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Abstract

PA-induced hepatocytes injury.

endoplasmic reticulum stress pathways.

Background: Non-alcoholic fatty liver disease, one of the most common liver diseases, has obtained increasing
attention. Palmitate (PA)-induced liver injury is considered a risk factor for the development of non-alcoholic fatty
liver disease. Autophagy, a cellular degradative pathway, is an important self-defense mechanism in response to
various stresses. In this study, we investigated whether autophagy plays a protective role in the progression of

Results: Annexin V-FITC/PI staining by FCM analysis, TUNEL assay and the detection of PARP and cleaved caspase3
expression levels demonstrated that PA treatment prominently induced the apoptosis of hepatocytes. Meanwhile,
treatment of PA strongly induced the formation of GFP-LC3 dots, the conversion from LC3I to LC3lI, the decrease of
p62 protein levels and the increase of autophagosomes. These results indicated that PA also induced autophagy
activation. Autophagy inhibition through chloroquine pretreatment or Atg5shRNA infection led to the increase

of cell apoptosis after PA treatment. Moreover, induction of autophagy by pretreatment with rapamycin resulted

in distinct decrease of PA-induced apoptosis. Therefore, autophagy can prevent hepatocytes from PA-induced
apoptosis. In the further study, we explored pathway of autophagy activation in PA-treated hepatocytes. We

found that PA activated PKCa in hepatocytes, and had no influence on mammalian target of rapamycin and

Conclusions: These results demonstrated that autophagy plays a protective role in PA-induced hepatocytes
apoptosis. And PA might induce autophagy through activating PKCa pathway in hepatocytes.
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Introduction

Non-alcoholic fatty liver disease (NAFLD) is usually
considered the accumulation of extra fat in hepatocytes
that is not caused by alcohol [1]. In recent years, its
incidence is rapidly rising and affects not only adults, but
also children [2,3]. NAFLD refers to a spectrum of disease
ranging from steatosis to inflammation in nonalcoholic
steatohepatitis (NASH) with different degrees of fibrosis
that can progress to cirrhosis [4-6]. Accumulating
evidence suggests that it is implicated with the levels
of plasma free fatty acids (FFAs), the primary source
for triacylglycerols (TAGs) in hepatocytes [3,7-9]. Some
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studies demonstrated the condition that hepatocytes were
exposed to elevated FFAs could promote steatosis and
hepatic apoptosis via activation of Bim and PUMA [10,11].
Hepatocytes apoptosis as a critical feature of NAFLD is
correlated with disease severity [12,13]. Moreover, diets
with a high intake of fat, especially saturated fatty acids,
promotes the development of NASH [14,15]. Palmitate
(PA) as a saturated fatty acid could induce intracellular
steatosis and cellular damage [13], which would be a risk
factor for NAFLD. However, NAFLD presents different
developmental stages and degrees of severity. The different
degrees of injury in NAFLD indicate that there might be
some protective factors against the injury.

Nearly a decade, research in autophagy has become
overwhelming. Autophagy is discovered as an evolutionarily
conserved to have vast array of homeostatic, developmental,
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and other physiological functions [16,17]. Autophagy, a
cellular self-catabolic process, maintains cellular homeosta-
sis by trafficking accumulation of damaged proteins and
organelles to lysosomes for proteolytic degradation [18].
The interesting role of “self-eating” means it can break
down harmful components from itself, thus showing a
survival benefit. Moreover, it is regarded as a self-protective
mechanism, coping with the cellular stress. Increasing
evidence suggests that autophagy is involved in a broad
spectrum of diseases. The study of Dutta D shows that
autophagy induction can resist oxidative stress-mediated
damage in cardiomyocytes [19]. Another research reported
that human mesenchymal stem cells protected against
apoptosis by enhancing autophagy in lung carcinoma cells
[20]. Besides, autophagy activation can reduce renal tubular
injury induced by urinary proteins [21]. According to the
results from above studies, autophagy is taken as a benefit
role in most situations. However, some researches also
show that autophagy can promote cell death and the
creation of apoptosis body [22]. Therefore, it is important
to make it clear to the effect of autophagy in various
situations. In the present research, we attempted to
investigate the effect of PA treatment in hepatocytes
and the role of autophagy in this process.

