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Hepcidin and sports anemia
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Iron is an important mineral element used by the body in a variety of metabolic and physiologic processes. These
processes are highly active when the body is undergoing physical exercises. Prevalence of exercise-induced iron
deficiency anemia (also known as sports anemia) is notably high in athletic populations, particularly those with
heavy training loads. The pathogenesis of sports anemia is closely related to disorders of iron metabolism, and a
more comprehensive understanding of the mechanism of iron metabolism in the course of physical exercises could
expand ways of treatment and prevention of sports anemia. In recent years, there have been remarkable research
advances regarding the molecular mechanisms underlying changes of iron metabolism in response to physical
exercises. This review has covered these advances, including effects of exercise on duodenum iron absorption, serum
iron status, iron distribution in organs, erythropoiesis, and hepcidin’s function and its regulation. New methods for the
treatment of exercise-induced iron deficiency are also discussed.

Introduction

Iron is an essential trace element in the human body. It
is important for the synthesis of hemoglobin and oxygen
delivery, and plays a key role in the electron transport
chain as well as the production of energy in mitochondria
[1,2]. Many of these functions are directly related to physical
exercises. There is a high rate in athletes, particularly those
with heavy training loads, of being iron deficient, which is
resulted from iron losses in hemolysis, hematuria, sweating
and gastrointestinal bleeding during sports training
[3-6]. Exercise-induced iron deficiency anemia, also
known as sports anemia, leads to a decline of athletes’
performances and other physiologic dysfunctions [2,7]. A
more comprehensive understanding of the mechanisms of
iron deficiency related to sports activities may help
improving the methods of diagnoses and treatments of
iron related-disorders in athletes.

Effects of intensive exercise on iron metabolism
Iron metabolism involves three main aspects: iron
absorption from the diet in the duodenal enterocytes, iron
usage in the erythroid precursors, and iron storage and
reutilization in the hepatocytes and tissue macrophages.
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Effects of intensive exercise on intestinal iron absorption
Iron in the diet can be found in two forms, non-heme
(inorganic) and heme (organic). Radioactive studies of
heme and non-heme iron absorption showed rather low
values in athletes involved in intensive physical activities
[8]. Studies on rats also found that iron absorption
apparently decreased in the strenuously exercised rats as
compared to the sedentary controls [9]. However, the
molecular mechanisms of regulation on the altered iron
absorption during exercise remained unclear. Over the
past decade, the findings of several important molecules
involved in iron homeostasis, including divalent metal
transporter 1 (DMT1), ferroportinl (FPN1), heme-carrier
protein 1 (HCP1), hephaestin (HP) and ceruloplasmin
(Cp), have helped to illuminate the mechanism of decreased
iron absorption in athletes.

Intestinal iron absorption is a tightly regulated process
(Figure 1). Inorganic Fe** cannot be absorbed well, and
duodenal cytochrome B561 (DcytB), a heme-containing
enzyme at the apical surface of the enterocytes, converts
Fe* into Fe** for better absorption [10]. Fe** is transported
across the apical membrane of enterocytes by the
transmembrane transporter DMT1, which is also known
as DCT1 or Nramp2 [11]. Different combinations of the
alternative 5" and 3’ exons (1A or 1B and IRE or non-IRE,
respectively) of DMT1 gene can specify up to four distinct
mRNAs encoding four different DMT1 [12]. All these
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Figure 1 Schematic of intestinal iron uptake. Fe** in the intestinal
lumen is converted into Fe’* by DcytB, and Fe’" is then transported
across the apical membrane of enterocytes by the transmembrane
transporter DMTT1. Dietary heme can also be transported across the
apical membrane by a yet unknown mechanism. HCP1 is a putative
heme transporter that transports heme across the apical membrane of
enterocytes into the cytosol. Heme is subsequently metabolized in the
cytosol by HO-1 (localized at endoplasmic reticulum membrane facing
cytosol) to liberate Fe?*. Iron is then stored in ferritin or eventually
exported across the basolateral membrane into the bloodstream via
Fe”* transporter FPN1. The FPN1-mediated efflux of Fe?* is coupled by
its re-oxidation to Fe**, catalysis by the membrane-bound ferroxidase
HP, and possibly also by its plasma homologue Cp.

