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Transcriptional and epigenetic regulation of
PPARy expression during adipogenesis

Ji-Eun Lee and Kai Ge™

Abstract

Histone methylation, Chromatin remodeling

The nuclear receptor PPARy is a master regulator of adipogenesis. PPARy is highly expressed in adipose tissues and
its expression is markedly induced during adipogenesis. In this review, we describe the current knowledge, as well
as future directions, on transcriptional and epigenetic regulation of PPARy expression during adipogenesis.
Investigating the molecular mechanisms that control PPARy expression during adipogenesis is critical for understanding
the development of white and brown adipose tissues, as well as pathological conditions such as obesity and diabetes.
The robust induction of PPARy expression during adipogenesis also serves as an excellent model system for studying
transcriptional and epigenetic regulation of cell-type-specific gene expression.
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Introduction
PPARy and adipogenesis
PPARYy (Peroxisome proliferator-activated receptor y) is a
member of the nuclear receptor superfamily of ligand-
activated transcription factors (TFs) [1,2]. It is highly
expressed in white and brown adipose tissues (Figure 1).
PPARy is considered a master regulator of adipocyte
differentiation (adipogenesis) [3]. Ectopic expression of
PPARYy in non-adipogenic embryonic fibroblasts stimulates
the adipocyte gene transcription program and drives adi-
pogenesis [4]. PPARYy is essential for adipogenesis, as no
single factor has been identified that can drive adipogene-
sis in the absence of PPARy [5,6]. Consistently, PPARy
knockout mice lack terminally differentiated adipose tis-
sues and develop fatty liver and lipodystrophy [7,8].
PPARYy is not only critical for adipogenesis but also
important for the maintenance of the fully differentiated
state both in culture and in mice [9,10]. Consistently,
mutations of the PPARy gene have been implicated in
lipodystrophy as well as other metabolic diseases such as
hypertension and insulin resistance in humans [11-13].
Antidiabetic insulin-sensitizing drug thiazolidinediones
(TZDs) such as Rosiglitasone have been identified as
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potent and selective ligands of PPARy [14] but these
drugs have undesirable side effects [15].

PPARy gene

The mouse PPARy gene spans over 120 kb of the gen-
omic sequence on chromosome 6 [16]. It is expressed as
two isoforms, PPARy1 and PPARYy2, as a result of differ-
ent promoter usage and alternative splicing [16,17]. The
PPARyI promoter is located 60 kb upstream of the
PPARy2 promoter. PPARy2 expression is restricted to
adipose tissues, while PPARy1 is also expressed in vari-
ous other tissues. Both PPARy1 and PPARy2 are strongly
induced during adipogenesis but are differentially regu-
lated. During adipogenesis of the widely used mouse
white preadipocyte cell line 3T3-L1, PPARy1 is induced
earlier than PPARy2 but the two isoforms are expressed
at similar levels in the late phase of differentiation [18].
During adipogenesis of mouse brown preadipocytes,
PPARyl1 is induced in the early phase and remains the
dominant isoform while PPARY2 is induced relatively
late and remains the minor isoform throughout differen-
tiation [18,19]. The functional differences of the two
PPARYy isoforms in adipogenesis and in mature adipose
tissues remain elusive. While the regulation of PPARy
expression during adipogenesis has been extensively
studied, little is known about the regulation of PPARy
expression in non-adipose tissues and cells.
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Figure 1 Tissue distribution of PPARy. PPARy is highly expressed in brown and white adipose tissues and colon in C57BL/6 J mice. Quantitative
reverse-transcriptase PCR (QRT-PCR) of PPARy mRNA levels in various mouse tissues is shown. The original data was obtained from www.nursa.org/
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Epigenetic regulation of gene expression

Eukaryotic genomes are packaged into chromatin whose
basic unit is the nucleosome [20]. The nucleosome con-
sists of a histone octamer of four core histones (H2A,
H2B, H3, H4) wrapped by DNA. The X-ray structure of
the nucleosome reveals that histone tails extend outside
of the core region [21]. Histone tails are subjected to
various covalent modifications (i.e. acetylation, methyla-
tion, and phosphorylation), which play important roles
in regulating nucleosome structure and recruitment of
chromatin-associated proteins [22]. The presence of the
nucleosome prevents gene transcription in vitro [23].
Nucleosome occupancy correlates inversely with tran-
scription initiation [24]. Therefore, dynamic changes in
nucleosome structure are necessary to achieve gene ex-
pression. Chromatin remodeling and histone modifica-
tion are two major epigenetic mechanisms that alter
nucleosome structure to regulate gene expression.