Results

PA induces hepatocytes apoptosis

Various studies have shown that PA could cause cellular
damage in some conditions. Here we tested whether a
similar result occurred in hepatocytes with PA treatment.
At first, we conducted the measurement of cell viability in
HL-7702 and HepG2 cell lines. The result displayed a
concentration dependency with PA treatment, and PA
(250 uM or 500 pM) caused a marked reduction of cell
viability. PA (500 uM) treatment also resulted in a gradual
reduction of cell viability along with the increase of treat-
ment time (Figure 1A). Moreover, treatment of PA brought
about a marked increase in apoptotic cells (TUNEL-positive
dots) in hepatocytes (Figure 1B and C). In further study, we
performed western blotting analysis to evaluate the protein
levels of two important apoptosis-associated factors,
PARP and cleaved caspase3, in hepatocytes. As shown in
Figure 1D, both cleaved PARP and cleaved caspase3
levels were markedly higher in PA treatment groups
than in control treatment groups. In addition, Annexin
V-FITC/PI staining analysis also demonstrated that PA
treatment resulted in a significant increase of apoptosis
in hepatocytes (Figure 1E). Taken together, these data
suggest that PA induces apoptosis of hepatocytes.

PA induces autophagy activation in hepatocytes

Recent studies have reported that autophagy activation
induced by PA occurred in MEF cells [17], INS-1E B-cells
and isolated rat and human pancreatic islets [23]. To detect

Page 2 of 9

whether autophagy was activated by PA treatment on
hepatocytes, we used GFP labeled microtubule-associated
protein-1 light chain 3 (LC3) plasmid transfection in hepa-
tocytes. PA stimulation resulted in an increase expression
of autophagosomes (GFP-LC3 dots) in HL-7702 cell line
under fluorescence microscope (Figure 2A). Meanwhile,
we measured LC3 and p62 protein levels in hepatocytes.
After eight hours of PA treatment, there was actually a
remarkable increase of LC3II protein levels while P62 pro-
tein was degraded (Figure 2B). This might indicate that PA
induced autophagic flux. To investigate autophagic levels,
electron microscopy analysis was carried out in PA-treated
hepatocytes. As shown in Figure 2C, many autophagosome
structures were observed in hepatocytes by PA treatment.
Nevertheless, we have not found the similar structure in
control treatment groups. Therefore, these results indicate
that PA also induces autophagy activation in hepatocytes.

Autophagy inhibition augments apoptosis of PA-induced
in hepatocytes

Then we used chloroquine (CQ), a classical inhibitor
of autophagy, to explore the role of autophagy in the
PA-induced hepatocytes apoptosis. CQ can disrupt the
fusion of autophagosome with lysosome and raise lysosomal
pH to suppress the activity of lysosomal acid hydrolases,
thereby blocking the degradation of autolysosome and
accumulating LC3 II. CQ pretreatment resulted in accu-
mulation of LC3 II in PA-treated or non-PA-treated hepa-
tocytes (Figure 3A and B). Meanwhile, cleaved caspase3
expression levels were higher in combination of CQ
pretreatment and PA treatment groups compared to those
in PA treatment groups (Figure 3A and C). Pretreatment
of CQ also led to decrease of cell viability in PA-treated
hepatocytes (Figure 3D). In addition, FCM analysis revealed
that CQ pretreatment brought about a significant increase
in PA-induced cell apoptosis (Figure 3E). These data
demonstrated that autophagy inhibition by CQ promoted
PA-induced apoptosis in hepatocytes. In further study, we
performed lentivirus-delivered shRNA to silence Atg5
expression in hepatocytes for disturbing autophagy. The
data displayed that Atg5 expression levels were remarkm-
able lower in Atg5-shRNA transfected cells than in the
non-transfected and scrambled shRNA (SCR-shRNA)
transfected cells (Figure 3F). We also obtained the result
the elevated apoptosis of PA-induced through FCM
analysis in Atg5-shRNA transfected cells by inhibiting
autophagy (Figure 3G). Taken together, autophagy inhibition
augments PA-induced hepatocytes apoptosis.

