TGF-β3 [9]. Each TGF-β is differentially expressed and 
activated during development and upon various cellu-
lar stresses [10]. Of these, TGF-β1 is the most abundant 
isoform in humans. In general, TGF-β1 expression is 
elevated by signals that promote cell growth and prolif-
eration, whereas TGF-β2 and TGF-β3 are induced by dif-
ferentiation and growth arrest signals. TGF-β signaling 
starts with activation and releasing of the TGFβ1. The 
TGF-β type I (TGFβRI) and type II receptors (TGFβRII) 
form heterotetrameric complexes at the cell surface and 
bind the dimeric ligands (Fig.  1). The functional recep-
tor complex regulates the activation of downstream 
Smad and non‐Smad pathways. In Smad pathway, the 
activated TGFβRI/TGFβRII phosphorylates the Smad2 
and Smad3 proteins, which modulate transcription in 
association with Smad4. The activated Smad complex 
translocates to the nucleus and binds to specific DNA 

sequence motifs called Smad-binding elements (SBEs). 
Upon binding, pSmad2/3-Smad4 complexes interact 
with additional transcriptional regulators to transactivate 
TGFβ-dependent genes (Fig. 1).

TGFβ-mediated tumor cell-autonomous and host-
tumor interactions in cancer progression are also con-
trolled by non-Smad pathways. Besides this ‘canonical’ 
signaling pathway, TGF-β signaling can also be trans-
duced through the non-canonical Smad-independent 
pathways, including phosphatidylinositol-3 kinase 
(PI3K)/protein kinase B (AKT) pathway, JNK/p38 path-
way, mitogen-activated protein kinase (MAPK) pathway, 
and Rho GTPases [11, 12] (Fig. 1). MED12, a transcrip-
tional MEDIATOR complex protein, is mutated in can-
cers and found to interfere with maturation of TGF-βRII 
in the Golgi [13, 14]. MED12 loss therefore leads to acti-
vation of TGB-β signaling [15]. Consequently, TGF-β 
signaling causes activation of MEK/ERK signaling and 
restores the reduced MAPK pathway activation by tyros-
ine kinase inhibitors [15].

TGF‑β alterations in pancreatic cancer
Pancreatic cancer is a genetic disease characterized by 
somatic mutations of multiple genes [16]. The expression 
of TGF-β obviously increases in pancreatic cancer, and 
overexpression of TGF-β is associate with venous inva-
sion, advanced tumor stages, progressive disease, shorter 
patient survival duration, and liver metastases [17–21]. 
Studies have shown that TGF-β signaling components 
often become genetically inactivated in pancreatic can-
cer and disabling TGF-β signaling may be a critical event 
in pancreatic cancer progression. Pancreatic cancer has 
detected loss of function or truncating mutations of 
TGFβRI, TGFβRII, Smad2, and Smad4 genes [22, 23]. 
Smad7, an inhibitory Smad family member, are proved 
overexpression and enhances tumorigenicity in human 
pancreatic cancer [24]. TGFβRII mutations are involved 
in 4–7% of pancreatic cancers [25–27], while mutations 
in TGFβRI are found in 2% of them [26–29]. Further-
more, 60% of pancreatic cancer is observed to lost 18q21 
chromosome that harbors the Smad4 gene [28, 30]. 
Smad4 acts as a central mediator in the TGF-β signaling, 
and its inactivation is relatively specific for pancreatic 
cancer [11, 31–34]. KRAS mutation, which is necessary 
for carcinogenesis and subsequent cancer maintenance, 
is found in approximately 90% of all pancreatic ductal 
adenocarcinomas [35]. But, KRAS mutation alone is not 
sufficient for malignant transformation [36]. The data 
from whole-genome sequencing analyses demonstrated 
that the common co-mutations detected in pancreatic 
cancer are SMAD4, KRAS, MED12, TP53, and CDKN2A 
[37]. Mutations in tumor suppressors, such as SMAD4, 
SMAD4, and CDKN2A, are required for carcinogenesis 