Chromatin remodeling

Chromatin represses transcription by blocking protein
access to the DNA template. Therefore, DNA binding of
TFs and transcription cofactors often occurs concur-
rently with chromatin structure alteration by chromatin
remodeling complexes [25]. Two major types of chroma-
tin remodeling complexes have been identified-SWI/SNF
and ISWI, both of which contain the ATPase subunit.
SWI/SNF complexes disrupt nucleosome core conform-
ation by altering the histone-DNA binding [26]. On the
other hand, ISWI complexes promote nucleosome
sliding without displacing the histone octamer from
DNA [27]. Despite the mechanistic differences, both

complexes use the energy from ATP hydrolysis to change
nucleosome conformation or location [25].

Histone modification
Histones, particularly their N-terminal tails, are cova-
lently modified at many lysine (K) or arginine (R) resi-
dues [28]. The combination of covalent modifications
affects chromatin structure and gene expression [29].
Acetylation and methylation are two types of extensively
studied histone modifications. Histone acetylation is
generally correlated with gene activation although it re-
mains to be determined whether a specific histone
acetylation is a cause or consequence of gene activation
[30]. Acetylation on histones is written by histone acetyl-
transferases (HATs) and erased by histone deacetylases
(HDACs) [31,32]. Recent publications suggest that HATs
are highly site-specific in mammalian cells [30,33,34].
Genome-wide profiling by ChIP-Seq reveals that his-
tone methylation correlates with gene activation or re-
pression depending on the methylation sites and states
(mel, me2 and me3, i.e. mono-, di- and tri-methylation)
[35,36]. Methylation of K4, K36, K79 on histone H3
(H3K4, H3K36, H3K79) correlates with gene activation,
whereas di-methylation of K9 or tri-methylation of K27
on H3 (H3K9me2 or H3K27me3) correlate with gene re-
pression. Each modification shows a distinct profile
along the genome. For example, tri-methylation on H3K4
(H3K4me3) usually occurs at promoters of actively
transcribed genes [37]. Promoter-distal mono- and di-
methylation of H3K4 (H3K4mel/2) mark enhancers [38].
Tri-methylation of H3K36 (H3K36me3) associates with
elongating RNA polymerase II (Pol II) and is thus
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enriched on the gene body with peaks at the 3’ end of
transcribed regions [35].

Histone methylations are dynamically regulated by re-
markably site-specific methyltransferases and demethy-
lases. Histone methyltransferases for H3K4, H3K9,
H3K27, H3K36 and H3K79, as well as histone demethy-
lases for H3K4, H3K9, H3K27 and H3K36, have been
identified [39,40]. However, their biological functions are
largely unclear.

Transcriptional regulation of PPARy expression
during adipogenesis

A good number of TFs have been reported to positively
or negatively regulate adipogenesis and PPARy expres-
sion (Figure 2) [5,6]. However, whether these factors dir-
ectly regulate PPARy expression is often unclear.

Positive regulators of PPARy expression

Pro-adipogenic TFs promote adipogenesis in part by dir-
ectly or indirectly up-regulating PPARy expression or by
stimulating PPARy transcriptional activity. Here, we
focus on the factors that have been shown to bind the
PPARy gene locus and/or activate the PPARy promoter
in reporter assays. It is likely that these factors regulate
PPARy expression directly.

