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Molecular and cytological analyses 
reveal distinct transformations of intestinal 
epithelial cells during Xenopus metamorphosis
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Abstract 

Background:  The thyroid hormone (T3)-induced formation of adult intestine during amphibian metamorphosis 
resembles the maturation of the mammalian intestine during postembryonic development, the period around birth 
when plasma T3 level peaks. This process involves de novo formation of adult intestinal stem cells as well as the 
removal of the larval epithelial cells through apoptosis. Earlier studies have revealed a number of cytological and 
molecular markers for the epithelial cells undergoing different changes during metamorphosis. However, the lack of 
established double labeling has made it difficult to ascertain the identities of the metamorphosing epithelial cells.

Results:  Here, we carried out different double-staining with a number of cytological and molecular markers during 
T3-induced and natural metamorphosis in Xenopus laevis. Our studies demonstrated conclusively that the clusters of 
proliferating cells in the epithelium at the climax of metamorphosis are undifferentiated epithelial cells and express 
the well-known adult intestinal stem cell marker gene Lgr5. We further show that the adult stem cells and apoptotic 
larval epithelial cells are distinct epithelial cells during metamorphosis.

Conclusions:  Our findings suggest that morphologically identical larval epithelial cells choose two alternative paths: 
programmed cell death or dedifferentiation to form adult stem cells, in response to T3 during metamorphosis with 
apoptosis occurring prior to the formation of the proliferating adult stem cell clusters (islets).
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Background
Intestinal remodeling during Xenopus metamorphosis 
serves as an excellent model to study the development 
of vertebrate adult organ-specific adult stem cells, which 
are essential for physiological tissue renewal and regen-
eration. This transformation of the larval intestine to the 
adult form during amphibian metamorphosis involves 
the removal of larval epithelium and de novo formation 
of the adult epithelium with concurrent maturation of the 
other intestinal tissues in a process similar to the matura-
tion of the mammalian intestine around birth [1–5]. The 

tadpole intestine consists of largely a monolayer of larval 
epithelial cells surrounded by thin layers of connective 
tissue and muscles. During metamorphosis, the larval 
epithelial cells undergo apoptosis and clusters of prolif-
erating adult epithelial cells are formed de novo, which 
subsequently proliferate and differentiation to form a 
multiply folded adult epithelium surrounded by thick 
layers of connective tissue and muscles [1, 6–12]. Gene 
expression analyses of known adult stem cell markers of 
mammalian intestine, such as Lgr5 [13], suggest that the 
clusters of proliferating cells are adult stem cells.

Like all other processes during amphibian metamor-
phosis, intestinal remodeling is under the control of thy-
roid hormone (T3) [14, 15]. This process can be easily 
induced by adding physiological concentrations of T3 to 
premetamorphic tadpole rearing water or prevented by 
blocking the synthesis of endogenous T3. In addition, it 
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is organ autonomous and can be induced with T3 even 
in intestinal organ cultures of premetamorphic tadpoles. 
Such properties makes intestinal remodeling a superior 
model to study the development of adult organ-specific 
stem cells as compared to the mammalian models, where 
it is difficult to manipulate the uterus-enclosed late stage 
embryos for such studies.

Earlier work in Xenopus laevis has shown that T3 
induces the vast majority of the larval epithelial cells to 
undergo programmed cell death or apoptosis and that 
the proliferating adult epithelial cells are formed de novo, 
apparently from the dedifferentiation of a small number 
of larval epithelial cells, via a yet-unknown mechanism 
[1, 7–12, 16–19]. These proliferating adult epithelial cells 
can be easily identified as clusters of cells or islets that 
can be labeled with DNA synthesis markers, such as 3H 
and 5-bromo-2′-deoxyuridine, or strongly stained with 
methyl green-pyronin Y (MPGY) at the climax of meta-
morphosis [16–18, 20]. In addition, in situ hybridization 
analyses have shown that well-known markers of the 
adult mammalian intestinal stem cells, such as leucine-
rich repeat-containing G-protein coupled receptor 5 
(Lgr5) and Musashi-1 (Msi-1), are expressed in clusters 
of intestinal epithelial cells at the climax of metamorpho-
sis, suggesting that the clusters or islets are proliferating 
adult stem cells. However, there has been no report of 
using double labeling to ascertain the identities and prop-
erty of these cell clusters. Here by using a combination 
of different staining methods, we successfully carried out 
different double labeling that allowed us to conclusively 
demonstrate that the clusters of epithelial cells induced 
by T3 at the climax of intestinal metamorphosis are pro-
liferating, Lgr5+ adult stem cells. We further show that 
these cells can be strongly stained with MPGY and lack 
intestinal fatty acid binding protein (IFABP), which is 
expressed in the differentiated epithelial cells. Finally, we 
demonstrated that apoptotic and the proliferating cells 
are distinct populations of epithelial cells at the climax of 
metamorphosis.

