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Abstract

remains to be identified.

201-400) of SARS-CoV S1 was required for this activity.

modulatory effects on UPR signaling.

Background: Whereas severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) is associated with severe
disease, human coronavirus HKU1 (HCoV-HKU1) commonly circulates in the human populations causing generally
milder illness. Spike (S) protein of SARS-CoV activates the unfolded protein response (UPR). It is not understood
whether HCoV-HKU1 S protein has similar activity. In addition, the UPR-activating domain in SARS-CoV S protein

Results: In this study we compared S proteins of SARS-CoV and HCoV-HKU1 for their ability to activate the UPR.
Both S proteins were found in the endoplasmic reticulum. Transmembrane serine protease TMPRSS2 catalyzed the
cleavage of SARS-CoV S protein, but not the counterpart in HCoV-HKU1. Both S proteins showed a similar pattern of
UPR-activating activity. Through PERK kinase they activated the transcription of UPR effector genes such as Grp78,
Grp94 and CHOP. N-linked glycosylation was not required for the activation of the UPR by S proteins. S1 subunit of
SARS-CoV but not its counterpart in HCoV-HKU1 was capable of activating the UPR. A central region (amino acids

Conclusions: SARS-CoV and HCoV-HKU1 S proteins use distinct UPR-activating domains to exert the same
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Introduction

Coronaviruses are enveloped viruses with a long
positive-stranded RNA genome of ~30 kb. Their replica-
tion occurs in the cytoplasm and has a profound impact
on the endoplasmic reticulum (ER) [1,2]. Particularly,
extraordinarily large amounts of viral structural and
non-structural proteins are synthesized and processed
primarily in the ER. To facilitate this process, corona-
viruses have developed strategies to modulate signal
transduction pathways that govern ER function. We and
others have previously shown that severe acute respira-
tory syndrome coronavirus (SARS-CoV) and mouse
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hepatitis virus (MHV) spike (S) proteins induce ER
stress and activate cellular unfolded protein response
(UPR) in the ER [3-5]. Several other viral proteins of
SARS-CoV are also known to be capable of activating
the UPR [6-9].

Coronaviruses that are known to infect humans
broadly include two categories of viruses. In the first cat-
egory, the viruses commonly circulate in human popula-
tions and cause generally mild respiratory illnesses.
These viruses that are thought to be well adapted to
humans include human coronavirus 229E (HCoV-229E),
HCoV-0C43, HCoV-NL63 and HCoV-HKU1 [10-12]. In
the family Coronaviridae, HCoV-229E and HCoV-NL63
belong to the genus Alphacoronavirus, whereas HCoV-
OC43 and HCoV-HKUI1 are in the lineage A of the
genus Betacoronavirus. In the second category, the
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viruses accidentally or newly cross the species barrier to
infect humans. SARS-CoV and the emerging Middle
East respiratory syndrome coronavirus (MERS-CoV) are
two well known examples in this category [13-16]. They
are less well adapted to humans and cause severe and
highly lethal diseases. Whereas SARS-CoV belongs to
lineage B of the genus Betacoronavirus, MERS-CoV rep-
resents lineage C of the same genus. The molecular
mechanisms that determine the severity of diseases in
coronavirus infection remain poorly understood. Par-
ticularly, it is not known whether S proteins of human
coronaviruses in the above two categories have similar
UPR-activating activity. We therefore set out to compare
S proteins of SARS-CoV and HCoV-HKUTI for their abil-
ity to modulate the UPR. All three branches of the UPR,
which are governed by ER-resident transmembrane pro-
teins ATF6, IRE1 and PERK, respectively [17,18], were
examined.

HCoV-HKUL1 is a betacoronavirus initially identified in
2005 from a patient with community-acquired pneumo-
nia [11]. It was subsequently found to be commonly as-
sociated with respiratory tract infections worldwide
[12,19,20]. However, molecular and cellular pathogenesis
of HCoV-HKUL1 in contrast to SARS-CoV remains elu-
sive. Although primary human ciliated airway epithelial
cells and type II alveolar epithelial cells have been tested
for culturing of HCoV-HKU1l with limited success
[21-23], HCoV-HKUI1 remains a very-difficult-to-culture
virus in most laboratories. Worse still, an infectious
clone of HCoV-HKUL1 is not available. At this stage, ana-
lysis of cloned HCoV-HKU1 genes represents a major
route for deriving mechanistic insight on HCoV-HKU1
pathogenesis.