CCAAT/enhancer-binding proteins (C/EBPs)

C/EBPs, including C/EBP«,  and §, are basic leucine
zipper family TFs that are crucial for adipogenesis [6,41].
C/EBPs form homo- and hetero-dimers to bind to their
consensus sequences on target genes [42]. In the early
phase of adipogenesis, C/EBPP and C/EBPS are induced
immediately by adipogenic chemicals isobutylmethyl-
xanthine (IBMX) and dexamethasone (DEX), respectively
[43]. Ectopic expression of C/EBPJ alone or together with
C/EBPS induces PPARy expression in non-adipogenic
NIH3T3 fibroblasts [44,45]. Conversely, double knockout
of C/EBPJB and C/EBP§ in mice reduces adipose tissue
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/ / KLF9
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Figure 2 Transcriptional regulation of PPARy expression during
adipogenesis. PPARy expression is regulated by multiple positive and
negative transcription factors (TFs) as well as signaling pathways.
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weight [46]. C/EBPa is another adipogenic TF and is both
necessary and sufficient for adipogenesis [6,41]. C/EBP«
expression is induced relatively late around day 2-4
during adipogenesis of L1 cells. C/EBPa knockout mice
lack white adipose tissue and show reduced brown adi-
pose tissue [47].

The mouse PPARy2 promoter contains two C/EBP
recognition elements at —340 bp and -327 bp from the
transcription start site [16]. While all three C/EBPs can
bind directly to these elements and induce PPARy2 ex-
pression, C/EBPa binding replaces early C/EBPs at later
stages, which is consistent with their expression patterns
[48,49]. ChIP-Seq analyses show that C/EBPa, C/EBPp
and PPARy also bind to enhancer-like regions in the 3’
of the PPARy gene locus [50].

Recent ChIP-Seq analyses reveal that C/EBPP func-
tions as a pioneer TF in the early phase of adipogenesis
[51]. Once C/EBPf binds to adipogenic enhancer regions
(also known as “hotspots”), which can also be found on
PPARy and C/EBPa gene loci, it facilitates the recruit-
ment of other adipogenic TFs such as glucocorticoid re-
ceptor (GR), STAT5A and RXR to form adipogenic
enhancers and consequently induces expression of late
acting TFs such as PPARy and C/EBPa [52]. As a pion-
eer adipogenic TF, C/EBPP recruits H3K4 mono- and di-
methyltransferase MLL4 to establish a subset of active
adipogenic enhancers during adipogenesis, including the
ones on the PPARy gene locus [50].

Early B-cell factors (EBFs)

EBF1 is one of the critical B cell fate determining factors
[53]. EBF2 is known to regulate osteoclast differentiation
[54]. Both EBF1 and EBF2 are also induced during adipo-
genesis of 3T3-L1 white preadipocytes but with different
expression patterns [55]. Ectopic expression of either fac-
tor in NIH3T3 fibroblasts promotes adipogenesis [55,56].

EBF2 is expressed at higher levels in brown compared
to white adipose tissues. It has been shown that EBF2
regulates brown adipocyte-specific Ucpland Prdml6 ex-
pression [57]. Although knockout of the EBF2 gene in
mice does not affect PPARy expression, there might be
potential redundancy between EBF1 and EBF2. Our un-
published data suggests that EBF2 directly binds to the
PPARYy gene locus during brown adipogenesis.

The EBF binding motif is highly enriched in active en-
hancers of adipogenesis and in brown adipose tissue-
specific PPARy binding sites [50,57]. EBF1 binds to PPARy1
promoter with the strongest binding at 1 h, suggesting that
EBF1 is one of the early regulators of PPARy expression
[55]. Future studies are needed to identify the genomic
binding profiles of EBF family members during white and
brown adipogenesis. The functional redundancy and speci-
ficity of EBF family members in regulation of PPARy ex-
pression and adipogenesis also need to be clarified.
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Kriippel-like factors (KLFs)
Several members of KLF family of zinc-finger TFs, in-
cluding KLF4, KLF5, KLF9 and KLF15, are induced at
various stages of 3 T3-L1 adipogenesis. KLF4 and KLF5
mRNA levels are induced in the early phase of adipogen-
esis and peak at around 2 h and 6 h, respectively [58,59].
KLF9 and KLF15 mRNA levels are induced at day 2—4 of
3T3-L1 adipogenesis and peak at around day 6-8 [60,61].