Autophagy activation reduces apoptosis of PA-induced in
hepatocytes

We next explored the effect of activating autophagy in
PA-induced hepatocytes apoptosis. Rapamycin (Rapa), a
mammalian target of rapamycin (mTOR) inhibitor, has
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Figure 1 PA stimulates apoptosis in hepatocytes. (A) HL-7702 and HepG2 cells were treated with either control or PA (100 uM, 250 uM, 500 uM)
for 24 hours. Cell viability was detected by CCK-8 assay. Respectively, at 0, 6, 12, 24 time points, PA (500 uM) and CCK-8 assay were used (*p < 0.05;
**p < 0.01). (B) DNA fragmentation detection kit was used to deal with cells after treatment with control or PA for 24h, then cells were observed under
a confocal microscopy (bar: 50 um). (C) The ratio was calculated by counting the percentage of cells exhibiting positive TUNEL staining. Quantization
was measured for the three times from the three times independent TUNEL assay (*p < 0.05; **p < 0.01). (D) Western blot analysis detected PARP and
Cleaved-caspase3 proteins levels in cells after treatment with control or PA for 24 hours. (E) Cells were dealt with control or PA for 24 hours, and
stained with AnnexinV-FITC and PI, and then apoptotic cells were quantified by flow cytometry (FCM). Numbers within quadrants represent the
percentages of cells in early apoptosis ( AnnexinV + Pl - ; lower right ) and in late apoptosis and necrosis (AnnexinV + Pl + ; upper right ).

been used as a classical autophagy inducer. We found
Rapa pretreatment enhanced the expression of LC3 II
levels in PA-treated or non-PA-treated hepatocytes
(Figure 4A and B). Meanwhile, cleaved caspase3 expression
displayed a distinct lower levels in the combination of
Rapa pretreatment and PA treatment groups than in
PA treatment groups (Figure 4B and C). Besides, Rapa
pretreatment effectively attenuated the decreased cell
viability by PA treatment in hepatocytes (Figure 4D). The
result from FCM analysis showed that Rapa pretreatment

brought about the decrease of PA-induced apoptosis in
hepatocytes (Figure 4E). These data demonstrated that
autophagy activation by Rapa reduced cell apoptosis by
PA treatment. In the further study, we performed cell
viability assay with Rapa-/+ CQ and Rapa-/+ Atg5shRNA
in hepatocytes. The result showed that Rapa treatment
had no significant influence on the cell viability of CQ and
PA combined treatment groups. Autophagy inhibition by
Atg5-shRNA transfection revealed the similar result with
CQ treatment (Figure 4F and G). These findings suggested
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Figure 2 PA stimulates autophagy activation in hepatocytes. (A) HL-7702 cells were treated with control or PA for 24 hours, and plasmids of
GFP-LC3 were transfected into the cells. Cells were observed under fluorescence microscope (bar: 20pm). Quantization was obtained by calculating
the ratio of cells with GFP-LC3 dots in one visual field and experiments were repeated three times (*p < 0.05; **p < 0.01). (B) LC3 and P62 protein levels
were detected by western blotting analysis after treatment of control or PA for 8 hours. (C) Cells were treated with control or PA for 8 hours
before being processed, then electron microscope was performed at 11,500x and 29,500x magnification. The black arrows show membrane-bound
vacuoles characteristic of autophagosomes. The number of autophagosomes per cell was quantitated. Date were presented as the mean + SEM of
three independent experiments (*p < 0.05; **p < 0.01).

that the effect of Rapa on promoting cell survival in
PA-treated hepatocytes was due to autophagy activation.
As a result, autophagy activation reduces PA-induced
apoptosis in hepatocytes.

PA induces PKCa activation, but has no influenced on
mTOR and ER stress pathways in hepatocytes

In the further study, we explored the mechanism about
PA-induced autophagy activation in hepatocytes. It
was well-known that Rapa inhibited mTOR signaling
pathway, thus activating autophagy. We wondered
whether a similar pathway occurred in PA-induced
autophagy activation, and then we primarily focused on
mTOR signaling pathway. Western blotting analysis
revealed that treatment of PA had no evident influence
on p-mTOR levels, and meanwhile there was also no
difference on phosphorylation of p70 S6 kinase (p70S6K)

