
Tang et al. Cell Biosci  (2016) 6:32 
DOI 10.1186/s13578-016-0100-z

REVIEW

Circulating tumor DNA in hepatocellular 
carcinoma: trends and challenges
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Abstract 

Molecular characterization of individual patients’ tumor cells is becoming increasingly important in offering effective 
treatment for patients in clinical practice. Recent advances in the field have indicated that circulating tumor DNA 
(ctDNA) has huge potential to serve as a biomarker for early detection and precision treatment as well as prognosis of 
hepatocellular carcinoma (HCC). As ctDNA in HCC patients harbors the molecular characteristics of HCC tumor cells, 
ctDNA analysis in the blood may be sufficient for convenient, non-invasive and accurate detection, providing infor‑
mation for HCC diagnosis, treatment and prognosis. In this review, we will summarize and discuss current trends and 
challenges of ctDNA application in HCC.
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Background
Liver cancer, with 782,500 new cases and 745,500 deaths 
occurring worldwide in 2012, is the second leading cause 
of global cancer death, with China alone accounting for 
about 50 % of the total number of cases and deaths [1]. 
It was estimated that 466,100 new cases and 422,100 
deaths would occur in China in 2015, accounting for 
about 15 % of all cancer deaths in China [2]. Primary liver 
cancer includes three histologic subtypes, hepatocellular 
carcinoma (HCC), cholangiocarcinoma and combined 
hepatocellular and cholangiocarcinoma. HCC, which is 
the major histological subtype of primary liver cancers, 
accounts for between 85 and 90 % of all cases worldwide 
[3]. A key to effective prevention and treatment of HCC 
is early diagnosis of HCC.

The diagnosis of HCC is increasingly made with the 
use of noninvasive imaging tests such as ultrasonography, 
computed tomography (CT) and magnetic resonance 
tomography (MRI), along with use of an alpha-fetopro-
tein (AFP) level, a predictive biomarker for HCC. Imag-
ing tests can only determine HCC with confidence to 

some degree when nodules, benign or malignant, grow 
to at least 1 cm in size. Invasive biopsy is considered for 
diagnosis of HCC when imaging tests are less assuring. In 
either case, patients may by then have malignant tumors 
in an advanced stage, with limited treatment options and 
poor prognosis. Meanwhile, it is recognized that not all 
HCC can produce a higher level of AFP [4]. In fact, if 
early-stage HCC, currently difficult to diagnose and char-
acterize, can be detected, it can be effectively treated by 
surgical resection with an 5-year survival rate of 90 % [3]. 
In addition to surgical resection, several options, includ-
ing liver transplantation, transarterial chemoemboliza-
tion (TACE), radiofrequency ablation, high-intensity 
focused ultrasound and targeted molecular therapy (e.g. 
sorafenib treatment), are currently used in the clinic to 
treat HCC. The effectiveness of these treatments can be 
significantly improved with early detection and conveni-
ent monitoring for possible HCC relapse following treat-
ment. Thus clinician and scientists in the field have been 
actively developing sensitive, reliable and convenient 
methods for surveillance and early detection of HCC and 
post-treatment monitoring of HCC relapse.

Hepatocellular tumorigenesis is a slow, progressive and 
complex process due to the accumulation of genetic and 
epigenetic alterations in hepatocytes whose activities 
intimately interact with surrounding microenvironment 
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[5]. Despite serious challenges in detecting these genetic 
and epigenetic alterations, one method that holds great 
promise is the detection of circulating tumor DNA 
(ctDNA) in the peripheral blood of HCC patients. This 
method, along with circulating tumor cells, is termed 
“liquid biopsy”. By decoding the information of nucleic 
acids from patients’ serum or plasma, not only can clini-
cians make accurate diagnosis and proper treatment on 
HCC patients, but the scientists can also use this “liquid 
biopsy” technology to better understand the biology of 
HCC and help clinicians to design cancer therapy.

ctDNA of HCC
Among varieties of circulating cell-free DNA (cfDNA), 
ctDNA is released into circulation specifically from 
tumor cells that undergo metabolic secretion, apopto-
sis or necrosis (Fig.  1). cfDNA is defined as extracel-
lular DNA present in plasma or serum samples. It can 
be detected not only in patients suffering from cancer 
or other diseases but also in healthy individuals. Unlike 
normal cfDNA, ctDNA carries tumor-specific genetic 
or epigenetic alterations, such as point mutations, copy 
number variations, chromosomal rearrangements, DNA 
methylation patterns, etc. Thus, a minimally invasive 
examination of ctDNA with a small amount of peripheral 
blood from patients could reveal genetic and epigenetic 
alterations related to specific cancer and its metastatic 
state, offering a unique opportunity for serially monitor-
ing tumor genomes in a non-invasive, convenient and 
accurate manner.