Individual knockdown of KLF4, KLF5, KLF9 and
KLF15 has been shown to block adipogenesis of 3 T3-L1
preadipocytes, suggesting that these four KLFs play posi-
tive roles in adipogenesis [58-61]. Among them, KLF5
and KLF9 have been shown to directly bind to the
PPARy?2 promoter. KLF5 binds from —340 bp to —260 bp
of the PPARy2 promoter and cooperates with C/EBPs to
induce PPARy2 expression [59]. KLF9 binds from
-413 bp to -247 bp of the PPARy2 promoter and moder-
ately activates the PPARy2 promoter in a luciferase re-
porter assay [60]. Thus, KLF5 and KLF9 show distinct
expression patterns during adipogenesis but appear to
share the same region on PPARy2 promoter. To under-
stand the mechanisms by which KLFs regulate adipogen-
esis and PPARy expression, the genomic binding profiles
of KLFs during adipogenesis need to be determined. The
functional redundancy and specificity of KLFs in regula-
tion of adipogenesis and PPARy expression also need to
be clarified.

Unlike the KLFs mentioned above, KLF2 has been re-
ported to inhibit PPARy expression and will be discussed
in a later section [62].

Sterol regulatory element-binding protein-1 (SREBP1)
SREBP1 (also known as ADD-1; adipocyte determination
and differentiation factor 1) is a basic helix-loop-helix
leucine zipper TF involved in cholesterol homeostasis
[63]. It is expressed in various tissue types with the high-
est level in brown adipose tissue [64]. SREBPI is induced
during differentiation of 3T3-F442 and 3T3-L1 preadi-
pocytes. A dominant-negative form of SREBP1 with a
mutation in the DNA-binding domain markedly inhibits
adipogenesis of 3T3-L1 cells [65]. Ectopic expression of
SREBP1 induces endogenous PPARy expression in 3T3-
L1 and HepG2 cells. SREBP1 has been shown to bind to
a putative E-box motif at ~1535 bp of the PPARyI pro-
moter, and mutation of this motif inhibits SREBP1 bind-
ing [66]. To understand how SREBP1 regulates PPARy
expression and adipogenesis, it will be critical to deter-
mine the genomic binding profile of SREBP1 during
adipogenesis.

Zinc finger protein 423 (ZFP423)

ZFP423 is a zinc finger TF and was recently identified as
a preadipocyte determination factor [67]. It is enriched
in preadipocytes compared to non-adipogenic fibroblasts
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and its expression levels positively correlate with the adi-
pogenic potential of fibroblasts. Ectopic expression of
ZFP423 in non-adipogenic NIH3T3 fibroblasts induces
PPARy2 but not PPARyl expression before differenti-
ation and promotes adipogenesis after induction of dif-
ferentiation. Conversely, knockdown of ZFP423 in 3T3-
L1 preadipocytes blocks adipogenesis and decreases both
PPARyI and PPARy?2 levels before and after differenti-
ation [67]. However, the molecular mechanism by which
ZFP423 regulates PPARy expression remains incompletely
understood.

Nuclear factor | (NFI)

The NFI family TFs were identified as potential novel
regulators of adipogenesis from computational motif
analysis of adipocyte-specific open chromatin regions in
3T3-L1 cells [68]. The NFI binding motif also shows up
in other studies involving epigenomic profiling of adipo-
genesis [50,57]. During adipogenesis, NFIA and NFIB
expression levels are significantly induced while NFIC
and NFIX levels remain steady. Knockdown of either
NFIA or NFIB reduces the differentiation ability of 3T3-
L1. ChIP analysis reveals binding of NFIA to known dis-
tal regulatory elements of PPARy and C/EBPa, as well as
Fabp4 genes [68].

Positive cross-regulation between PPARy and C/EBPa
PPARy and C/EBPua positively regulate each other’s ex-
pression and cooperate to promote adipogenesis [3,69].
PPARYy is essential for C/EBPa-stimulated adipogenesis
in fibroblasts [3]. Conversely, C/EBPa knockout fibro-
blasts show severe defects in PPARy-stimulated adipo-
genesis in the absence of synthetic PPARy ligands and
partial defects in the presence of these ligands, suggest-
ing that C/EBPa is also required for PPARy-stimulated
adipogenesis [19]. PPARy directly activates endogenous
C/EBPua gene transcription. Once induced, C/EBPa binds
to the PPARy gene locus and further induces and main-
tains PPARy expression in mature adipocytes through a
positive feedback loop [3]. Genome-wide profiling studies
show that during adipogenesis, most induced genes are
bound by both PPARy and C/EBPq, suggesting a synergis-
tic upregulation of adipogenic gene expression by these
two master regulators [70,71]. Interestingly, PPARy binds
its own gene locus, where C/EBPa also binds (Figure 3).
These regions include the PPARy2 promoter and down-
stream intergenic enhancer regions [50].