Results and discussions
Proliferating adult intestinal epithelial cells exist as cell 
clusters and lack the differentiation marker IFABP
The remodeling of the intestine leads to distinct changes 
in the morphology of the intestinal cross-section. This 
can be easily detected by staining the tissue sections with 
a mixture (MPGY) of methyl green, which stains DNA, 
and pyronin Y, which stains RNA [20–22]. Earlier stud-
ies have shown that MGPY stains strongly clusters of 
epithelial cells formed at the climax of metamorphosis 
or after T3 treatment, while the surrounding cells that 
are poor stained. As the epithelial cell clusters or islets at 
the climax of metamorphosis can be labeled with DNA 

synthesis markers [16, 20], it has been assumed that 
the clusters with active DNA synthesis are the same as 
those stained strongly with MGPY. To demonstrate this 
directly, we treated premetamorphic tadpoles at stage 
54 with T3 for 0–6 days to induce metamorphosis. One 
hour prior to being sacrificed, the tadpoles were injected 
with 5-ethynyl-2′-deoxyuridine (EdU) to label the newly 
synthesized cellular DNA. The intestinal cross-sections 
from the resulting tadpoles were double-stained with 
MGPY and for EdU. As shown in Fig. 1, in premetamor-
phic intestine, the epithelium was uniformly stained with 
MGPY and some of the epithelial cells were EdU posi-
tive (Fig. 1A, a″). T3 treatment for 3 days had little effect 
on either intestinal morphology or staining (Fig. 1B, b″). 
However, after 6 days of T3 treatment, clusters of cells in 
the epithelium appeared and were more strongly stained 
by MGPY than the surrounding cells (Fig. 1C). Further-
more, these clusters were labeled by EdU (Fig.  1C, c″), 
indicating that the cell clusters strongly stained by MGPY 
are indeed the proliferating cell clusters.

To investigate this during natural metamorphosis, we 
carried out similar double labeling on intestinal cross-
sections from tadpoles at premetamorphosis (stage 54), 
climax (stage 62), and end of metamorphosis (stage 66). 
The results showed that before or after metamorpho-
sis, the epithelium were uniformly labeled with MGPY 
and some cells were also positive for EdU (Fig.  2A, C, 
a″, c″). Interestingly, the EdU label were preferentially 
at the bottom of the newly formed epithelial folds at the 
end of metamorphosis, suggesting that the proliferating 
adult cells become restricted to the bottom of the fold, 
which resembles the crypt in adult mammalian intestine 
where stem cells reside [23–25]. In contrast, at the climax 
of metamorphosis, clusters of epithelial cells were much 
more strongly stained by MGPY than the surrounding 
cells and these clusters were also labeled by EdU (Fig. 2B, 
b″), just like that during T3 induced metamorphosis. 
Thus, the newly formed epithelial cell clusters during 
metamorphosis are proliferating cells that are strongly 
stained by MGPY.