and 4E- binding protein 1 (4E-BP1) expression levels, as
the two key downstream effectors of mTOR, in hepato-
cytes by PA treatment (Figure 5A). The study of Choi SE
showed that endoplasmic reticulum (ER) stress could
trigger PA-induced autophagy activation in INS-1 cells
[24]. Therefore, we detected the expressions of two crucial
ER stress markers HSP70 and Grp78 proteins, and
the result suggested that PA did not cause significant
difference on the two proteins levels (Figure 5B). In
addition, ShiHao Tan et al. found that PA-induced
autophagy activation was through protein kinase C
(PKC)-mediated signaling pathway in MEF cells [17]. Our
data also displayed that PA treatment led to elevated
expression of p-PKCa levels, which demonstrated that
PA activated PKCa in hepatocytes (Figure 5C). Therefore,
PA might induce autophagy activation through activating
PKCa pathway in hepatocytes.
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Figure 3 Decreased autophagy level augments apoptosis of PA-induced in hepatocytes. (A) Cells were treated with either control or PA
for 24h. CQ (10 uM) was added to pretreatment for 8 hours. Western blotting was used for detecting LC3 and cleaved-caspase3 levels. (B) The
relative LC3-II/GAPDH was calculated by normalizing their respective levels to the control level in cells. (C) The relative cleaved-caspase3/GAPDH
was quantified in the same way. Date were presented as the mean + SEM of three independent experiments (*p < 0.05; **p < 0.01). (D) Cells
were quantified of the viability using CCK-8 assay after treatment with control or PA for 24h. CQ (10 uM) was also added to pretreatment for 8
hours. Data were repeated in three independent experiments and as the mean + SEM (*p < 0.05; **p < 0.01). (E) Cells were treated in the same
way, and then apoptotic cells were quantified by FCM after staining with AnnexinV-FITC and PI. The data represent the mean + SEM values from
three times separately (*p < 0.05; **p < 0.01). (F) Atg5 was knocked down with Atg5 shRNA infection in HL-7702 and HepG2 cells, then western
blotting analysis were performed. (G) After cultured with control or PA for 24h, normal cells and the transfected cells were used to perform the
apoptosis analysis by FCM. The data were expressed as the mean + SEM values for three independent experiments (*p < 0.05; **p < 0.01).
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Figure 4 Elevated autophagy level by rapamycin reduces apoptosis of PA-induced in hepatocytes. (A) Cells were treated with either control
or PA (500 uM) for 24h, Rapa (250 nM) was added to pretreatment for 8 hours, then western blotting analysis tested LC3 and cleaved caspase3
expressions levels. (B) The quantization of relative LC3-Il/GAPDH from the treatment groups were calculated by normalizing to the control groups.
(C) Relative cleaved-caspase3/GAPDH was calculated in the same way. Data were presented as mean + SEM from three independent experiments
(*p < 0.05; *p < 0.01). (D) Cells were treated with control, PA, Rapa (250 nM) and PA with the addition of Rapa pretreatment for 24 hours, then cell
viability was detected by CCK-8 analysis. Data were mean + SEM from the three times independent experiments (*p < 0.05; **p < 0.01). (E) Cells were
stained with AnnexinV-FITC/PI after treatment as above, and were measured by FCM. The results were presented as mean + SEM values at least three
independent experiments (*p < 0.05; **p < 0.01). (F) HL-7702 cells were treated with various strategies, and then CCK-8 detected cell proliferation.
(G) The result of cell proliferation in HepG2 cells was shown. Date were presented as the mean + SEM values for three independent experiments
(*p < 005; **p <0.01).

Discussion

In the present research, we found that PA could not
only induce cell apoptosis but also activate autophagy in
hepatocytes. Moreover, we also found that autophagy

inhibition resulted in the elevated cell apoptosis of PA
treatment, and in contrast activating autophagy brought
about the decrease of PA-induced apoptosis in hepato-
cytes. In addition, it was also discovered that PA activated



Cai et al. Cell & Bioscience 2014, 4:28
http://www.cellandbioscience.com/content/4/1/28

A HL-7702 HepG2
PA - - + - - +
Rapa - + - - + -
p-P70S6K —— o —

(Thr3gg) | S — " — | — e —

p-4E-BP1
(Thr37/46) l# e

p-mTOR

— . E—
(Ser2448) PR = S—
MTOR | s s — (g— —— —

e

B HL-7702

HepG2

PA - + - +

use | — - —
com [ =
CAPDI [S——— ——

C HL-7702 HepG2

PA - +* - *
p-PKCa

. | ——
CAFDH I-— —l

Figure 5 PA induces PKCa activation, but has no influenced on
mTOR and ER stress pathway in hepatocytes. (A) The involvement
of PA in mTOR signaling was analyzed by western blotting analysis after
the treatment with either control or PA for 8 hours. Cells treated with
Rapa (250 nM) for 8 hours were used as a positive control. (B) Western
blot analysis was applied to detecting Grp78 and HSP70 proteins levels
in cells after treated with Control or PA for 8 hours. (C) P-PKCa was
measured by western blotting after with treatment as above.