Negative regulators of PPARy expression

GATAs

Of the six GATA family zinc finger domain TFs, GATA-
2 and GATA-3 are highly expressed in the preadipocyte
fraction of white adipose tissues in mice. Their expres-
sion is down-regulated during differentiation of 3T3-
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Figure 3 Co-localization of PPARy and C/EBPa on PPARy gene locus during adipogenesis. Snapshot of PPARy and C/EBPa binding profiles
on the PPARy gene locus during brown adipogenesis. ChIP-Seq of PPARy and C/EBPa were performed before (day 0) and after (day 7) differentiation of
immortalized brown preadipocytes (unpublished). Enrichment of peaks was visualized in the UCSC genome browser.
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F442A preadipocytes. Constitutive expression of GATA-
2 or GATA-3 inhibits 3T3-F442A differentiation and
PPARy expression. Consistently, GATA-3 knockout ES
cells show enhanced ability of differentiation towards ad-
ipocytes. In a luciferase reporter assay, GATA-2 and
GATA-3 inhibit the activity of 0.6-kb PPARy2 proximal
promoter [72]. GATA-2 and GATA-3 are also found to
inhibit the transcriptional activities of C/EBPa and C/
EBPP through physical interactions, thus offering an
additional mechanism by which GATA-2/3 inhibit adi-
pogenesis and PPARy expression [73]. It remains to be
determined whether GATA-2/3 directly repress PPARy
expression in preadipocytes.

KLF2

Overexpression of KLF2 strongly inhibits differentiation
of 3T3-L1 preadipocytes and the expression of PPARy
but not the early adipogenic TFs C/EBPS and C/EBPJ.
KLF2 can directly bind to the CACCC element within
the PPARy2 proximal promoter region and repress
PPARy2 promoter activity in a reporter assay. However,
mutation of its binding site alone is insufficient to block
KLF2-mediated repression of the PPARy2 promoter, sug-
gesting that other mechanisms are also involved [62]. It
remains to be determined whether endogenous KLF2
directly represses PPARy expression in preadipocytes.

Epigenetic regulation of PPARy expression during
adipogenesis

PPARy expression during adipogenesis is regulated by
chromatin remodeling and histone modifications such as
acetylation and methylation (Figure 4).

Chromatin remodeling

The PPARy gene locus undergoes dynamic changes
within hours of adipogenesis induction. DNase I hyper-
sensitivity assays reveal that chromatin remodeling and
opening of the PPARy gene locus occur within 3—4 hours
of induction in 3T3-L1 cells [51]. The major opening

regions are the PPARy2 promoter and 3’ distal regions
that are occupied by C/EBPB, C/EBP«, and PPARY itself
in later stages of differentiation [50].

Chromatin remodeling and opening at the PPARy2
promoter are adipose-specific and dependent on cAMP
and protein kinase A (PKA) pathways [74]. IBMX alone
can induce chromatin opening of the PPARy2 promoter.
Conversely, shRNA-mediated knockdown of PKA sub-
units inhibits chromatin accessibility of the PPARy2 pro-
moter region.

The SWI/SNF chromatin remodeling complex has been
shown to regulate PPARy?2 expression during adipogenesis

Preadipocytes

C/EBPp

SWI/SNF —»
PTIP

+— MLL3/MLL4

CBP/p300 H3K4me1/2

H3K27ac

G9a

PPARY —— H3Kome2

Adipocytes

Figure 4 Positive and negative epigenetic regulators of PPARy
expression during adipogenesis.
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[75]. The dominant-negative form of Brgl, an ATPase sub-
unit of the SWI/SNF complex, inhibits PPARy-, C/EBPa-,
or C/EBPB-induced adipogenesis in fibroblasts. In the
early stage of 3T3-L1 differentiation, C/EBP factors bind
to the PPARy2 promoter, followed by Pol II and general
TFs assembly prior to and independently of SWI/SNF.
SWI/SNF and TFIIH then assemble on the PPARy2
promoter to facilitate preinitiation complex formation. It
remains unclear how the SWI/SNF complex is recruited
to the PPARy gene locus.