Since differentiated larval epithelial cells are capable 
of proliferating, e.g., those at stage 54 (Figs.  1A, 2A), it 
is possible that the cells in the clusters formed at the cli-
max of metamorphosis are differentiated cells. To inves-
tigate this, we carried out double-labeling of intestinal 
cross-sections during T3 (Fig. 3) or natural (Fig. 4) meta-
morphosis by using EdU for cell proliferation and immu-
nohistochemistry for IFABP, a marker for differentiated 
intestinal epithelial cells [22, 26]. As shown in Fig. 3, after 
0–3 days of T3 treatment, there were only low levels of 
EdU positive cells in the epithelium but the entire epi-
thelium was uniformly labeled with anti-IFABP antibody 
(Fig. 3A, B). Furthermore, the EdU labeled epithelial cells 



Page 3 of 12Okada et al. Cell Biosci  (2015) 5:74 

were positive for IFABP (Fig. 3a″, b″). These findings are 
consistent with earlier observations showing that larval 
epithelial cells are mitotically active and express IFABP 
uniformly [16, 20, 22, 26]. After 6 days of T3 treatment, 

however, the number of EdU positive cells in the epi-
thelium increased dramatically and existed as clusters 
in regions adjacent to the connective tissue and lacked 
IFABP signal (Fig. 3C, c″).

Fig. 1  MGPY stains strongly the clusters (islets) of proliferating adult intestinal epithelial cells during T3-induced intestinal metamorphosis. Premeta‑
morphic stage 54 tadpoles treated with 10 nM T3 for 0 (A), 3 (B), or 6 days (C) and were sacrificed 1 h after injection with EdU. Cross-sections of 
the intestine from the resulting tadpoles were double-stained for EdU and with MGPY. Higher magnifications of boxed areas in (A–C) are shown in 
(a′–c′) and (a″–c″). The approximate epithelium-mesenchyme boundary was drawn based on morphological differences between epithelial cells 
and mesenchyme cells in the pictures of the double-stained tissues, under enhanced contrast and/or brightness by using Photoshop, if needed 
(dotted lines). Note that the clusters (islets) of EdU labeled cells in the epithelium after 6 days of T3 treatment were strongly stained by MGPY (C, c″). 
Arrowheads indicate the clusters of proliferating cells or islets (c′)
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When we carried out similar analyses on intestinal cross-
sections during natural metamorphosis, we also observed 
that at the climax of metamorphosis (stage 62), the EdU 
labeled cells were present as clusters between the luminal, 
larval epithelial cells that were positive for IFABP and the 

connective tissue (Fig.  4B, b″), while before (stage 54) or 
after (stage 66) metamorphosis (Fig. 4A, C, respectively), 
the EdU positive cells had IFABP, although at the troughs 
of the epithelial folds of post-metamorphic intestine (stage 
66), the EdU positive cells had little or lower levels of 

Fig. 2  MGPY and EdU co-stain the clusters (islets) of proliferating adult intestinal epithelial cells at the climax of natural metamorphosis. Tadpoles 
at premetamorphic stage 54 (A), climax (B stage 62), and end of metamorphosis (C stage 66) were injected with EdU 1 h before being sacrificed. 
Cross-sections of the intestine from the resulting tadpoles were double-stained for EdU and with MGPY. Higher magnifications of boxed areas in 
(A–C) are shown in (a′–c′) and (a″–c″). The dotted lines depict the epithelium-mesenchyme boundary (see Fig. 1). Arrowhead indicates the clusters 
of proliferating cells or islets (b′)
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IFABP (Fig.  4c″). These findings suggest that T3 induces 
the formation of clusters of proliferating cells that are dedi-
fferentiated or undifferentiated. The same conclusion was 

reached when double-labeling was carried out with immu-
nohistochemistry against IFABP and PCNA (proliferating 
cell nuclear antigen) (data not shown).

