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new players join the team
Hailong Wang1*   and Xingzhi Xu1,2*

Abstract 

DNA double-strand breaks (DSBs) are the most deleterious type of DNA damage in cells arising from endogenous and 
exogenous attacks on the genomic DNA. Timely and properly repair of DSBs is important for genomic integrity and 
survival. MMEJ is an error-prone repair mechanism for DSBs, which relies on exposed microhomologous sequence 
flanking broken junction to fix DSBs in a Ku- and ligase IV-independent manner. Recently, significant progress has 
been made in MMEJ mechanism study. In this review, we will summarize its biochemical activities of several newly 
identified MMEJ factors and their biological significance.
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Background
Double-strand breaks (DSBs) are potentially lethal lesions 
that arise from endogenous and exogenous genotoxic 
agents [1, 2]. Unrepaired DSBs cause chromosome breaks 
and translocations that are associated with developmen-
tal defects, neurodegeneration, immunodeficiency, radi-
osensitivity, sterility, and cancer predisposition [3–5]. 
Non-homologous end joining (NHEJ) and homologous 
recombination (HR)-mediated DSB repair are two major 
pathways to fix DSBs [6, 7]. HR is generally considered to 
be an error-free mechanism because the identical sister 
chromatids are used as templates to repair DSBs when 
cells reside at the S and G2 phases. Ku-dependent clas-
sical non-homologous end joining (C-NHEJ) is active in 
all phases of the cell cycle, which can be high fidelity or 
associate with small alterations at junction since direct 
end ligation is catalyzed by DNA ligase IV [8–10]. In 
the absence of Ku protein or in C-NHEJ-deficient cells, 
resection machinery will expose extensive single strand 
DNA (ssDNA) which allows cells to use alternative end 
join (A-NHEJ) or HR as repair mechanism. A subset 

of A-NHEJ relies on microhomologous sequences on 
either side of the DSB, thus is named as microhomol-
ogy-mediated end joining (MMEJ) [10–12]. MMEJ is a 
mutagenic DSB repair mechanism, which always associ-
ates with deletions flanking the break sites and contrib-
utes to chromosome translocations and rearrangements. 
Recent study indicated that MMEJ is used with appreci-
able frequency even when HR is available [13]. It seems 
that MMEJ is a crucial DSB repair mechanism for HR-
defective tumors [14]. These raised the possibility that 
MMEJ may not just is a back-up repair mechanism. The 
molecular mechanism of MMEJ thus draws much atten-
tion in the field. Several important MMEJ factors have 
been identified recently [14–17]. Here, we will discuss 
biochemical properties and regulatory mechanism of 
these pivotal factors in MMEJ repair.

Basic mechanisms of MMEJ
As shown in Fig. 1, the proposed MMEJ model involves 
at least five steps: resection of the DSB ends, annealing of 
microhomologous region, removal of heterologous flaps, 
fill-in synthesis and ligation [17–21]. Resembling to HR-
mediated DSB repair, a certain degree of end resection 
is also needed for MMEJ. MMEJ and HR may share the 
initial end resection step in DSB repair [13]. HR requires 
extensive end resection to recruit Rad51 recombinase 
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and initiate homologous pairing while limited end resec-
tion is sufficient for exposing of microhomologous region 
and thus promoting MMEJ, Following end resection, the 
exposed microhomologous sequence will be annealed to 
form an intermediate with 3′-flap and gaps on both sides 
of the DSB. So far, we still do not quite clear the exactly 
mechanism by which microhomologous sequences move 
close and perform annealing. It may start with a thermo-
dynamically-driven fashion and be regulated with some 
proteins factors or enzymes [16, 22]. After microhomolo-
gous annealing, the no-homologous 3′ tail (3′-heterolo-
gous flaps) must be removed to allow DNA polymerase 
to fill-in the gap and stabilize the annealed intermediate. 
Usually, this step is executed by substrate structure spe-
cific endonuclease, such as XPF/ERCC1 in mammals. The 
final step of MMEJ is DNA ligase III/I (Lig3/Lig1) medi-
ated break end ligation. Obviously, after MMEJ-mediated 
repair, a significant part of sequence was removed from 

original DNA. Therefore, in nature, MMEJ is an error-
prone DSB repair pathway (Fig. 1).