Since 2006, cancer genome sequencing has delivered 
robust and comprehensive tumor genome informa-
tion, which provides a fertile ground for the develop-
ment of ctDNA testing. Along with the advancement 
of sequencing technology, huge effort and invest-
ment are being taken worldwide in putting this “liquid 
biopsy” into clinical practice. Potential applications of 
ctDNA testing in HCC patients may include: (a) early 
detection of cancer; (b) monitoring of tumor hetero-
geneity and metastasis; (c) identification of therapeutic 
targets; (d) real-time evaluation of treatment response 
and tumor relapse; and (e) real-time assessment of evo-
lution of drug resistance (Fig.  2). These applications 
require detection of genetic and epigenetic alterations 
in ctDNA specifically associated with different stages 
of HCC (e.g. hepatocellular dysplasia, early HCC, pro-
gressed HCC and metastatic HCC) and with different 
treatment options or stages of treatment. However, pro-
gress is limited in exploring the clinical utility of ctDNA 
in cancer diagnosis, treatment and prognosis, particu-
larly in HCC, due to serious technological obstacles in 
detection and analysis of ctDNA.

Detection and analysis of ctDNA in HCC patients
The pioneer work by Mandel and Metais welcomed the 
discovery of cfDNA in 1948 [6]. But during the following 
two decades, we witnessed the futility in this field. Until 
1977, by comparing the blood samples between 173 can-
cer patients and 53 healthy individuals using a radioim-
munoassay that can detect DNA in nanogram, Leon et al. 
found the cancer patients had a relative higher level of 
cfDNA than healthy controls and an increased level after 
radiation therapy [7]. This finding exhibited the poten-
tial of cfDNA as a cancer biomarker, which can also be 
applied to patients with HCC. In 1989, ctDNA was noted 
to be a fraction of cfDNA in the blood [8]. Two groups 
recently found that the cfDNA levels in patients with 
hepatitis C virus (HCV)-related HCC were correlated 
with the overall survival and extrahepatic recurrence in 
distant organs after curative hepatectomy [9, 10]. In addi-
tion, several studies have examined global alterations of 
cfDNA, such as DNA methylation alterations, micros-
atellite alterations, point mutations, chromosomal rear-
rangements and viral DNA integration (Table  1), some 
of which have genetic and epigenetic alteration patterns 
similar to those detected in primary tumors. Among a 
pool of cfDNA, ctDNA likely harbors these alterations, 
demonstrating the potential utility of ctDNA in clinical 
applications.

Methylation alterations
Methylation alterations occur on many genes associated 
with initiation and progression of HCC. Several studies 
have revealed the alterations of DNA methylation in HCC 
patients’ tumor tissues including the aberrant methyla-
tion of the promoter region of Glutathione S-transferase 
P1 (GSTP1) [11, 12] and the cyclin-dependent kinase 
inhibitor p15 [13] and p16 [14]. Efforts have been made 
to detect such methylation alterations of cfDNA in HCC 
patients’ blood. The successful detection of hypermethyl-
ated GSTP1 [15], p15 [13] and p16 [16] in cfDNA from 
HCC patients may allow the development of a blood-
based assay for HCC diagnosis. Methylation alterations of 
RAS association domain family 1A (RASSF1A) were also 
detected in cfDNA of HCC patients and account for 40 % 
cases of matched plasma [17]. Furthermore, hepatitis B 
virus (HBV) carriers undergoing surveillance and subse-
quently developing HCC had significantly higher levels of 
RASSF1A from the time of enrollment to cancer diagno-
sis [18]. Another gene with methylation abnormality that 
has been detected in HCC patients is long interspersed 
nucleotide elements (LINE-1) [19]. The progression and 
invasiveness of HCC are highly associated with elevated 
hypomethylated LINE-1. These lines of evidence indicate 
that a combined assessment of circulating methylated 
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DNA may yield a promising tool in HCC diagnosis and 
management.