Coronavirus S proteins mediate the interaction with
host cell receptors, membrane fusion and the induction
of humoral and cellular immune responses [1,24]. In
addition, S proteins play an important role in coronaviral
pathogenesis by modulating host protein synthesis, cyto-
kine secretion and stress response [4,5,25-27]. Changes
in S proteins are critical determinants in cross-species
transmission [28]. In this context, comparison of the
UPR-activating activity of SARS-CoV and HCoV-HKU1
S proteins might shed new light on their roles in
coronavirus-host interaction.

In this study, we provided the first evidence for the ac-
tivation of ER stress and the UPR by HCoV-HKU1 S
protein. We compared the UPR-activating activity of
SARS-CoV and HCoV-HKU1 S proteins in terms of
their influence on the expression of UPR effectors
Grp78, Grp94, CHOP and PERK. We also assessed the
impact of N-linked glycosylation on the activation of
UPR signaling by S proteins. Furthermore, we defined a
minimal domain in S1 subunit required for the UPR-
activating activity of SARS-CoV S protein. Our findings
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provide new molecular details for UPR activation by
SARS-CoV and HCoV-HKUL1 S proteins.

Results

Expression, localization and cleavage of SARS-CoV and
HCoV-HKU1 S proteins

Before we compared the UPR-activating activity of
SARS-CoV and HCoV-HKUI S proteins, we expressed
them in 293FT cells. Both Western blotting (Figure 1A)
and confocal immunofluorescence microscopy (Figure 1B)
indicated effective expression of both proteins to similar
levels. The molecular sizes of both S proteins were ~155
kDa, indicative of post-translational modifications. This
was generally consistent with the reported size of
SARS-CoV S protein [2-4]. With the help of the fluores-
cent ER marker of DsRed-ER, we confirmed that both S
proteins resided largely in the ER (Figure 1B, panels 3
and 6).

SARS-CoV S protein is proteolytically processed into S1
and S2 subunits by host proteases such as cathepsin L, fac-
tor Xa, trypsin and transmembrane serine protease
TMPRSS2 [29-34]. Particularly, TMPRSS2 efficiently acti-
vates S proteins of SARS-CoV as well as MERS-CoV and
HCoV-229E [32-36]. Moreover, TMPRSS2 and related
proteases TMPRSS4, which are abundantly expressed in
human alveolar epithelial cells, are capable of activating
influenza virus hemagglutinin [37]. To investigate whether
they might also proteolytically activate HCoV-HKU1 S
protein, we expressed them together in 293FT cells. Coex-
pression of TMPRSS2 with SARS-CoV S protein resulted
in the appearance of S1 subunit, indicative of proteolytic
cleavage (Figure 2, lane 3). Although a V5 tag was added
to the N-terminus of SARS-CoV S protein, the cleavage
was not affected. The action of TMPRSS2 on SARS-CoV
S was highly specific since TMPRSS1 and TMPRSS4 had
no activity under the same condition (Figure 2, lanes 1
and 2). In contrast, none of the three proteases cleaved
HCoV-HKU1 S protein (Figure 2, lanes 4-6). Thus,
HCoV-HKULI S protein is not processed by TMPRSSI1,
TMPRSS2 or TMPRSS4.

S proteins from both SARS-CoV and HCoV-HKU1 activate
UPR

We and others have previously demonstrated transcrip-
tional activation of Grp78 and Grp94 promoters by
SARS-CoV S protein [3-5]. Grp78 and Grp94 are mo-
lecular chaperones that are drastically induced in re-
sponse to ER stress. They therefore served as robust
indicators of the UPR [17,18]. The promoter activity of
Grp78 and Grp94 was activated by S proteins of SARS-
CoV and HCoV-HKUL to similar levels (Figure 3A and
B). The stimulatory effect of HCoV-HKU1 S protein is
dose-dependent and equally potent compared to that of
SARS-CoV S protein. In contrast, overexpression of B-
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Figure 1 Expression and localization of SARS-CoV and HCoV-HKU1 S proteins. (A) Western blot analysis. 293FT cells were transfected with
pLenti-SCV-S and plLenti-HKU1-S constructs expressing V5-tagged SARS-CoV S protein (SCV-S) and HCoV-HKU1 S protein (HKU1-S), respectively.
Cells in the control group received empty p-Lenti vector only. Cells were lysed and immunoblotted with anti-V5 and anti-a-tubulin antibodies.
(B) Confocal immunostaining. SARS-CoV and HCoV-HKU1 S proteins were expressed in Hela cells and stained with anti-V5 antibody (panels 1 and
4). DsRed-ER was used as an ER marker (panels 2 and 5). The S (green) and DsRed-ER (red) fluorescent signals are overlaid and colocalization is in