Resection factors: mechanisms are still missing
In principle, both HR and MMEJ are initiated by 5′–3′ 
resection of DSB ends to expose ssDNA overhangs. 
While HR needs a long 3′-ssDNA tail to invade homolo-
gous template, MMEJ requires exposure of two microho-
mologous regions to anneal each other. Studies in yeast 
and mammalian cells indicated that DSB end resection 
may be carried out in two steps: Mre11 complex and 
Sae2/CtIP remove covalent adducts, such as bound pro-
teins and hairpin-capped ends and initiate end resec-
tion. Sgs1/Exo1 and DNA2 in yeast or BLM (human 
homologue of Sgs1) and Exo1 in human cells take over 
to produce extended 3′-ssDNA tail [23–28]. It has been 
demonstrated that both Mre11 and CtIP are important 
for MMEJ. However, depletion of long-range resection 

Fig. 1  Model for MMEJ mediated DSBs repair. The first step of MMEJ is 5′–3′ end resection to expose microhomologous region, which can then 
anneal each other to form an intermediate with 3′-flap and gaps. The following step is flap removal and gap filling. After that, MMEJ is completed by 
ligation
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factors including BLM/Exo1 in mammalian cells and 
Sgs1/Exo1 in yeast significantly increased frequency 
of MMEJ when the microhomologous regions close to 
the break site [13, 16, 29]. Possibly, down-regulation of 
long-range end resection may cause accumulation of 
short 3’tail containing DSBs which cannot be channeled 
to HR repair but is sufficient for exposing microho-
mologous region nearby DSB site and mediating MMEJ. 
However, we cannot rule out other possibilities yet. For 
example, some resection factors may harbor multiple 
functions. Further, the contradictory results have been 
obtained in studies of BRCA1, which also is a classical 
DSB end resection factor. BRCA1 closely associates with 
MRN complex and CtIP. CDK phosphorylation-medi-
ated interaction between CtIP and BRCA1 enhances the 
speed of CtIP-mediated end resection [30]. Cell cycle 
dependent BRCA1-MRN-CtIP complex formation has 
been reported to play a critical role in DSB end resec-
tion and HR-mediated DSB repair in mammalian cells 
[31]. Early work in DT40 (chicken) B cells suggested that 
MMEJ is not affected by BRCA1 [32]. While, using dif-
ferent human cells, a recent study indicated BRCA1 
may work downstream of Mre11 and CtIP to suppress 
MMEJ [29]. However, in MEFs cells whose telomeres 
were artificially uncapped, Madalena Tarsounas’s group 
demonstrated that CtIP and BRCA1 promote MMEJ at 
uncapped telomeres [33]. Obviously, more accurate sys-
tems are needed to clarify the underlining mechanism for 
the functional relationship between resection factors and 
MMEJ.

RPA: an old soldier joined new team
Replication protein A (RPA) is a conserved ssDNA 
binding protein in eukaryotic cells. RPA is a stable het-
erotrimer composed of three tightly associated subu-
nits, namely, RPA70, RPA32, and RPA14 encoded by 
RFA1, RFA2 and RFA3 respectively in Saccharomyces 
cerevisiae. RPA is involved in almost all aspects of cel-
lular DNA metabolism such as DNA replication, recom-
bination, DNA damage checkpoints, and repair of many 
types of DNA damage. RPA has been reported to bind 
to ssDNA with much higher affinity than double strand 
DNA (dsDNA) or RNA. In vitro, it also harbors dsDNA 
helix-unwinding activity [34–38]. In budding yeast and 
human cells, RPA is an important component of DSB end 
resection machinery in previously described two-step 
resection model. It works together with Sgs1/DNA2 in 
yeast or BLM/DNA2 in human cells to promote exten-
sive end resection [23]. After resection, RPA immedi-
ately recognizes and coats newly produced 3′-ssDNA 
tails by its ssDNA binding activity to stabilize ssDNA 
and recruit Rad51 recombinase. Rad51 recruitment was 
thought as a crucial step for HR repair initiation [39, 

40]. Using a powerful genetic screen system, Deng et al. 
recently found that depletion of extensive resection fac-
tors promotes MMEJ close to the DSB site. The strains 
with exo1Δ sgs1Δ background show much higher proxi-
mal MMEJ frequency than wild type [16]. Actually, Lan 
et al. got similar results in mammalian cell using a well-
designed MMEJ and HR competition repair substrate 
[13], indicating that long distance resection may sup-
press proximal MMEJ by switching repair pathway to 
HR. However, using hypomorphic mutant alleles of RFA1 
with point mutations in the DNA-binding domain, Deng 
et  al. showed that MMEJ can be dramatically increased 
without obviously decreased end resection and HR effi-
ciency. In vitro, they also found that RPA mutants were 
defective in ssDNA binding and secondary structure 
removing. They thus concluded that RPA is a critical neg-
ative regulator of MMEJ. Independent of its end resection 
and HR function, ssDNA binding and dsDNA unwinding 
activities of RPA help it to inhibit MMEJ by preventing 
spontaneous annealing of microhomogous sequence 
flanking DSB site (Fig. 2). For the first time, Deng et al. 
revealed a novel function of RPA in MMEJ repair regu-
lation [16]. Meantime, their data also help us recognize 
that DSB end resection may not be a rate limiting step for 
MMEJ although this mechanism always needs end resec-
tion to expose microhomologous region. We thus believe 
that other important regulatory mechanism must be 
existed to tightly control this error-prone repair mecha-
nism and protect genome stability.