Histone acetylation

Histone acetylations generally correlate with gene activa-
tion and are catalyzed by site-specific histone acetyltrans-
ferases (HATs). In mammalian cells, the homologous and
functionally redundant HATs GCN5 and PCAF specific-
ally acetylate H3K9, while another pair of homologous
and functionally redundant HATs CBP and p300 specific-
ally acetylates H3K18 and H3K27 [30].

Genome-wide profiling of H3K9ac and H3K27ac re-
veals that both marks are highly induced on the PPARy
gene locus during 3T3-L1 differentiation and correlate
with PPARy gene expression [76,77]. While the roles of
GCN5/PCAF and GCN5/PCAF-mediated H3K9ac in
regulating PPARy expression and adipogenesis remain to
be determined, CBP/p300 are known to be essential for
adipogenesis and PPARy expression [78]. CBP/p300-
mediated H3K27ac is a marker for active enhancers and
therefore highly associates with cell type-specific gene
expression [79]. ChIP-Seq of H3K27ac has revealed
adipose-specific active enhancers located in the inter-
genic regions downstream of the PPARy gene (Figure 5)
[50]. The functional roles of these enhancers in regulat-
ing PPARy expression during adipogenesis remain to be
examined.

HBO1, also known as MYST2 or KAT7, is a member
of the MYST family of HATs. It is specifically required
for H3K14ac in mammalian cells [34]. Another member
of the MYST family of HATs, MOF (also known as
MYST1 or KATS), is specifically required for H4K16ac
in mammalian cells [80]. Both H3K14ac and H4Kl6ac
positively correlate with gene expression. However, the
roles of HBO1-mediated H3K14ac and MOF-mediated
H4K16ac in regulating PPARy expression and adipogen-
esis remain to be determined.

Histone methylation

Several histone methyltransferases and demethylases have
been shown to regulate adipogenesis [19,39,50,81-83].
Among them, H3K4 mono- and di-methyltransferases
MLL3 (KMT2C) and MLL4 (KMT2D) directly promote
PPARy expression during adipogenesis [50]. In contrast,
H3K9 mono- and di-methyltransferase G9a (EHMT?2) dir-
ectly represses PPARy expression in preadipocytes and
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during adipogenesis [81]. While H3K27 methyltransferase
Ezh2 directly represses Wnt genes to facilitate adipogene-
sis, Ezh2 and Ezh2-mediated H3K27me3 are absent from
the PPARy gene locus during adipogenesis and thus pro-
mote PPARy expression indirectly [83].

H3K4 methyltransferases MLL3/MLL4 directly promote
PPARy expression

Homologous MLL3 and MLL4 belong to the mammalian
SET1-like H3K4 methyltransferase family [84-86]. Each
member of this family of six methyltransferases forms
a large protein complex that contains WDR5, RbBP5,
ASH2L, and DPY30 (WRAD) subunits [84-87]. In
addition to the common WRAD subunits, MLL3/MLL4
complexes also contain unique subunits, including H3K27
demethylase UTX, nuclear receptor coactivator NCOAS®,
BRCT domain-containing protein PTIP, and a novel pro-
tein PA1 (also known as PAGR1) [84,88-90].

Enhancers control cell-type-specific gene expression
and are marked with H3K4mel/2 [38]. We recently
showed that MLL3 and MLL4 are major H3K4 mono-
and di-methyltransferases in human and mouse cells.
ChIP-Seq analyses reveal that MLL4 shows cell-type-
and differentiation-stage-specific genomic binding and is
mainly enriched on active enhancers during cell differen-
tiation. MLL3 and MLL4 are partially redundant and are
major H3K4 mono- and di-methyltransferases on en-
hancers. Using adipogenesis and myogenesis as model
systems, we showed that MLL3 and MLL4 are required
for enhancer activation, cell-type-specific gene induction
and cell differentiation [50].