\

yellow (panels 3 and 6). Nuclear morphology was visualized with DAPI and is in blue. Bar, 20 uM.

galactosidase, a large foreign protein, had minimal or
very mild effect on Grp78 and Grp94 promoter activity.
Thus, S proteins from both viruses might induce ER
stress and activate the UPR.

We next tested the influence of S proteins on the tran-
scriptional activity driven by CHOP promoter and
UPRE. CHOP is a proapoptotic transcription factor acti-
vated in the UPR [38,39]. UPRE is an enhancer element
responsive to ATF6, XBP1 and CREB3-related transcrip-
tion factors [40-43]. UPRE mediates the activation of a
subset of UPR genes distinct from Grp78 and Grp94
[44,45]. S proteins of both viruses exhibited the same ac-
tivity profile not only on Grp78 and Grp94 promoters,
but also on CHOP promoter and UPRE. They activated
CHOP promoter mildly but did not affect the activity of
UPRE (Figure 3C and D). Thus, S proteins of SARS-CoV
and HCoV-HKU1 showed the same pattern of modula-
tory activity on UPR effector genes.
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Figure 2 Proteolytic cleavage of SARS-CoV S protein by
TMPRSS2. 293FT cells were cotransfected with FLAG-tagged
TMPRSS1/4/2 and V5-tagged S proteins. Western blotting was
performed with anti-V5 and anti-FLAG antibodies. Arrow points to
S1 subunit of SARS-CoV.

PERK is a protein kinase that controls the expression of
many UPR effector genes including Grp78 and Grp94
[17,46,47]. To analyze further whether PERK activity is re-
quired for transcriptional activation of Grp78 and Grp94
promoters by SARS-CoV and HCoV-HKUL1 S proteins, we
made use of a dominant negative (DN) mutant of PERK
which constitutively inhibits PERK kinase activity [48]. If
the activation of Grp78 and Grp94 proteins by S proteins
requires PERK, their stimulatory effect would be reversed
in the presence of PERK-DN. Consistent with our previous
findings [3], activation of Grp78 and Grp94 promoters by
SARS-CoV S protein was enhanced by wild-type PERK
(PERK-WT) and dampened by PERK-DN (Figure 4A and
B). A very similar pattern was also observed for HCoV-
HKUI S protein. In other words, PERK-WT and PERK-DN
exerted opposite effects on the activation of Grp78 and
Grp94 promoters by S proteins from both viruses
(Figure 4A and B). Thus, the activation of Grp78 and
Grp94 expression by S proteins is mediated through PERK.

N-linked glycosylation is not required for UPR activation
by S proteins

Glycosylation might affect the folding, stability, sorting
and function of viral structural proteins [49]. Corona-
virus S protein is heavily glycosylated. N-linked glycosyl-
ation of SARS-CoV S protein is known to be critical to
receptor binding, viral entry and infectivity [50-52].
Since N-linked glycosylation of S protein might overload
the ER leading to the activation of the UPR, it will be of
interest to see whether N-linked glycosylation of SARS-
CoV and HCoV-HKUL1 S proteins might be influential in
their induction of ER stress. N-linked glycosylation sites
in SARS-CoV S protein has been documented [50-52].
Based on comparison and prediction with the help of a
computer program, ten major N-linked glycosylation
sites in SARS-CoV S protein and nine sites in HCoV-
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Figure 3 UPR activation by S proteins. 293FT cells were transfected with the indicated expression vector together with luciferase reporter
plasmid pGrp78-Luc (A), pGrp94-Luc (B), pCHOP-Luc (C) or pUPRE-Luc (D). Cells were harvested 36 h post-transfection for dual luciferase assay.
Progressively escalating amounts of expression plasmids for 3-galactosidase (3-gal) and S proteins were used. Fold activation was calculated from
readouts of firefly luciferase activity normalized to those of Renilla luciferase activity. Activity recovered from cells transfected with plLenti vector
alone was set as 1. Means from triplicate experiments are presented and error bars indicate SD. In panel D, there is no statistically significant
difference between groups (-gal and SCV-S or between groups (3-gal and HKU1-S (p > 0.05).
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HKU1 S protein were chosen for further analysis. When
all these sites were mutated, electrophoretic mobility of
the mutant S proteins on SDS-PAGE gel was no long
shifted upon treatment of cell lysates with endoglycosidase
PNGase F (Figure 5A and B), indicating their deficiency in
N-linked glycosylation. However, compared to the wild-
type proteins, these mutants were equally competent in

