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Abstract

Processing of homologous recombination intermediates is tightly coordinated to ensure that chromosomal
integrity is maintained and tumorigenesis avoided. Decatenation of double Holliday junctions, for example, is
catalysed by two enzymes that work in tight coordination and belong to the same ‘dissolvasome’ complex. Within
the dissolvasome, the RecQ-like BLM helicase provides the translocase function for Holliday junction migration,
while the topoisomerase lll alpha-RMIT subcomplex works as a proficient DNA decatenase, together resulting in
double-Holliday-junction unlinking. Here, we review the available architectural and biochemical knowledge on the
dissolvasome machinery, with a focus on the structural interplay between its components.

Introduction

RecQ helicases play a key role in genome stability main-
tenance. In humans, five distinct proteins containing a
RecQ-like module are involved in a set of diverse nucleic
acid transactions, including DNA replication, recombin-
ation and repair. Three of these proteins (the Werner
syndrome helicase WRN, the Bloom’s syndrome protein
BLM and RecQL4) are found mutated in rare genetic
disorders, characterised by chromosomal aberrations
that are in turn associated with cancer predisposition
and premature aging [1]. Mutations in the BLM protein,
for example, cause Bloom’s syndrome [2], whose hall-
mark is a pronounced increase in sister chromatid ex-

change [3].

The dissolvasome complex collapses and unlinks a

double Holliday junction

DNA double-strand breaks can be repaired by homolo-
gous recombination, whose key intermediate is the four-
way Holliday junction. During meiosis, Holliday junctions
are cut by endonucleases to generate crossovers that are
key to the proper segregation of chromosomes [4,5]. In
somatic cells crossovers may cause deleterious mutations
and are suppressed by BLM [6]. In a process aided by
topoisomerases [7-9], BLM catalyses the convergent mi-
gration of a double Holliday junction (dHJ), collapsing it
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into a hemicatenane [10]. This intermediate is unlinked by
Topoisomerase IIla (Topollla) to generate non-crossover
products [6]. BLM and Topollla work in the context of a
hetero-complex named the dissolvasome [10] that also in-
cludes the “RecQ-mediated instability factors”, RMI1 and
RMI2 [11,12]. The interaction and concerted activities
of the BLM and Topollla complex is sufficient to drive
dH]J dissolution [6] but RMI1 has been found to stimulate
this reaction [13,14]. Although the molecular basis of dHJ
dissolution remains unclear, a wealth of information is
available on the structure and function of the isolated dis-
solvasome components and their subcomplexes.

BLM catalyses the convergent migration of two Holliday
junctions

BLM (Sgsl in yeast) provides the ATP-dependent motor
function to convergently migrate a dHJ [15,16] and
contains two separate domains (Figure 1A, [17]). The N-
terminal region comprises a partially unstructured non-
catalytic domain (NTD), which is the target of diverse
post-translational modifications [18,19] and might contain
a homo-oligomerisation module [20]. The BLM C-
terminal domain contains the RecQ-like motor, belonging
to the superfamily 2 of helicases, which are 3’ to 5’ single-
stranded DNA translocases that can function as mono-
meric enzymes [21]. In RecQ proteins, a highly conserved
helicase domain contains a bipartite active site for ATP
binding and hydrolysis, where catalytic residues are con-
tributed by two fused, neighbouring RecA-type modules
[22]. The RecQ C-terminal (RQC) domain contains a zinc
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Figure 1 Structure of the dissolvasome enzymatic components.
(A) Linear and three-dimensional structure of the human BLM helicase,
in complex with a DNA and nucleotide substrate (PDB ID 4CGZ).
(B) Linear and three-dimensional structure of human Topoisomerase
llla (PDB 1D 4CHT).

finger motif and a duplex-DNA binding Winged-Helix
subdomain [22], which provides the proteinaceous pin to
split the two DNA strands at the fork nexus (Figure 1A,
PDB entry 4CGZ and [23]). Unexpectedly, a minimal heli-
case module containing the RecA sandwich and the zinc
finger domain but lacking the Winged-Helix domain
has been recently described, which can unwind a fork
substrate in vitro [24]. Lastly, the Helicase and RNaseD
C-terminal (HRDC) domain is a separate, globular entity
that confers substrate specificity to BLM [25,26], be-
ing required for Holliday junction dissolution or unwind-
ing, but not for the unwinding of a simple DNA-fork
substrate [27].