DMT1 isoforms function as iron transporters with equiva-
lent transport efficiency [13]. The mechanism of heme
iron absorption is still not well understood. It has been
suggested that HCPI1, a high-affinity folate influx trans-
porter, is responsible for the uptake of heme into the gut
cells from the intestinal lumen [14]. Then heme is
catabolized in enterocytes by heme oxygenase-1 (HO-1),
producing free iron, biliverdin and carbon monoxide [15].
Iron is then stored in ferritin [16] or transferred out across
the basolateral membrane by an integral membrane
protein FPN1 [17] in cooperation with HP [18], and
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possibly also involves its plasma homologue Cp [19].
Our recent studies found that the expression of duodenal
DMT1, HCP1 and FPN1 decreased in strenuously
exercised rats as compared to the control group [20]. This
might be the reason why iron absorption, including both
non-heme and heme iron, is reduced in athletes after
intensive exercise.

Effects of intensive exercise on iron usage by erythroid
precursors

Erythroid cells are the major iron-utilizing cells in the
body. It is generally believed that transferrin and trans-
ferrin receptor (TfR) mediated iron delivery is the main
pathway of iron uptake in erythroid cells [21,22]. The
number of TfR on cell membrane is an important factor
to reflect the cell’s ability to uptake iron from transferrin.
In addition, a soluble form of the TfR (sTfR) has been
identified in animal and human serums. sTfR is released
by erythroblasts [23] and reticulocytes [24], and has
been established as a quantitative marker of cellular
TfR. Levels of TfR on cell membrane and sTfR in serum
are both considered as indicators for the marrow’s
erythropoietic activity.

Studies by Qian et al. [25] found that the average
number of surface TfR on erythroblasts significantly
increased in the strenuously exercised rats as compared to
the controls. A significant increase of the rate of
radioactive iron uptake by the erythroblasts of the
exercised rats was also observed. The sTfR levels signifi-
cantly increased as well in the exercised rats when com-
pared with the sedentary group [26]. These results implied
that intensive exercise could lead to an increase in
erythropoietic activity of the marrow.

Effects of intensive exercise on iron storage and
reutilization

Most of the body iron is stored in parenchymal cells and
macrophages of the liver. When the body iron demand
increases, iron storage in organs and tissues decreases.
Intensive exercise can lead to an increase in erythropoietic
activity of the marrow [2526], and the synthesis of
hemoglobin requires a large amount of iron. Therefore,
intensive exercise could induce a reduction of iron stores
in liver. Studies of Liu et al. [20] and Qian et al. [25]
confirmed the above hypothesis. They found that exercise
induced a significant decrease of the iron concentration in
liver. However, other reports showed that hepatic iron
level increased significantly with acute exercise [27,28].
The contradictory results could come from different
training methods, exercise intensity, or length. Hemolysis
has been reported to occur in a variety of exercises includ-
ing swimming, cycling and running [29,30]. When erythro-
cyte destruction occurs intravascularly, it results in release
of hemoglobin into the bloodstream [31]. Then the free
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hemoglobin is rapidly bound by haptoglobin and cleared
from the circulation by parenchymal cells or macrophages
of the liver [32]. It has been observed that the haptoglobin
level in serum decreased after exercise [31]. Therefore,
some of iron is redistributed from red blood cells to the
liver due to hemolysis, which might explain why in
some studies an increased hepatic iron level resulted
from intensive exercises could be observed.