Methylation-based assays on ctDNA may offer the best 
hope for early detection, as some of methylation changes 
are mechanistically early events in tumor progression. 
Unlike genetic alterations such as mutations and deletions, 
epigenetic changes are also potentially reversible [20] and 
can therefore be targeted for prevention of tumor ini-
tiation and progression. Compared with the detection of 

cfDNA with microsatellite instability as described below, 
the methylation-based approach is more sensitive and 
generates fewer false negatives [16]. In contrast, muta-
tions occur in a large number and in varied frequencies, 
and many of highly frequent mutations are associated with 
different cancers. This complicates the use of mutations 
for HCC diagnosis by ctDNA analysis. It appears that the 
methylation approach is better suited at present for HCC 
screening using plasma or serum samples.

Fig. 1  ctDNA release and extraction in HCC patients. ctDNA is released from HCC cells undergoing apoptosis or necrosis and can be extracted from 
a blood sample. Genetic and epigenetic aberrations in ctDNA can be detected and quantified. These genetic alterations include mutations, rear‑
rangements, methylation, microsatellite alteration and integrated viral DNA. The detection of these alterations in the background of “normal” cfDNA 
molecules in principle offers a higher diagnostic specificity in comparison with only quantitative measurement of total cfDNA alone
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Microsatellite alterations
Highly polymorphic DNA repeat regions, termed micro-
satellites, are commonly present in eukaryotic genomes. 
Loss and length alteration in microsatellites are frequent 
in a variety of cancers, providing a set of markers suit-
able for diagnostic detection. Since the discovery of 
tumor-derived microsatellite alterations in cfDNA [21, 
22], interest in uncovering these alterations of cfDNA 
is growing. The comparative genomic hybridization 
(CGH) technique has enabled scientists to define some 

microsatellite alterations in HCC such as chromosome 
8p, 17p and 19p deletions [23, 24], and the loss on 8p and 
19p might contribute to HCC metastasis [23, 25].

In the early 20th century, a microsatellite marker screen 
was performed in primary tumor and serum sample in 21 
cases of HCC patients, 76.2 percent of which harbor at 
least one allelic imbalance [26], providing early evidence 
for clinical utility of this approach. A combined set of 
microsatellite loci gives a higher probability of detect-
ing a risk population. Two microsatellite markers on 

Fig. 2  Monitoring response and relapse of HCC patients with targeted therapies by ctDNA detection. From early stage lesion to late phase of car‑
cinogenesis, an excess of apoptotic cell death, as occurs in large and rapidly proliferating HCC tumors (solid line), can lead to an increase of ctDNA 
levels in plasma (dash line). Moreover, the levels of ctDNA correlate well with HCC progression as well as various therapy including surgical resection, 
local ablation, TACE and targeted molecular therapy

Table 1  Detection of cfDNA and its alterations in HCC patients

* Includes all articles published to date that assess cfDNA detection and alterations of cfDNA in HCC patients, which were summarized and clarified the significance

Forms Gene Tumor cfDNA Diagnostic/
prognostic

Notes

Methylation RASSF1A [17] (combined AFP) 59/63 (93 %) 12/22 (60 %) √ √ Associated with HCC

GSTP1 [15] 23/26 (88.5 %) 14/23 (61 %) √ √ Associated with HCC

p15 promoter [13] 16/25 (64 %) 4/16 (25 %) √ √  p15/p16 methylation in the plasma/
serum was highly associated with 
HCC

p16 [16] 16/22 (73 %) 13/16 (81 %) √ √

Microsatellite alterations D8S258 and D8S264 [25] Sensitivity (51.9 %)
Specificity (77.5 %)

NA √ Associated with HCC metastasis

Mutation Ser-249 p53 [34] NA 74/186 (39.8 %) √ √ Aflatoxin-associated mutation and 
chronic infection with HBV, multipli‑
cative associated with HCC

DNA integrity LINE-1 hypomethylation [19] NA NA √ √ Associated with HCC

Viral DNA HBV DNA [39] NA NA √ NA Associated with TAE and lipiodol 
retention

/ Inflammatory cytokine genes [9] NA NA NA √ Amount higher in HCV-related HCCs 
than in HCV carriers
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chromosome 8p D8S258 and D8S264 have been deter-
mined as contributors to HCC metastasis by comparing 
primary tumors and matched metastases [23]. Interest-
ingly, only an allelic imbalance at D8S258 was found in 
the cfDNA of HCC patients, and combination of both the 
allelic imbalance and a higher level of cfDNA is well cor-
related with the decrease in disease-free and overall sur-
vival rates [24].