PKCa, and had no influence on mTOR and ER stress
signaling pathways in hepatocytes. Together with these
findings, we conclude that autophagy has an important
role in protecting PA-induced hepatocytes apoptosis,
and PA might activate autophagy through PKCa pathway
in hepatocytes.

Laura L. Listenberger et al. reported that PA-induced
apoptosis occurred in Chinese hamster ovary cells via the
generation of reactive oxygen species [25]. Taheripak G and
his colleagues found that PA could induce mitochondrial
dysfunction and apoptosis in skeletal muscle cells [26].
In addition, some research reports that PA induces hepa-
tocytes lipoapoptosis [27-29]. These reports are identified
with the damage effect of PA. We also found that PA led
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to apoptosis in hepatocytes, and autophagy could be
activated with PA treatment. Moreover, through the
effect of regulating autophagy, we have proved that
autophagy had a protective effect in PA-treated hepatocytes.
Autophagy was reported that it has a pro-survival function
under stressful “life-threatening” conditions in most liver
disease [30]. Song MY et al. discovered that dimethyl
sulfoxide reduced hepatocellular lipid accumulation by
autophagy induction [31]. Consequently, autophagy played
a protective role in PA-induced hepatocytes apoptosis.

The reason why PA was able to activate autophagy in
hepatocytes was speculative. Blocking mTOR signaling is
the best pathway for activating autophagy [32]. P70S6K
and 4E-BP1 are two crucial downstream substrates of
mTOR signaling. When sufficient nutrients are available,
mTOR is phosphorylated and transmits a positive signal
to p70S6K and the inactivation effect of 4E-BP1 [33]. We
found that PA treatment caused no significant difference
in phosphorylation levels of mTOR, p70S6K and 4E-BP1 in
hepatocytes, in comparison to control treatment. Therefore,
PA-induced autophagy activation in hepatocytes was inde-
pendent of mTOR signaling pathway. Accumulating data
indicated that ER stress was a potent trigger of autophagy
[34-37], and FFAs have been reported to have a function of
generating ER stress in hepatocytes [38]. Nevertheless, our
result was not consistent with these findings, since PA had
no influence on ER stress markers in hepatocytes, suggest-
ing that autophagy activation was independent of ER stress
pathway. Then PKCaq, as a member of the classical PKC
family, was found played a critical mediator in PA-induced
autophagy in MEF cells [17]. We investigated the role of
PKCu in hepatocytes with PA treatment. It was found that
PA treatment activated p-PKCa in hepatocytes. Taken
together, PA might activate PKCa pathway for activating
autophagy in hepatocytes.

In conclusion, PA can induce hepatocytes apoptosis
and during the process autophagic system is activated,
and the activated autophagy plays a protective role
against PA-induced apoptosis. Besides, PA might induce
autophagy through activating PKC «a pathway in hepato-
cytes. However, the detailed mechanism involved in the
protective effect of autophagy in PA-treated hepatocytes
has yet to be further research.

Materials and methods

Materials

PA, Albumin from bovine serum (BSA, fatty acid free) and
CQ were purchased from Sigma-Aldrich (St.Louise, MO).
Rapamycin was purchased from Gene Operation Datasheet.
Cell counting kit-8 (CCK-8) assay kit was purchased
from DOJINDO (Japan). AnnexinV/PI analysis kit was
purchased from KeyGen Biotechnology (China). DAPI
staining solution was purchased from Beyotime Institute
of Biotechnology (China). GAPDH was purchased from
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HuaAn Biotechnology (China). RIPA buffer and other all
antibodies were purchased from Cell Signaling Technology
(Beverly, MA). Pierce BCA Protein Assay Kit was pur-
chased from Thermo Fisher Scientific. Fugene HD transfec-
tion reagent was purchased from Roche (04709705001).
Odyssey Blocking Buffer was purchased from LI-COR
Biosciences. DNA fragmentation detection kit was pur-
chased from Calbiochem (America).