Fig. 3  The newly formed proliferating adult intestinal epithelial cells during T3-induced metamorphosis have little or no expression of IFABP. 
Premetamorphic stage 54 tadpoles treated with 10 nM T3 for 0 (A), 3 (B), or 6 days (C) and were sacrificed 1 h after injection with EdU. Cross-
sections of the intestine from the resulting tadpoles were double-stained for IFABP by immunohistochemistry and for EdU. Higher magnifications of 
boxed areas in (A–C) are shown in (a′–c′) and (a″–c″). The dotted lines depict the epithelium-mesenchyme boundary (see Fig. 1). Note that the EdU 
labeling revealed profound cell proliferation after T3 treatment. The proliferating cells in the epithelium after 6 days of T3 treatment were present 
mainly in clusters where IFABP staining was weak or absent (C, c″)
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The proliferating epithelial cell clusters express adult 
intestinal stem cell marker Lgr5
We have previously shown that the well-known 
adult mammalian intestinal stem cell marker Lgr5 is 

upregulated during metamorphosis and is expressed 
preferentially or specifically in the epithelial cell clus-
ters formed during metamorphosis [13]. To determine 
if Lgr5+ clusters are expressed in the proliferating cell 

Fig. 4  Clusters of proliferating adult intestinal epithelial cells at the climax of natural metamorphosis lack IFABP. Tadpoles at premetamorphic stage 
54 (A), climax (B stage 62), and end of metamorphosis (C, stage 66) were injected with EdU 1 h before being sacrificed. Cross-sections of the intes‑
tine from the resulting tadpoles were double-stained for EdU and IFABP by immunohistochemistry. Higher magnifications of boxed areas in (A–C) 
are shown in (a′–c′) and (a″–c″). The dotted lines depict the epithelium-mesenchyme boundary (see Fig. 1). Note that the EdU-labeled proliferating 
cells in the epithelium were few and expressed IFABP at premetamorphosis (A) and increased in form of clustered cells that lacked IFABP at the 
climax of metamorphosis (B, b″). At the end of metamorphosis, EdU-labeled proliferating cells were localized mainly in the troughs of the epithelial 
folds where IFABP expression was low (C, c″)
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clusters of the epithelium, we carried out double-labeling 
with EdU and Lgr5 in situ hybridization for Lgr5 mRNA 
on intestinal cross-sections during natural or T3-induced 
metamorphosis. As shown in Fig.  5, after 0–3  day T3 
treatment of premetamorphic tadpoles, there were few 
Lgr5+ cells and no cells were found to co-stain with 
Lgr5 and EdU (Fig.  5A, B, a′, b′). However, after 6  days 
of treatment, Lgr5 positive cell clusters were numerous 
in the epithelium and these clusters were labeled with 
EdU (Fig. 5C, c′). Similarly, we found that at the climax 
(stage 62) during natural metamorphosis, the epithelial 
cell clusters were co-labeled with Lgr5 and EdU (Fig. 6b, 
b′). However, no such clusters were present before (stage 

54) (Fig.  6A) or after (stage 66) (Fig.  6C) metamorpho-
sis. Thus, the proliferating epithelial cells in the clusters 
formed during metamorphosis are adult stem cells.

Apoptotic and proliferating cells represent distinct 
populations of epithelial cells at the climax 
of metamorphosis
T3 induces both larval epithelial cell death and adult 
epithelial development. We next used double-labeling 
to simultaneously detect apoptotic cells with TUNEL 
and proliferating cells with EdU. Consistent with earlier 
reports [27], after 3  days of T3 treatment of premeta-
morphic tadpoles, larval epithelial cell death could be 

Fig. 5  The EdU-labeled clusters (islets) of proliferating adult intestinal epithelial cells during T3-induced intestinal metamorphosis express the adult 
intestinal stem cell marker Lgr5. Premetamorphic stage 54 tadpoles treated with 10 nM T3 for 0 (A), 3 (B), or 6 days (C) and were sacrificed 1 h after 
injection with EdU. Cross-sections of the intestine from the resulting tadpoles were double-stained for Lgr5 by in situ hybridization and for EdU. 
Higher magnifications of boxed areas in (A–C) are shown in (a′–c′). The dotted lines depict the epithelium-mesenchyme boundary (see Fig. 1). Note 
that the clusters (islets) of EdU labeled cells in the epithelium after 6 days of T3 treatment had high levels of Lgr5 mRNA (c, c′)
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detected by TUNEL (Fig.  7B) and few apoptotic cells 
were detected after 6 days, although many EdU positive 
cells were present (Fig. 7C). No co-staining of any cells by 
TUNEL and EdU was detected throughout the T3 treat-
ment. Similarly, during natural metamorphosis, there 
were many TUNEL and EdU positive cells at stage 60 
(climax of metamorphosis) but no co-stained cells were 
detected (Fig. 8B, b′). Like what was observed during T3 
treatment, apoptotic labeling peaked before cell prolif-
eration, with little apoptotic signal detected by stage 62 
when EdU labeling was the strongest (Fig. 8C, c′). These 
findings indicate that T3-induced apoptosis occurs ear-
lier than the massive proliferation of the adult stem cells 
during metamorphosis and that the proliferating cells 
and apoptotic cells are distinct cell populations in the 
intestinal epithelium at the climax of metamorphosis.