the activation of Grp78 and Grp94 promoters (Figure 5C-
F). Hence, N-linked glycosylation is not influential in UPR
activation by SARS-CoV and HCoV-HKUT1 S proteins.

Mapping of UPR-activating domain in SARS-CoV S protein
SARS-CoV S protein is cleaved into S1 and S2 subunits
[29-34]. Above we showed the proteolytic cleavage of
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Figure 4 Requirement of PERK for UPR activation by S proteins. 293FT cells were transfected with the indicated expression vectors together
with either pGrp78-Luc (A) or pGrp94-Luc (B) reporter plasmid. Cells were harvested 36 h post-transfection for dual luciferase assay.
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Figure 5 Impact of N-linked glycosylation on UPR activation by S proteins. (A, B) N-linked glycosylation mutants. SARS-CoV and HCoV-HKU1
S proteins and their N-linked glycosylation mutants (SCV-Sm and HKU1-Sm) were expressed in 293FT cells. To remove N-linked glycans, cell lysates were
incubated with endoglycosidase PNGase F for 1 h at 37°C. (C-F) Luciferase reporter assay. S proteins and their N-linked glycosylation mutants in
escalating dose were compared for the activity to activate luciferase reporter expression driven by Grp78 and Grp94 promoters.

SARS-CoV S protein by TMPRSS2 protease (Figure 2),
but the processing of HCoV-HKU1 S protein is not me-
diated by this enzyme and remains elusive. To determine
whether the UPR-activating property of SARS-CoV S
protein is mediated by S1 (amino acids 1-770) or S2
(amino acids 771-1255) subunit, we expressed them in
293FT cells (Figure 6A, lanes 2 and 3). Whereas S2 has
no influence on the activation of Grp78 and Grp9%4
promoters, S1 was fully competent in this activation
(Figure 6B and D). To compare the two S proteins, we also
expressed the polypeptides corresponding to S1 (amino
acids 1-869) and S2 (amino acids 870-1255) of HCoV-
HKUI1 (Figure 6A, lanes 8 and 9), although we had no evi-
dence in support of the cleavage of S in that virus. To our
surprise, neither S1 nor S2 of HCoV-HKUI was able to ac-
tivate Grp78 or Grp94 promoter (Figure 6C and E).

To further dissect the UPR-activating domain in
SARS-CoV S1 subunit, we constructed three truncated

mutants S1-M1 (amino acids 201-770), S1I-M2 (amino
acids 401-770) and S1-M3 (amino acids 534-770).
These mutants were expressed in 293FT cells (Figure 6A,
lanes 4—6). Among them only S1-M1 was capable of ac-
tivating the transcriptional activity of Grp78 and Grp94
promoters (Figure 6B and D). Neither S1-M2 nor S1-M3
was active in the same assay. Thus, the central region
(amino acids 201-400) of SARS-CoV S1 subunit is in-
dispensable for the UPR-activating activity.

Discussion

In this study we compared and contrasted the UPR-
activating activity of S proteins of SARS-CoV and
HCoV-HKU1. We found that the two S proteins share
the following three properties in common. First, they
localize predominantly to the ER (Figure 1). Second, they
display a similar profile of UPR-activating properties
with the ability to activate Grp78, Grp94 and CHOP
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Figure 6 Mapping of UPR-activating domain in SARS-CoV and HCoV-HKU1 S proteins. (A) Truncated mutants. SARS-CoV (SCV) S protein
and its truncated mutants S1 (amino acids 1-770), S2 (amino acids 771-1255), S1-M1 (amino acids 201-770), S1-M2 (amino acids 401-770) and
S1-M3 (@amino acids 534-770) as well as HCoV-HKU1 S protein and its truncated mutants ST (@mino acids 1-869) and S2 (@mino acids 870-1356)
were expressed in 293FT cells. (B-E) Luciferase reporter assay. S protein and its truncated mutants in escalating doses were compared for the ac-
tivity to activate luciferase reporter expression driven by Grp78 and Grp94 promoters.