Point mutations
Tumor progression involves the accumulation of both 
inactivation of tumor suppressor genes and activation 
of proto-oncogenes, for instance, TP53 and CTNNB1 
in HCC. Ser249 of TP53 is the most reported muta-
tion hotspot in HCC patients, and mutation of this site 
leads to the deficiency in its specific DNA binding abil-
ity [27–32]. Recently, TP53 Ser249 mutant in plasma has 
been reported to be highly associated with cirrhosis and 
HCC in China and Africa [33–35], a region with high 
HBV prevalence and high Aflatoxin B1 exposure. Inter-
estingly, this mutation was also detected in noncancer-
ous hepatic tissues of HCC [36], in plasma DNA of a few 
healthy individuals and in patients with relatively more 
severe cirrhosis [34], indicating this mutation might be 
involved in early development of HCC and accumulate 
during HCC progression. However, since this mutation, 
like many other mutations, occurs in other types of can-
cers, it cannot be excluded that ctDNA harboring this 
mutation is released from other tissues.

Chromosomal rearrangements
Genomic sequencing has revealed many recurrent chro-
mosomal rearrangements including deletions, insertions, 
amplifications, translocations and more complex rear-
rangements in HCC. Detection of such chromosomal 
rearrangements in circulating tumor cell requires highly 
sensitive PCR. To date, rearrangement detection assay 
in plasma has just succeeded in a small population of 
patients, mostly in hematological malignancies. Never-
theless, whole genome sequencing of ctDNA provides 
the opportunity to identify chromosomal rearrange-
ments or copy number changes in HCC patients, and 
ultimately offer a reliable and robust method for HCC 
detection. In addition, some non-coding DNA, such as 
LINE-1 which distributes throughout the genome, signif-
icantly increases in the serum of patients with HCC, in a 
hypomethylated form [19], providing a target for ctDNA 
detection. Several other DNA abnormalities have also 
been investigated. For instance, the presence of longer 
relative telomere length (RTL) predicts an elevated risk 
for non-cirrhotic HCC patients with HBV [37] while 
telomere shortening occurs in cirrhosis samples. This 

difference could be used as a biomarker in blood to dis-
tinguish stages of severe liver diseases.

Viral DNA
Virus infection is the major contribution to severe liver 
diseases. HBV and HCV are important etiological factors 
for HCC, and the combined fraction of cases attributable 
to virus infection is estimated to 75 % of all HCC cases. 
The specific virus DNA level may potentially be used as 
molecular biomarkers of disease activity. High level of 
serum HBV DNA has a strong association with the inci-
dence of HCC. Interestingly, the HBV DNA-based pre-
diction is independent of the level of hepatitis B surface 
antigen or alanine aminotransferase level, and the pres-
ence of cirrhosis [38], making it a sensitive and reliable 
tool for monitoring the disease. The detection of circu-
lating HBV DNA is also applied for patients who under-
went transcatheter arterial embolization (TAE). TAE is 
an important palliative treatment for HCC patients who 
are poor candidates for surgery or percutaneous ablative 
therapy. A recent study showed that the elevated plasma 
HBV DNA persistently correlates with lipiodol reten-
tion, but not with age or tumor size, making it an early 
indicator to assess the success or failure of TAE [39]. 
In addition, some conservative mutations in HBV pro-
vide new targets in plasma detection, such as a double 
1762T/1764A mutation in HBV genome in HCC tumors 
from Qidong area, China [40].

Challenges in clinical utility of ctDNA in HCC
It has been demonstrated that the concentration of 
ctDNA in the plasma increased along with stages of sev-
eral human malignancies [41], providing potential utility 
of ctDNA in diagnosing advanced stages of cancer and 
monitoring cancer relapse following cancer treatment, 
especially for breast cancer and lung cancer patients [42, 
43]. In a recent study, ctDNA-based detection preceded 
clinical detection of metastasis for 86 % patients with an 
average lead time of 11  months following primary sur-
gery for primary breast cancer patients [44]. However, 
it remains a challenge in applying the ctDNA technol-
ogy in early detection of cancer including HCC. Even for 
advanced stage of HCC, this “liquid biopsy” methodol-
ogy is yet to be established for clinical applications largely 
due to low level of ctDNA, poorly characterized genetic 
and epigenetic alterations in HCC patients and high level 
of tumor heterogeneity of HCC.