Various reports indicate that BLM can be found in dis-
tinct oligomeric states that co-exist in solution, ranging
from monomers and dimers [28,29] to tetramers and
hexamers [30]. The effect of substrate binding of the
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BLM oligomeric state is still a matter of debate and
the functional implication of self-assembly is still un-
clear, however it might play a role in orienting mul-
tiple helicase motors for the convergent migration of
two Holliday junctions during dissolution [17].

Topoisomerase lll alpha is structurally related to a type1A
relaxase

The second key player in the dHJ dissolution reaction is
Topollla, which unlinks a hemicatenane intermediate
during the final step of dissolution [10]. Topollla belongs
to the typelA class of topoisomerases, which are padlock-
shaped enzymes that effect changes in DNA topology in
an ATPase independent manner [31,32]. Type 1A topoi-
somerases are indeed markedly distinct from the ATP-
dependent type-II topoisomerases and contain a 4-domain
core (I-IV) that can bind, cleave and reseal single-stranded
DNA substrates (Figure 1B, [33]). This process occurs
through a transesterification reaction mediated by a nu-
cleophilic tyrosine (Tyr337 in human Topollla), thus cre-
ating a transient ‘DNA gate’ for nucleic-acid strand
passage (between domains I and III) [34]. TypelA topoi-
somerases can be classified into two groups: i) relaxases
(such as the E. coli Topol), which efficiently remove nega-
tive supercoils from a covalently closed plasmid [35] and
ii) decatenases (e.g. E. coli Topolll), which can unlink cat-
enated DNA molecules [36]. Although E. coli Topol and
Topolll overall share the same fold, Topolll contains
small additional elements, as for example a short domain
IV insertion (‘decatenation loop’), which lines the topo-
isomerase central cavity and is important for catenane
unlinking (Figure 2A, [37,38]). Unexpectedly, Topollla
lacks the decatenation loop and appears structurally
more similar to typelA relaxases than to decatenases
[31], raising the question of how Topollla-mediated
hemi-catenane unlinking is achieved. Recent work in-
dicates that RMI1 plays a key structural role in this
process [31,39].

RMI1 stabilises the open form of the Topollla DNA gate

RMI1 stimulates the double-Holliday junction dissolution
reaction and directly interacts with both the BLM helicase
and Topollla [13,14,40]. It is composed of an N-terminal
helical bundle followed by an oligonucleotide/oligosac-
charide binding (OB) domain, which is connected, via a
poorly conserved linker, to a higher-eukaryote specific sec-
ond OB scaffold (Figure 2B, [41,42]). The second OB fold
in turn contacts the related RMI2 factor (absent in yeast),
together providing a docking site for other genome stabil-
ity maintenance machineries [43,44]. NTD RMI1 is suffi-
cient to stimulate dHJ dissolution [42,45] and in particular
acts in the later stages of this reaction [7,39]. In fact, while
Rmil has no effect on the initial rate of Holliday junction
migration, as shown in yeast, it has an important role in
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Figure 2 Topoisomerase llla and RMI1 reconstitute a DNA decatenase. (A) Structure of the E. coli Topol relaxase (PDB ID 1ECL) and the E. coli
Topolll decatenase (PDB ID 1D6M). Topolll contains specific insertions lining the pore of the topoisomerase toroid which are critical for
efficient decatenation. (B) Linear and three dimensional structure of RMIT and RMI2 (PDB IDs 3NBI and 4DAY). The decatenation loop of RMI1 is
highlighted in red. (C) The N-terminal domain of RMI1 contributes to Topollla a decatenation loop in trans (marked in red, PDB ID 4CGY).