Conclusion
Adult organ-specific stem cells are critical for organ 
homeostasis, repair, and regeneration and mis-regulation 
of such stem cells often leads to diseases such as cancer. 
Thus, extensive studies have been carried out to under-
stand the regulation of organ-specific stem cells as well as 
cancer stem cells [28–36]. Intestinal remodeling during 
amphibian metamorphosis resembles the maturation of 
mammalian intestine around birth and thus has served as 
a model to study the development of adult organ-specific 
stem cells in vertebrates [2, 4, 5, 9, 37–43]. The advance-
ments in genetic approaches for gene function studies 
in  vivo, such as the knockout and knockin in Xenopus 
[44–46], undoubtedly further enhance the value of this 
unique model system for studying adult organ-specific 
stem cells. While earlier single labeling studies have 

Fig. 6  Lgr5 and EdU co-stain the clusters (islets) of proliferating adult intestinal epithelial cells at the climax of natural metamorphosis. Tadpoles 
at premetamorphic stage 54 (A), climax (B stage 62), and end of metamorphosis (C stage 66) were injected with EdU 1 h before being sacrificed. 
Cross-sections of the intestine from the resulting tadpoles were double-stained for EdU and Lgr5. Higher magnifications of boxed areas in (A–C) are 
shown in (a′–c′). The dotted lines depict the epithelium-mesenchyme boundary (see Fig. 1)
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provided valuable information for analyzing cell trans-
formations in the epithelium, the lack of double-labeling 
has hindered analyses and/or interpretations regarding 
adult stem cells. Here, we have adapted different pro-
tocols that allowed us to double label different epithe-
lial cells with several combinations of different labeling 
methods, including chemical labeling with EdU, staining 
with MGPY, in  situ hybridization, and immunohisto-
chemistry. These have allowed us to directly demonstrate 
experimentally for the first time that adult intestinal stem 
cells formed during metamorphosis are the proliferat-
ing cell clusters formed at the climax of metamorpho-
sis. Considering our earlier findings that the adult stem 
cells are derived from larval epithelium [12, 19], our 
double-labeling studies of proliferating and apoptotic 
cells indicate that in response to T3, the epithelial cells 

take two mutually exclusive pathways, apoptosis or dedif-
ferentiation followed by proliferation, which leads to the 
formation of the adult intestinal epithelium. Finally, our 
findings here pave the way to use any one of the labeling 
methods in this study to analyze stem cell development 
during metamorphosis.

Methods
Animals and treatments
Wild-type X. laevis tadpoles were reared in the labora-
tory or purchased from Nasco or Xenopus 1. The tad-
poles were staged based on Nieuwkoop and Faber [47]. 
Premetamorphic X. laevis tadpoles at stage 54 were 
treated with 10 nM T3 for 0–6 days at 18  °C. At least 3 
tadpoles were analyzed for each stage or day of T3 treat-
ment. All animal studies were done in accordance with 

Fig. 7  EdU and TUNEL-labeling reveals that apoptotic and proliferating cells are non-overlapping epithelial cells during T3-induced intestinal meta‑
morphosis. Premetamorphic stage 54 tadpoles treated with 10 nM T3 for 0 (A), 3 (B), or 6 days (C) and were sacrificed 1 h after injection with EdU. 
Cross-sections of the intestine from the resulting tadpoles were double-stained for apoptosis by TUNEL and for EdU. Higher magnifications of boxed 
areas in (A–C) are shown in (a′–c′). The dotted lines depict the epithelium-mesenchyme boundary (see Fig. 1). Note that apoptosis in the epithelium 
occurred prior to the appearance of the clusters (islets) of EdU labeled cells and in distinct epithelial cells during T3 treatment (C, c′)
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the guidelines established by the National Institute of 
Child Health and Human Development Animal Use and 
Care Committee.