Low levels of ctDNA
Over past decades, many methodologies, such as Sanger 
sequencing (dideoxy-terminator sequencing), pyrose-
quencing, next-generation sequencing, real-time PCR, 
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and amplification refractory mutation system (ARMS), 
have been employed to detect genetic alterations in 
tumor tissues. However, these methodologies are not 
sensitive or accurate enough to quantitatively assess 
cfDNA in cancer patients for clinical purposes due to 
several limitations. First, cfDNA is only in trace amount 
in the serum and plasma of cancer patients and is too 
low to be efficiently isolated. Secondly, ctDNA represents 
only a very small fraction of cfDNA, making it extremely 
difficult to detect. In addition, the increase in cell death 
caused by tumor-promoting inflammation and/or tis-
sue repair processes dilutes tumor-specific genetic and 
epigenetic alterations by adding more small, fragmented 
“background” DNA, as well as proteins and other mol-
ecules, into blood, making it impossible for consist-
ent detection and accurate assessment of ctDNA using 
the above existing technologies. As a result, the clinical 
utility of ctDNA in diagnosing and monitoring patients 
with cancers including HCC has been limited.

In order to reliably enrich, detect and analyze ctDNA, 
new methodologies, such as PCR-based digital assays 
[45] and DNA sequencing-based assays, have been 
developed. PCR-based digital assays include droplet 
digital PCR [46] and BEAMing on the basis of four com-
ponents (beads, emulsion, amplification, and magnet-
ics) [47], whereas DNA sequencing-based assays include 
pyrophosphorolysis-activated polymerization (PAP) [48], 
tagged-amplicon deep sequencing (TAM-Seq) [49], safe-
sequencing system (Safe-SeqS) [50], cancer personal-
ized profiling by deep sequencing (CAPP-Seq) [43] and 
personalized analysis of rearranged ends (PARE) [51, 
52] (Table  2). BEAMing and digital droplet PCR have 
been developed for diagnosing patients with breast can-
cer [42], colon cancer [53, 54] and gastric cancer [55]. 
CAPP-Seq has successfully identified 85 % of non–small-
cell lung cancer (NSCLC) patients with stage II–IV and 
50 % of patients with stage I NSCLC [43]. A later study 
compared digital sequencing of plasma-derived cfDNA 
to tissue-based sequencing on 165 consecutive matched 
samples in solid tumor cancers, proved the clinical sen-
sitivity was 85.0 and 80.7 %, respectively [56]. These new 

advances have expanded our ability to detect tumor-spe-
cific genetic and epigenetic alterations including DNA 
methylations, point mutations, amplifications, chro-
mosomal rearrangements, and aneuploidy in ctDNA. 
Recently, the approach termed shotgun massively parallel 
sequencing was applied to establish correlation between 
the fractional concentrations of ctDNA and the tumor 
size and surgical treatment [57]. Notably, this approach 
has the ability to scan genome-wide landscape ranging 
from genomic aberrations to point mutations. Despite 
these technological advances, the low level of ctDNA 
remains a major factor that limits the utility of ctDNA in 
HCC diagnosis. The field urgently needs a method to effi-
ciently enrich ctDNA from a pool of cfDNA.

Poorly characterized DNA alterations of HCC
Cancer somatic alterations form the basis for ctDNA 
detection and analysis. DNA alterations harbored in 
ctDNA reflect those occurring in tumors. However, unlike 
breast cancer or lung cancer, which has multiple well-
defined genetic aberrations that dictate tumor behavior, 
the profiles of genetic and epigenetic alterations in HCC 
are poorly characterized. To date, qualitative analysis of 
abnormal concentrations of ctDNA or single-gene meth-
ylation alterations alone is not recommended for HCC 
diagnosis base on a meta-analysis, while combining with 
AFP improves the diagnostic performance [58]. Dur-
ing the recent 5  years, the comprehensive genome-wide 
deep sequencing of HCC tumor samples led to identifi-
cation of many HCC-specific driver mutations, includ-
ing aberrations in TERT promoter, TP53, CTNNB1, 
ARID1A/ARID1B, Axin1, APC (adenomatous polyposis 
coli), TSC2 and many others (Lin and Cai, manuscript in 
preparation) [59–63]. Mapping somatic changes in HCC 
tumors, in combination with other HCC-specific chro-
mosomal rearrangements and epigenetic alterations, may 
pave the way for development of ctDNA detection and 
analysis technologies for HCC patients.