promoters but not UPRE enhancer (Figure 3). Third,
their activation of Grp78 and Grp94 promoters requires
catalytic activity of PERK (Figure 4) but not N-linked
glycosylation (Figure 5). On the other hand, the two S
proteins also exhibit distinct properties in protease clea-
vability and UPR-activating domain. TMPRSS2 protease
is capable of cleaving SARS-CoV S protein into S1 and
S2 subunits, but has no proteolytic activity on HCoV-
HKU1 S protein (Figure 2). The S1 subunit of SARS-
CoV sufficiently activates the UPR, but its counterpart in
HCoV-HKU1 has no UPR-modulating activity (Figure 6).
Thus, although the UPR-activating domains in SARS-
CoV and HCoV-HKU1 S proteins are distinct, their
modulatory effects on UPR signaling are similar.

We provided the first evidence for the ability of HCoV-
HKUL1 S protein to modulate the UPR. This adds HCoV-
HKUI to the list of coronaviruses including SARS-CoV
and MHYV, which use S protein to activate the UPR [3-5].
Although the direct evidence remains to be seen, HCoV-

OC43, another human betacoronavirus of lineage A,
might also use S protein to modulate the UPR, since a
mutant HCoV-OC43 carrying two persistence-associated
mutations in S was able to activate the UPR more potently
[53]. It will be of interest to see whether other corona-
viruses including the emerging MERS-CoV might also
employ S protein to activate the UPR. More importantly,
new investigations should be directed towards under-
standing the biological significance of UPR activation in
coronavirus life cycle.

Whereas the UPR-activating domain maps to a central
region (amino acids 201-400) in SARS-CoV S protein,
the S1 fragment (amino acids 1-869) of HCoV-HKU1 S
protein was unable to activate the UPR (Figure 6). The
central regions of the two S proteins are relatively less
conserved. It remains to be seen whether HCoV-HKU1
S protein might use one part of S1 and another part of
S2 to perform its function in UPR modulation. Another
possibility is that some regions in the S1 fragment of
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HCoV-HKU1 could exert suppressive effect on UPR ac-
tivation. Further experiments are required to define the
UPR-activating domain in HCoV-HKUT1 § protein.
Elevated expression of molecular chaperones such as
Grp78 and Grp94 would plausibly increase the capacity
of ER to fold and process coronaviral proteins produced
in extraordinarily high amounts during viral replication.
This might explain why Grp78 and Grp94 promoters are
activated potently by S proteins. On the other hand,
CHOP mediates ER stress-induced apoptosis and UPRE
controls the transcription of some UPR effector genes
involved in ER-associated protein degradation, such as
EDEM [38,45]. Compared to Grp78 and Grp94 pro-
moters, the activation of CHOP promoter by S proteins
was very modest (Figure 3C). Moreover, S proteins did
not activate UPRE-dependent transcription (Figure 3D).
Hence, UPR activation by S proteins is highly selective
and in the benefit of the viruses. This is in line with the
idea that ER stress-induced apoptosis or ER-associated
protein degradation would be undesirable in the early
phase of SARS-CoV and HCoV-HKUT1 replication. Exactly
how S proteins differentially modulate UPR signaling to
facilitate viral replication merits further analysis.
HCoV-HKU1 remains unculturable except in primary
human airway or alveolar epithelial cells [21-23]. This
and the lack of an infectious HCoV-HKUI clone pre-
vented us from analyzing UPR activation in infected
cells. Establishing a more accessible and efficient culture
system and an animal model for the study of HCoV-
HKU1 infection is the next challenge in the field. In
addition, a recombinant lentivirus pseudotyped with
HCoV-HKULI S protein can also be used to study the roles
of S protein in viral entry and pathogenesis. Particularly,
such a pseudotyped virus might prove useful in the ana-
lysis of UPR activation by HCoV-HKU1 S protein.
SARS-CoV is a highly pathogenic coronavirus in humans,
whereas human infection with HCoV-HKU1 is more com-
mon but causes less severe disease [12,19,20]. Because S
proteins from both viruses are equally competent in the ac-
tivation of the UPR, the UPR-modulating property of S pro-
teins is unlikely a critical determinant in the severity of
disease associated with SARS-CoV and HCoV-HKUI.
However, TMPRSS2 protease was capable of cleaving
SARS-CoV § protein, but not HCoV-HKUI S protein, into
S1 and S1 subunits (Figure 2). Moreover, SARS-CoV S1
protein, but not its counterpart in HCoV-HKU1, was re-
quired and sufficient for UPR activation (Figure 6). Cleava-
bility of surface proteins by host proteases is an important
virulence determinant in coronaviruses and other viruses
such as influenza [1,14,37]. In this connection, it will not be
too surprising if the inability of TMPRSS2 to cleave HCoV-
HKU1 might affect pathogenesis. It will be even more inter-
esting to see whether the ability of S1 to activate the UPR
might be related to viral replication and pathogenesis.
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Our findings that SARS-CoV and HCoV-HKUL § pro-
teins activate ER stress and the UPR might have implications
in therapeutic intervention. Pharmaceutical modulators of
ER stress and the UPR have been developed and tested for
various disease conditions including viral infection [54,55].
Interestingly, whereas inhibition of PERK kinase has been
found to inhibit cytomegalovirus replication [56], activation
of the UPR with a small-molecule compound also has
broad-spectrum antiviral activity [57]. Thus, our demonstra-
tion of the activation of the UPR by S proteins might pave
the way for further evaluation of the utility of UPR-
modulating agents for the treatment of diseases associated
with SARS-CoV and HCoV-HKUT infection.