MLL3 and MLL4 have partially overlapping functions
and are essential for PPARy expression and adipogenesis
[50]. During adipogenesis, MLL4 is mainly enriched on
adipogenic enhancers, which are active enhancers bound
by PPARy, C/EBPa and C/EBPPB. MLL4 physically inter-
acts with C/EBPf and PPARYy in cells. In the early phase
of adipogenesis, the pioneer adipogenic TF C/EBPP re-
cruits MLL4 to perform H3K4mel/2 and establish adi-
pogenic enhancers on gene loci encoding the master
adipogenic TFs PPARy (Figure 5) and C/EBPa. After
PPARy and C/EBPa are induced, they recruit MLL4 to
perform H3K4mel/2 and establish enhancers critical for
adipocyte gene expression. Deletion of MLL3 and MLL4
in preadipocytes prevents the activation of adipogenic
enhancers on PPARy and C/EBPa genes, as well as their
induction, which lead to severe defects in adipogenesis
[50]. MLL4 appears to be the major regulator of adipo-
genesis in mice with MLL3 playing a minor role [50,91].
Knockout of MLL4 by muscle- and brown adipose tissue
(BAT)-selective Myf5-Cre in mice inhibits normal devel-
opment of Myf5+ muscles and BAT.

MLL3/MLL4-associated NCOA6 and PTIP have also
been shown to be important for adipogenesis, although
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Figure 5 ChIP-Seq and RNA-Seq profiles on PPARy gene locus during adipogenesis. ChIP-Seq and RNA-Seq were performed during brown
preadipocyte differentiation. The original sequencing data was obtained from NCBI GEO database (http://www.ncbi.nlm.nih.gov/geo/) under
accession number GSE50466 [50].

the underlying molecular mechanisms are unclear adipogenesis and is required for the enrichment of
[19,92]. PTIP is a nuclear protein with functions in MLL3/MLL4 complexes on the PPARy promoter region
transcription and DNA damage response. PTIP directly  [19]. Since PTIP itself does not possess a DNA binding
controls the induction of PPARy and C/EBPa during domain, PTIP may function through MLL3/MLL4 to
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help establish adipogenic enhancers. This hypothesis can
be tested by performing ChIP-Seq of PTIP in MLL3/
MLL4 knockout cells and vice versa.

H3K9 methyltransferase G9a directly represses PPARy
expression

H3K9me2 and H3K27me3 are two major repressive epi-
genetic marks. G9a is the major methyltransferase
responsible for H3K9me2 while Ezh2 is the major
methyltransferase responsible for H3K27me3 in cells
[93-95]. ChIP-Seq reveals that the genomic locations of
H3K9me2 and H3K27me3 are largely non-overlapping
in preadipocytes [81]. On gene loci encoding the major
negative and positive regulators of adipogenesis, Wnt
gene loci are marked with high levels of H3K27me3 but
little H3K9me2. In contrast, the entire PPARy gene locus
is covered with high levels of H3K9me2 but little
H3K27me3. H3K9me2 levels are also low on gene loci
encoding other positive regulators of adipogenesis,
including C/EBPs, KLF4, Krox20 and CREB. During adi-
pogenesis, H3K9me2 levels and G9a protein levels de-
crease significantly. Deletion of G9a in preadipocytes or
inhibition of G9a methyltransferase activity increases
PPARy expression and adipogenesis by promoting C/
EBPP binding to and chromatin opening of the PPARy
gene locus [81].

The inverse correlation between the genomic locations
of H3K9me2 and H3K27me3 in preadipocytes suggests
that G9a-mediated H3K9me2 is a major repressive epi-
genetic mechanism that regulates PPARy expression in
the early phase of adipogenesis. The marked decrease of
H3K9me2 on the entire PPARy gene locus during
adipogenesis suggests that H3K9me2 demethylases may
antagonize G9a function. Among the known H3K9
demethylases [39], it is currently unknown which H3K9
demethylases remove H3K9me2 on the PPARy gene
locus during adipogenesis.

Future directions

In addition to identifying novel regulators of PPARy ex-
pression during adipogenesis, future studies should at
least address the following issues: i) distinguishing direct
vs. indirect regulators of the PPARy gene, ii) char-
acterizing of putative PPARy enhancers, iii) understand-
ing the mechanisms by which epigenetic regulators are
recruited to the PPARy gene locus, and iv) determining
of chromatin interaction of the PPARy gene locus.