HCC heterogeneity
Genetic and epigenetic profiles vary in different popu-
lations of tumor cells within the same primary tumor, as 
well as their metastases from the same patient. This phe-
nomenon was termed “tumor heterogeneity”, which poses 
serious clinical barriers to targeted therapy. The develop-
ment of tumor heterogeneity is attributed to clonal evolu-
tion associated with acquisition of differential genetic and 
epigenetic alterations. In HCC, different genetic and epi-
genetic alterations in individual tumor cells, together with 
selection pressure upon them, may cause populations of 
tumor cells within a tumor to undergo molecularly hetero-
geneous transformation, even with the seemingly identical 
histopathological traits [64, 65]. This evolution can start at 

Table 2  Potential methods for HCC ctDNA detection

Technique Detection capability (mutant 
DNA/total DNA) (%)

Sanger sequencing >10

Pyrosequencing 10

Next-generation sequencing >1

Real-time 1

ARMS 0.1

Digital droplet PCR, BEAMing, PAP,  
TAM-seq, Safe-SeqS, CAPP-seq, PARE

<0.01
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varying times points during initiation and progression of a 
tumor and/or at varying sites within a tumor, resulting in 
the spatial and temporal heterogeneity of HCC. As a result, 
a single-site biopsy is certain to miss clinically important 
mutations from a heterogeneous HCC tumor [66, 67]. In 
contrast, ctDNA analyzed by a personalized ctDNA detec-
tion approach is a pool of DNA fragments released from 
nearly every part of a tumor and every tumor in the patient 
and maintains tumor heterogeneity in term of genetic and 
epigenetic alterations. The capability of dissecting tumor 
heterogeneity, along with convenience and less invasive-
ness, makes the ctDNA approach much more desirable in 
diagnosis of cancers, including HCC. A proof-of-concept 
study has been taken recently that analysis of ctDNA can 
monitor somatic genetic alterations during the tumor pro-
gression, covering the whole geographical region of the 
tumor. In this study performed on a 66-year-old woman, 
16 mutation signatures in liver metastasis and nine in pri-
mary tumor were identified, all of which were detected in 
ctDNA [68]. Although carried out in one single patient, 
this attempt presents a promising approach for overcom-
ing the clinical challenges of heterogeneity and improving 
therapeutic effectiveness.

Conclusions
Although several protein-based HCC biomarkers have 
been reported, very few of them demonstrate solid diag-
nostic performance [69]. In future medical management, 
more patients will allow their physicians to make thera-
peutic decisions guided by genetic analysis of ctDNA. A 
considerable amount of studies make it clear that clini-
cians are entering the age in which ctDNA analysis will 
be a key part of tumor management, as this conveni-
ent, non-invasive and accurate diagnostic approach will 
reduce the anxiety of patients, as well as clinicians, and 
help prevent cancer progression or even cure cancer.

But prior to the clinical applications, a mechanis-
tic understanding of the biology of ctDNA is urgently 
needed. Previous efforts revealed that HCC patients 
mostly contain genomic DNA in plasma [70], but recent 
work uncovered that the tumor-associated aberrations 
preferentially distribute in short DNA molecules [71]. 
Such evidence helps improve our understanding of the 
nature of ctDNA and might provide guideline for tech-
nology improvement and clinical practice. In addition, it 
is unclear to what extent the spectra of genetic and epi-
genetic alterations of ctDNA resemble those in tumors of 
a patient. Our understanding in this direction will help 
determine the scope of future applications of ctDNA.

Technological advances in ctDNA enrichment and anal-
ysis help expand the potential of the ctDNA-based liquid 
biopsy in cancer diagnosis and therapy. However, current 
technologies for ctDNA enrichment and analysis are yet 

to work in early detection of cancer due to fast decay of 
ctDNA and extremely low amount of ctDNA from early 
stage of HCC. Identification of the increasing number of 
alterations in ctDNA of early HCC makes it possible to 
improve ctDNA enrichments and analysis for early detec-
tion of HCC, which will benefit patients the most when 
the tumor will be most amenable to cure. Further, due to 
needle biopsy sampling bias and the limited availability 
of “research biopsies” in advanced cancer patients, the 
investigation of HCC metastasis and drug resistance has 
been challenging. It is believed that ctDNA carries dif-
ferent genetic or epigenetic signatures when tumor cells 
in a HCC patient become metastatic or when a patient 
develops drug resistance. It is therefore desirable to take 
repetitive monitoring of these signatures (or events) in 
ctDNA using blood samples and have sufficient informa-
tion to devise treatment options. Together, our efforts in 
these cDNA-related areas would provide many healthcare 
advances and improve the life of cancer patients.
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