Polθ: new focus
DNA polymerase theta (Polθ, also known as PolQ, 
encoded by POLQ) is a unique A-family DNA polymer-
ase. It contains a helicase-like domain at its N termi-
nus, which is separated from the C-terminal polymerase 
domain by a long, unstructured central region (Fig.  3). 
The helicase-like domain of Polθ is conserved among 
higher organisms. It shares more than 50% sequence 
similarity with human HELQ (also known as HEL308), 
which possesses dsDNA unwinding activity in  vitro. 
However, up to now, no any strand replacement activ-
ity was identified in the helicase-like domain of Polθ 
either in vivo or in vitro although it showed high level of 
ssDNA-dependent ATPase activity [41]. The C-terminal 
polymerase domain of Polθ exhibits highly promiscuous 
enzyme activity. It exhibits low-fidelity DNA synthesis, 
translesion synthesis and lyase activity. Polθ also can pro-
mote extension of ssDNA and partial ssDNA substrates 
in an error-prone manner [42–45]. Since it was identified 
as the product of the POLQ gene more than 25 years ago, 
Polθ has been reported to get involved in distinct DNA 
damage repair pathways in different organisms. However, 
how its enzymatic activity link to its cellular functions still 
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not well understood [46–50]. Recently, several reports 
emphasized a central role of Polθ in MMEJ-mediated 
DSB repair in higher organisms. Early studies in Drosoph-
ila indicated that Polθ promotes I-sceI-induced MMEJ, 
whereas polq-1 was shown to be required for MMEJ in 
response to replication-fork collapse at G quadruplexes 
in C. elegans [51, 52]. Recent studies in mice indicated 
that Polθ is associated with MMEJ-mediated fusions of 
dysfunctional telomeres and chromosomal translocation. 
Polθ was recruited to DNA damage sites induced by laser 
micro-irradiation in a PARP-1 dependent manner and 
promoted MMEJ in endonuclease-mediated reporter sys-
tem [15]. Biochemical study revealed that purified human 
Polθ protein possesses unique MMEJ promotion activity 
[53]. Polθ promotes DNA synapse formation, microho-
mology annealing and the following synapse stabiliza-
tion by catalyzing overhang extension, then stimulating 
MMEJ of DNA substrate containing 3′ ssDNA overhang 
with more than 2  bp of homology [53] The conserved 
insertion loop2 domain (L2 domain, Fig. 3) is important 
for MMEJ activity of Polθ both in  vitro and in  vivo. L2 

domain may promote oligomerization of Polθ protein, 
then driving DNA end synapsis and MMEJ [53]. There 
are no reports to show whether the helicase-like and 
central domain of Polθ also directly joined in the MMEJ. 
However, Ceccaldi et al. identified a Rad51 binding motif 
in the central part of Polθ and demonstrated that ATPase 
activity and Rad51 binding capacity may help Polθ to 
block RAD51 nucleofilament assembly and HR activity, 
thus channelling DSB repair to MMEJ pathway. This sug-
gests that indirect regulatory function of Polθ may also 
contribute to MMEJ activity.

Concluding remarks
Increasing evidences suggest that MMEJ may not just 
be a back-up DSB repair mechanism. MMEJ occurs 
even when HR and NHEJ are intact and is essential for 
HR-deficient cancer cells. Therefore, it is well deserved 
to fully decipher the molecular mechanisms of MMEJ 
and its unique function in DSB repair. So far, several key 
factors identified in both MMEJ repair and regulation 
have overlapping functions with other repair pathways. 

Fig. 2  Functions of RPA and its ssDNA binding defect mutant. Up arrow indicating function is efficient. Down arrow indicating function is deficient
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Discovery of specific enzymes or protein factors that 
solely work in MMEJ repair pathway will help us under-
stand the detail mechanism of MMEJ and its unique role 
in DSB repair and be instrumental for MMEJ-targeted 
drug design.
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