Distinguishing direct vs. indirect regulators of PPARy gene

A good number of TFs and epigenetic factors have been
shown to modulate adipogenesis and the associated
PPARy expression [96]. However, it is largely unclear
whether these factors directly or indirectly regulate the
PPARy gene. Genome-wide profiling by ChIP-Seq has
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made it possible to map genomic binding sites of these
factors and to distinguish direct vs. indirect regulators of
PPARy expression during adipogenesis in an unbiased
way. Genome-wide binding profiles of PPARy, C/EBPaq,
C/EBPB during adipogenesis have been generated
[50,68,70,71,76]. The genomic binding sites of other adi-
pogenic TFs including EBFs, KLFs, SREBP1, ZFP423
and NFIL, as well as the genomic binding sites of nega-
tive regulators of PPARy expression and adipogenesis in-
cluding GATA2/3 and KLF2, need to be determined
using ChIP-Seq.

Characterization of putative PPARy enhancers

Enhancers regulate cell-type-specific gene expression
and promote gene transcription by delivering necessary
factors to the promoters. The interaction between en-
hancers and promoters is critical for cell-type-specific
gene transcriptional programs [38]. Therefore, identify-
ing cell-type-specific enhancers is important for under-
standing the mechanisms that control the expression of
developmental genes. ChIP-Seq profiling of adipogenic
TFs PPARy and C/EBPa/f, enhancer marks H3K4mel/2
and the H3K4mel/2 methyltransferase MLL4, as well as
active enhancer mark H3K27ac, has enabled the identifi-
cation of putative adipocyte-specific enhancers in the
intergenic region downstream of PPARy gene (Figures 3
and 5).

The next step is to characterize and validate these
putative PPARy enhancers. The traditional luciferase re-
porter assay is easy to perform but has several limita-
tions [97]. First, the enhancer DNA sequence cloned
into the luciferase reporter plasmid lacks the native
chromatin structure and therefore may not be represen-
tative of the physiological enhancer. Second, most genes
are regulated by multiple enhancers, but only one en-
hancer can be tested in a reporter assay. The recently
developed genome editing technique CRISPR could be a
better approach [98]. This method can be used to dis-
rupt PPARy enhancers in preadipocytes to validate their
functional importance in regulating PPARy expression
during adipogenesis.

How are epigenetic factors recruited to the PPARy gene
locus?

Sequence-specific TFs likely play a major role in the re-
cruitment of epigenetic factors to target gene loci be-
cause most epigenetic regulators lack DNA-binding
domains. For example, the MLL3/MLL4 complexes
physically interact with PPARy and C/EBPf [50,91]. Ec-
topic expression of C/EBPP alone in undifferentiated
preadipocytes is sufficient to recruit MLL4, MLL4-
mediated H3K4mel, and active enhancer mark H3K27ac
to a subset of enhancers on the PPARy gene locus. This
suggests that C/EBPp, likely in cooperation with PPARy
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and C/EBPa, recruits the MLL4 complex to establish ac-
tive PPARy enhancers to promote PPARy expression
during adipogenesis. The factors that recruit H3K9
methyltransferase G9a to directly repress PPARy gene
remain to be identified.

Recent studies suggest that long intergenic noncoding
RNAs (IncRNAs) can mediate the interactions between
epigenetic regulator with genome or with other epigen-
etic regulators [99,100]. Expression of several IncRNAs
is strongly induced during adipogenesis [101]. Whether
any of these IncRNAs directly regulates PPARy expres-
sion remains to be determined.

Chromatin interaction of PPARy gene locus

Physical interaction between distal enhancers and the
gene promoter is critical for active gene expression, as
shown on the B-globin locus [102]. Development of the
chromosome conformation capture (3C) assay has en-
abled the identification of long range chromatin interac-
tions [103]. The limitation of 3C is that we can only see
a very narrow region of interest [104]. Updated versions
of this technique including 4C and 5C assays involve
high-throughput sequencing and therefore provide an
unbiased picture of chromatin interaction in given cell
types. So far, no study has reported the chromatin inter-
action of PPARy gene locus and its role in regulation of
PPARYy expression.

In summary, PPARy expression during adipogenesis
provides an excellent model system for understanding
the transcriptional and epigenetic regulation of cell-type-
specific gene transcription programs and cell dif-
ferentiation. One of our big challenges is to validate the
function of regulatory elements outside of the coding re-
gion and identify associated factors and 3D genome
structure around the PPARy locus. Such information
would be of great help to understanding adipose-related
human metabolic diseases, particularly obesity and type
II diabetes.
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