Materials and methods
Plasmids and antibodies
Expression plasmids for human PERK and its DN mu-
tant K621M were obtained from Ronald Wek [48].
Reporter plasmid pCHOP-Luc, in which luciferase ex-
pression is driven by human CHOP promoter (-644 to
+91), was provided by Nai Sum Wong [23]. Reporter
plasmids pGRP78-Luc and pGRP94-Luc were gifts from
Kazutoshi Mori [40,58]. The Grp78 and Grp94 pro-
moters are derived from -304 to +34 of human Grp78
gene and -363 to +34 of human Grp94 gene, respect-
ively. Both promoters harbor multiple copies of ER
stress response element [58]. pUPRE-Luc reporter plas-
mid has been described elsewhere [41,42].

Mouse monoclonal anti-V5 antibody was purchased
from Invitrogen. Mouse anti-FLAG antibody (clone M2)
was from Sigma-Aldrich.

Cell culture and transfection

293FT and HeLa cells were grown in Dulbecco’s modified
Eagle’s medium containing 10% fetal bovine serum and
antibiotics. Cells were transfected with Gene-Juice trans-
fection reagent (Novagen) as described [42,59]. The SV40
large T antigen is constitutively expressed in 293FT cells.

Western blotting and luciferase reporter assay

Western blotting and dual luciferase reporter assay
were carried out as described [42,59]. Control plasmid
pRLSV40 expressing Renilla luciferase (Promega) was
cotransfected into cells and firefly luciferase activity was
normalized to that of Renilla luciferase in all experiments.

Laser-scanning confocal microscopy

Confocal immunofluorescence microscopy was per-
formed on LSM510 (Carl-Zeiss) as described [60,61].
HeLa cells were transfected with an S-expressing plas-
mid and pDsRed-ER (Clontech) for 36 h. Cells were then
fixed and stained with anti-V5 antibody. Nuclei were
counter-stained with 4', 6-diamidino-2-phenylindole
(DAPI) before mounting.
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Site-directed mutagenesis

N-linked glycosylation mutants of S proteins were
constructed by using a site-directed mutagenesis kit
(Agilent). Potential N-linked glycosylation sites were an-
alyzed online by the NetNGlyc program (website: http://
www.cbs.dtu.dk/services/NetNGlyc/). For SARS-CoV S
protein, asparagine residues at positions 29, 65, 119, 227,
318, 330, 357, 589, 669 and 783 were mutated to glutam-
ine. For HCoV-HKUI S protein, asparagine residues at
positions 19, 29, 192, 335, 433, 454, 664, 684 and 725
were mutated to glutamine.

Endoglycosidase treatment

N-linked glycans were removed from S protein by endo-
glycosidase treatment as described [42]. In brief, cell ly-
sates were incubated with endoglycosidase PNGase F
(New England BioLabs) for 1 h at 37°C.
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