Fig. 1  Overview of the TGF-β signaling pathway. TGF-β signaling 
is transduced through two pathways of Smad (canonical) and non-
Smad (non-canonical). In Smad pathway, cell surface complexes of 
TGFβRI and TGFβRII phosphorylate upon TGF-β ligand binding and 
activate Smad2 and Smad3. Smad4 and activated Smad2/Smad3 
form a Smads complex, and then interacts with other transcription 
factors to regulate transcription of target genes. TGF-β signaling also 
activates non-Smad pathways, including PI3K-Akt, Ras-Erk, p38, JNK, 
and GTPases
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in addition KRAS mutation [38]. So, losing the normal 
signaling of Smad4 may promote KRAS-driven malig-
nant transformation of pancreatic duct cells [39].

TGF‑β in pancreatic cancer initiation 
and progression
TGF-β signaling function in pancreatic cancer appears 
complex and it is clearly evident that TGF-β acts in both 
an anti- and pro-tumorigenic activities. TGF-β exerts 
suppressive effects on tumor-promoting inflammation 
and on early stage of carcinogenesis, whereas during 
advance stage TGF-β acquires pro-oncogenic and pro-
metastatic roles, which are associated with observable 
increase in the locally secreted TGF-β level [40–42].

Tumor‑suppressor role of TGF‑β
TGF-β exhibits potent growth inhibitory effect in early 
stage of pancreatic cancer by promoting apoptosis and 
inhibiting cell cycle progression through G1 arrest [43]. 
Hezel et  al. [44] found that TGF-β acts in a common 
tumor suppressor pathway whose pharmacologic inacti-
vation promotes pancreatic cancer progression. TGF-β 
inhibits pancreatic cancer growth by decreasing VEGF 
and increasing thrombospondin-1, and perturbations 
of TGF-β signaling pathway during tumor progression 
relieves this inhibition [45]. Singh et al. [46] reported that 
TGF-β can inhibit pancreatic cancer cells growth in a 
p53-independent manner. Indeed, pancreatic cancer pro-
gression requires shutting down the tumor-suppressive 
effects of TGF-β signaling through mutation Smad tran-
scription factors (Smad2, Smad4) [41].

Tumor‑promoter role of TGF‑β
During advanced stage of carcinogenesis, TGF-β pro-
motes invasion and metastasis of pancreatic cancer. 
TGF-β can promote stromal ‘‘activation’’, and induce 
angiogenesis, while attenuating a productive anti-tumor 
immune response [47, 48]. TGF-β ligands are commonly 
overexpressed in pancreatic cancer, and can promote epi-
thelial-to-mesenchymal transition (EMT) and invasion in 
cell lines [49, 50]. TGF-β is one of the best known induc-
ers of EMT-inducing transcription factors such as Snail, 
Slug, Twist, or Zeb1 [43]. However, David et al. demon-
strate that TGF-β drives tumor suppression in pancre-
atic cancer cells by promoting EMT-linked remodeling 
of the transcription factor landscape, which converts 
TGFβ-induced Sox4 from an enforcer of tumorigenesis 
in the epithelial state into a promoter of apoptosis after 
EMT [51]. TGF-β induces an EMT generally considered 
as a pro-tumorigenic event. However, in TGFβ-sensitive 
pancreatic adenocarcinoma cells, EMT becomes lethal 
by converting TGFβ-induced Sox4 from an enforcer of 
tumorigenesis into a promoter of apoptosis [51] (Fig. 2). 

This study provides elegant mechanistic data to elucidate 
the dichotomous effects of TGF-β on pancreatic cancer 
cells [51] (Fig. 2).