In situ hybridization
The in situ probe for Lgr5 was made as described previ-
ously [13]. Intestinal fragments were isolated from the 
anterior part of the small intestine of tadpoles at indi-
cated stages, fixed in 4  % MOPS/EGTA/magnesium 
sulfate/formaldehyde buffer (MEMFA), followed by cry-
osectioning. Tissue sections cut at 7 µm were subjected 
to in  situ hybridization by using the antisense probe as 
previously described [48]. For double staining with EdU 
staining, the sections were first processed for digoxygenin 

in situ hybridization, and then the slides were washed in 
1× phosphate buffered saline plus 0.05  % Tween-20 for 
5 min, followed by EdU staining.

5‑Ethynyl‑2′‑deoxyuridine (EdU) labeling
EdU staining was performed as described [49]. Briefly, 
6.7, 40 and 40 µL of 2.5-mg/mL EdU were injected into 
stage 54, 62, and 66 tadpoles, respectively. One hour after 
injection, the tadpoles were sacrificed, and the intestine 
was fixed in 4 % MEMFA and processed for cryosection-
ing. EdU was detected by using the Click-iT Plus EdU 
Alexa Fluor 594 Imaging kit (Life Technologies) accord-
ing to supplier’s instructions.

Fig. 8  Epithelial apoptosis takes place prior to the appearance of clusters (islets) of proliferating adult intestinal stem cells during natural metamor‑
phosis. Tadpoles at premetamorphic stage 54 (A), climax (B stage 60, C stage 62), and end of metamorphosis (D stage 66) were injected with EdU 
1 h before being sacrificed. Cross-sections of the intestine from the resulting tadpoles were double-stained for apoptosis by TUNEL and for EdU. 
Higher magnifications of boxed areas in (A–D) are shown in (a′–d′). The dotted lines depict the epithelium-mesenchyme boundary (see Fig. 1)
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Immunohistochemistry
To identify differentiated intestinal absorptive cells, 
the sections were incubated with the rabbit anti-IFABP 
(intestinal fatty acid binding protein) antibody (diluted 
1:500; [22]) overnight at 4 °C. Samples were washed sev-
eral times with 1× phosphate buffered saline and primary 
antibodies were detected by using Alexa Fluor 568 Goat 
Anti-Rabbit IgG (H+L) Antibody (diluted 1:100; molecu-
lar probes). For double labeling with EdU staining, the 
sections were first processed for immunostaining, and 
then the slides were washed in 1× phosphate buffered 
saline plus 0.05 % Tween-20 for 5 min, followed by EdU 
staining.

Methyl green‑pyronin Y (MPGY) staining
Sections were stained with MPGY (Muto), a mixture 
of methyl green, which binds strongly to DNA, and 
pyronin Y, which binds strongly to RNA, for 5  min at 
room temperature [22]. Adult epithelial stem/progeni-
tor cells were intensely stained red because of their 
RNA-rich cytoplasm [3]. For double staining with EdU 
labeling, the sections were first processed for EdU 
staining. After photographing the EdU labeling, the 
slides were washed in 1X Phosphate Buffered Saline 
plus 0.05  % Tween-20 for 5  min, followed by MPGY 
staining. The image of the MPGY staining was taken. 
The images from MPGY and EdU staining from the 
same slide were merged by using Adobe Photoshop 
CS5.1 to determine whether MPGY and EdU labeled 
the same cells.

TUNEL assays
TUNEL (terminal deoxyribonucleotidyl transferase-
mediated dUTP-biotin nick end labeling) assays were 
performed by using DeadEnd™ Colorimetric TUNEL 
System (Promega) as described [50]. For double staining, 
EdU staining was performed after the TUNEL assays.
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