Cell culture

HL-7702 cell was maintained in RPMI 1640 medium
supplemented with 10% fetal bovine serum, 100 U/ml
penicillin and 100 g/ml streptomycin at 37°C in a
humidified atmosphere containing 5% CO,. HepG2
cell was maintained in DMEM medium supplemented
with the same conditions. Above reagents were purchased
from Gibco Life Technologies.

Preparation of PA

Briefly, 0.103 g Palmitic acid was prepared in 0.1 M 200
ml NaOH at 70°C and filtered. Five percent FFAs-free
BSA solution was prepared in double-distilled H,O and
filtered. The solution of PA was conjugated to 5%
BSA in a 70°C water bath. The above solution was
then cooled to room temperature and diluted in
RPMI 1640/DMEM to final concentrations [39]. Cells
were treated at the concentration of 500 pM PA in
the present research normally. Cells were cultured in
RPMI 1640/DMEM with 3% FBS as control.

Cell viability assay

Cells (5% 10® cells/well) were seeded in 96-wells plate,
and cultured overnight. After treatments as indicated,
cells were incubated with the mixed liquor (10 pL
CCK-8 reagent + 90 pL RPMI 1640/DMEM medium)
at 37°C for 1 hour. Then the value was measured at
450 nm of light absorption.

TUNEL assay

Cells were seeded in microscope slides, and then were
placed in 24-wells plate. After treated as indicated,
cells were fixed using 4% paraformaldehyde, and the
manufacturer’s protocol was followed. TUNEL positive
cells were observed under confocal microscopy.

Western blot analysis

Cellular protein was extracted with 1x cell RIPA buffer.
Density of proteins was determined by Pierce BCA
Protein Assay Kit. According to the routine, equivalent
amounts of protein (30 pg) were loaded onto poly-
acrylamide gels, electrophoresed, and then transferred
onto nitrocellulose NC membranes (Whatman). After
blocking these membranes with odyssey blocking buffer
for 1 hour, target antigens were reacted with primary
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antibodies and subsequently secondary antibodies. At last,
the membranes were scanned by the Odyssey infrared
imaging system.

Transfection of GFP-LC3 plasmids

Cells were seeded in 96-well plates, then GFP-LC3
expression plasmids were transfected into the cells
using Fugene HD transfection reagent. After 24 hour,
cells were treated with PA (500 uM) or non-PA for
24 hours. Autofluorescence GFP-LC3 was observed under
fluorescence microscope.

Gene silencing with lentivirus-delivered shRNA

shRNA candidate target sequence to Atg5 is 5'-CCTTTCA
TTCAGAAGCTGTTT-3". Scrambled shRNA sequence, as
a negative control, is 5'-TTCTCCGAACGTGTCACGT-3".
The oligonucleotides encoding the Atg5-shRNA or
Scrambled shRNA sequence were inserted into the
GFP express vector pGCL-GFP (Shanghai GeneChem,
shanghai, china). The recombinant virus was packaged using
Lentivector Expression Systems (Shanghai GeneChem).
HL-7702 and HepG2 cells were infected, and observed
under fluorescence microscope after 72h.

Annexin V-FITC and PI Staining Analysis

In order to assess apoptosis, 1x 10° cells were plated onto
6-well culture plates and treated with ligands previously.
Following staining according to manufacturer’s protocol,
the apoptosis analysis of cell was performed by flow
cytometry (FCM).

Statistical analysis

All the data were expressed as mean + SEM deviation of at
least three independent experiments. Statistical differences
between the various groups were compared by using
Student’s t test and one-way ANONA. P values less than
0.05 were considered statistically significant.

Abbreviations

NAFLD: Non-alcoholic fatty liver disease; NASH: Nonalcoholic steatohepatitis;
FFAs: Free fatty acids; TAGs: Triacylglycerols; PA: Palmitate; FCM: Flow
cytometer; CQ: Chloroquine; LC3: Microtubule-associated protein 1 light
chain 3; Rapa: Rapamycin; mTOR: mammalian target of rapamycin;

ER: Endoplasmic reticulum; p70S6K: p70 S6 kinase; 4E-BP1: 4E- binding
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