TGF‑β actions in cancer stem cells
Cancer stem cells, a subpopulation of cancer cells with 
stem cell characteristics, are widely believed responsible 
for tumor carcinogenesis, progression and recurrence 
[52]. Recent studies have demonstrated that cancer stem 
cells stay in quiescent status and resist to traditional 
chemo-therapy and radio-therapy [53]. Researchers iso-
lated cancer stem cells from pancreatic cancer which 
were characterized with self-renewal, highly tumori-
genic, and more differentiated progenies [54, 55]. Cancer 
stem cells are the root of cancer which cannot be killed 
by traditional methods. So, developing novel drugs or 
approaches to radically eliminate the origin of tumor cells 
will bring great effect on cancer therapy. The signal path-
ways contributing to self-renew is an important research 
direction of exploring the targeting drugs. Research 
increasingly suggests that TGF-β plays an important role 
in the occurrence and development of pancreatic cancer 
stem cells. TGF-β signaling has been confirmed more 
widely role in the maintenance of pancreatic stem cells 
[56]. TGF-β signaling through Activin/Nodal activation 
is required for self-renewal and tumorigenicity of cancer 
stem cells in pancreatic cancer [57].

TGF‑β actions in tumor microenvironment
Pancreatic cancer displays greater prominent desmoplas-
tic stromal reaction, though the cancer itself is the epi-
thelial component [58]. The expression of TGF-β shows 
high level in pancreatic cancer tissue [59]. The microen-
vironment of pancreatic cancer features a pronounced 
stromal reaction composed of collagen-rich extracel-
lular matrix, pancreatic stellate cells, and inflammatory 
cells [60, 61]. Tumor microenvironment plays a signifi-
cant role in tumor initiation and development, and it can 
influence the interaction between pancreatic cancer cells 
and TGF-β [62]. Pancreatic stellate cells are responsible 
for excess extracellular matrix production in pancreatic 
cancer. TGF-β, as a potent activator, mediates the inter-
action between pancreatic stellate cells and cancer cells 
[63]. Growth factors produced and released by stroma 
to pancreatic cancer cells result with the reactive stroma 
[64]. These stromal elements in addition to TGF-β sign-
aling participation in autocrine and paracrine produce a 
modified extracellular matrix that can accelerates growth 
and metastasis of pancreatic cancer cells [64, 65]. In sum, 
TGF-β has the dual role at the microenvironment level 
of pancreatic cancer. TGF-β is initially utilized to pre-
vent occurrence and proliferation of pancreatic cancer in 
precancerous and early stage, but it is ultimately used to 
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promote pancreatic cancer progression in advanced stage 
of carcinogenesis.

Therapeutic perspectives
TGF-β signaling is considered a prominent treatment 
target for pancreatic cancer in oncology [66]. Several rel-
evant therapeutic approaches have been investigated in 
the preclinical and clinical setting and have shown effi-
cacy [40, 67–71]. Ligand, ligand-receptor binding and 
intracellular signal transduction are the three levels of the 
therapeutic strategies to disrupt TGF-β signaling, such 
as TGF-β antisense RNA molecules, TGF-β blocking 
antibodies, neutralizing antibodies to the TGFβRII, and 
TGFβRI kinase small molecule inhibitors [40, 69, 70].

Therapeutic strategy on the ligand level
RNA interference (RNAi) has been applied to restrain the 
synthesis of TGF-β by regulation of TGFβ-coding genes 
expression. The short interfering RNA (siRNA) and the 
micro interfering RNA (miRNA) are mainly two types 
of antisense RNA molecules. Trabedersen (AP 12009), a 
TGF-β2 antisense RNA molecule, significantly reduced 
tumor growth, angiogenesis and lymph node metastasis in 
a metastatic pancreatic cancer mouse model [68, 72, 73].