RMI1 [ TToBT ] [[os2 ]
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removing the last linkages between two recombining
DNA molecules [7]. Further work in yeast has shown that
Rmil acts by stabilising the open form of the Top3 DNA
gate (orthologous to Topollla), hence slowing down the
kinetics of DNA relaxation while favouring decatena-
tion [39]. Recent crystallographic studies on the human
Topollla-RMI1 sub-complex from Nico Thomi’s group
elucidate the molecular basis of the RMI1 stimulatory role
in decatenation. The NTD RMI1 OB fold docks onto
Topollla domain II and contributes an insertion loop that
lines the topoisomerase central cavity, while also reaching
out to domain III at the DNA gate (Figure 2C, [31]). Close
inspection of the Topollla-RMI1 complex reveals that the
RMI1 insertion loop indeed contributes topoisomerase-
interacting elements in regions where Topollla di-
verges from the E. coli Topolll decatenase (Figure 2D,
see previous paragraph). Hence, RMI1 appears to do-
nate a DNA decatenation loop to Topollla in trans,
which could be sufficient to turn a relaxase into a decate-
nase. Although the crystal structure of Topollla-RMI1
was solved in a closed configuration, the insertion loop
appears poised to push the gate open, locking the topo-
isomerase in a covalently-attached, open, DNA-bound
form that would promote DNA decatenation. Consistent
with this model, a scrambled insertion-loop mutant, which
does not interfere with complex formation, fails to stimu-
late dHJ dissolution, reverting yeast Top3 back to a mod-
est decatenase [31].

BLM plays a structural role in modulating strand passage
How BLM structurally and functionally interacts with the
Topollla—RMI1 sub-complex is still poorly understood. It
is known that BLM contacts NTD RMI1 [13,14,45] while
Topollla interacts with the NTD of BLM/Sgs1 [46,47]. In
Drosophila, which appears to lack RMI1, a fly-specific C-
terminal insertion in Topollla that contacts BLM at an
unknown site, is essential for dissolution and might func-
tionally substitute RMI1 [9]. It remains to be established
whether the RecQ and ToplA catalytic domains ever
come in direct contact during dissolution and whether
any allosteric communication occurs between the two
modules.

Similarly unclear is the nature of the BLM-Topollla
catalytic interplay [48]. Work in Drosophila, for example,
suggests that BLM and Topollla could coordinate their
activities to achieve branch migration [8]. In vitro studies
on this system indicate that, while the isolated BLM is
incapable of migrating a topologically constrained dHJ,
vigorous migration is observed when Drosophila Topl is
added to the reaction mixture, although branches pause
before merging into a hemicatenane. When BLM is in-
stead assayed with Topolllq, the reaction goes to comple-
tion without any pausing, indicating that dissolution is
indeed a highly processive reaction, and hinting at a pos-
sible catalytic interplay between the two enzymes [8].

Work in yeast, however, indicates that Sgs1/BLM has a
role in modulating strand passage by Topollla and RMI1,
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which does not depend on the catalytic activity of the heli-
case module [39]. In a catenation assay on plasmids con-
taining a preformed DNA bubble, Sgs1-Top3-Rmil appears
proficient in converting individual DNA molecules into
multimeric catenanes, irrespective of the presence of a
wild type or a catalytically-dead mutant of Sgsl [39].
These results indicate that Sgs1/BLM has a structural, ra-
ther than catalytic, role in promoting strand passage in
the dissolvasome. It remains to be determined whether
Sgs1/BLM binding acts by repositioning the decatenation
loop insertion in RMI1 or rather contacts the topoisomer-
ase gate directly, hence controlling the Topollla opening/
closure state.

Concluding remarks

Recent advances shed light on the role of isolated dissol-
vasome components in the convergent migration of dHJ
junctions and hemi-catenane unlinking. Whether BLM
and Topollla-RMI1 allosterically influence their recipro-
cal catalytic activities still remains unclear. A compre-
hensive view of the molecular basis of dHJ dissolution
will be likely achieved once the high-resolution structure
of the full dissolvasome assembly is determined.
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