Therapeutic strategy on the ligand‑receptor interaction 
level
Natural TGF-β inhibitors, monoclonal blocking antibod-
ies and soluble TGF-β receptors are mainly compounds 
of intervention on the ligand–receptor level. A soluble 
TGFβRII protein that blocks cellular responsiveness to 
TGF-β1 could reduce pancreatic cancer cell metastasis by 
the expression decrease of metastasis-associated genes 
in an orthotopic mouse model [67, 71]. Murakami et al. 
[74] described the efficacy of SB431542, a TGFβRI inhibi-
tor, in a human pancreatic-cancer orthotopic mouse 
model by color-coded intravital imaging. The result of 
study demonstrated that color-coded intravital imaging 
readily detect the selective anti-stromal-cell targeting of 
SB431542.

Therapeutic strategy on the intracellular signaling level
Most of inhibitors on the intracellular signaling level tar-
get the kinase of TGF-β receptors. But others are pep-
tide aptamers targeting Smads interaction with TGF-β 
receptors. SD-208, an inhibitor of TGFβRI kinase, 
reduced pancreatic cancer growth and metastasis in vivo 
and reduced fibrosis in the tumor microenvironment 
[72, 75]. SD-093, a selective inhibitor of TGFβRI kinase, 

Fig. 2  The dual role of TGF-β in pancreatic cancer cell. (Left) TGFβ-mediated epithelial–mesenchymal transition (EMT) and apoptosis in Smad4-posi‑
tive pancreatic cancer cell. TGF-β signaling induces EMT by induction SNAIL and repression KLF5. Alternatively, TGF-β signaling induces apoptosis in 
KLF5 absence cell by SOX4 inducing transcription of pro-apoptotic genes. (Right) TGF-β promotes tumor progression in Smad4-negative pancreatic 
cancer cell. TGF-β signaling induces SOX4 induction mediated through Smad2/3, and then SOX4 and KLF5 cooperate for tumorigenesis
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strongly reduced the motility and invasiveness of the 
pancreatic cancer cells in  vitro [76, 77]. LY2109761, a 
dual inhibitor of TGFβRI/II kinase, significantly reduces 
the tumor burden, abdominal metastases, and improves 
survival of metastatic pancreatic cancer in a murine 
model [68]. Galunisertib (LY2157299), an inhibitor of 
TGFβRI kinase, has been demonstrated an acceptable 
tolerability and safety profile in Japanese patients with 
advanced pancreatic and lung cancers in a phase 1 clini-
cal study [78]. However, Oyanagi et al. [79] reported that 
galunisertib (LY2157299) can promote the invasion in 
collagen matrix of pancreatic carcinoma cells through 
hepatocyte growth factor produced by fibroblast. Gore 
et  al. [80] reported that combinatorial targeting of 
TGFβRI with LY2157299 and EGFR/HER2 with lapat-
inib suppresses lymphangiogenesis and metastasis in a 
syngeneic orthotopic pancreatic cancer model. There-
fore, under some pathological conditions, the inhibi-
tors TGF-β signaling may contribute to development of 
cancer [79]. To face the metastasis dissemination chal-
lenge of cancer patients, the therapeutic strategy of 
intervention TGF-β signaling has been approached over 
the years. The inhibitors of TGF-β signaling have been 
shown effective in a number of studies of pancreatic can-
cer patients. Yet, developmental work requires to further 
efforts in novel type of inhibitors,e.g. substrate-mimick-
ing drugs.

Conclusions
TGF-β signaling has kind of a dual role of promotion 
and inhibition in pancreatic cancer depending on differ-
ent cancer stage and microenvironment. The alteration 
of TGF-β signaling components in pancreatic cancer is 
common and pronounced, and its leading role in cancer 
formation and metastases is arousing more attention. 
TGF-β also conducts a pivotal role of caner stem cells and 
tumor microenvironment in pancreatic cancer. TGF-β 
signaling targeted therapies have been investigated in the 
preclinical and clinical setting and have shown efficacy in 
pancreatic cancer. This novel strategy may be lead to the 
identification of improved outcomes for lethal pancreatic 
cancer.
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