Sports anemia and hepcidin

Although exercise can increase erythropoietic activity
in marrow [25], it was found that erythrocyte num-
bers, haemoglobin levels and haematocrit values were
significantly decreased after intensive training [20,26].
This observation may be resulted from the reduced
iron absorption in small intestine and the decreased
iron export to the circulation from parenchymal cells
and macrophages. Many studies have reported that
significant decreases in a series of serum iron status
indicators, including serum iron, transferrin saturation
and serum ferritin, were observed in both human and
animal models following intensive training [20,33-35].
This suggested that the amount of serum iron transferred
to bone marrow was reduced after extensive exercise,
which may cause the iron concentration in bone marrow
cannot meet the demand of the accelerated erythropoietic
process. As a result, the increased loss of red blood cells
and the insufficient production of new red blood cells
together would lead to the occurrence of anemia.
However, the regulatory mechanism in iron metabolism
that leads to the decreased iron absorption in small
intestine and the trapping of iron in liver are unknown.
Hepcidin, the principal iron-regulatory hormone respon-
sible for the maintenance of iron homeostasis, controls the
absorption of dietary iron and the distribution of iron
among organs and tissues in the body [36]. Therefore, the
decreased iron absorption and increased hepatic iron stores
observed in the exercised rats may closely relate to
the hepatic hepcidin expression.

Effects of intensive exercise on the expression of hepcidin
In recent years, many studies on the function of hepcidin
in sports anemia have been reported. A 72 h timeline of
hepcidin expression post-exercise was assessed, which
showed that the hepcidin level significantly elevated at 3,
6 and 24 h post-exercise, and then declined from there,
reaching baseline at 72 h post-exercise [37,38]. These
results revealed the association of hepcidin expression
with the intensive exercise. Instead of using a single
exercise stimulus, studies from our laboratory detected
the accumulative effects of intensive exercise on hepcidin
expression by having the rats take strenuous treadmill
running for 5 weeks. Our results showed that the hepatic
hepcidin mRNA increased significantly in the exercised
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rats, and those rats were diagnosed as sports anemia after
5 weeks of intensive exercise [20]. These findings were
consistent with the results observed in human [39].

Hepcidin causes the reduction of duodenal iron
absorption and trapping of intracellular iron

during exercise

Nemeth et al. [40] have demonstrated that hepcidin can
decrease the functional activity of FPN1 by binding to it
directly, resulting in its internalization and degradation,
and thereby blocking cellular iron efflux. It was also
demonstrated that the triggering of FPN1 degradation by
hepcidin in hepatocytes could lead to decreased iron export
and increased retention of cellular iron [41]. Treatment of
macrophages with hepcidin dramatically decreased the
FPN1 protein level and reduced the efflux of iron after
erythrophagocytosis [42,43]. Administration of His-tagged
recombinant hepcidin resulted in significant reduction of
duodenal FPN1 expression in rats [44]. Therefore, it can be
concluded that hepcidin limits the release of iron from
hepatocytes, macrophages and enterocytes by decreas-
ing FPN1 expression and increasing its degradation. In
addition, both in vitro and in vivo studies have demon-
strated that the duodenal DMT1 level decreases following
hepcidin treatment [45,46]. Further studies showed that the
decreased expression of DMT1 by hepcidin was caused by
ubiquitin-dependent proteasome degradation in Caco-2
cells (a human intestinal cell line) [47]. These results
suggest that hepcidin not only controls iron release to
the circulation, but also regulates iron absorption in
the intestine.

Taken together, it can be inferred that the increased
hepcidin expression after exercise results in the degradation
of iron transporters such as DMT1 and FPNI, causing the
reduction of iron absorption from small intestine and
the trapping of iron in hepatocytes and macrophages.
Therefore, it is very likely that the frequently observed
iron deficiency in athletes is caused, at least in part, by the
elevated hepcidin level. Some of the above speculations
have been investigated in our previous studies. We found
that hepatic hepcidin mRNA significantly increased in rats
trained with strenuous exercise, which was associated
with an obvious decrease in duodenal DMT1 and FPN1
expression [20]. However, whether the expression of
FPN1 in parenchymal cells or macrophages of the liver
alters during exercise remains to be investigated in
the future studies.

Hepcidin expression in moderate exercise

It is well known that strenuous exercise usually leads to
the development of sports anemia. In contrast, regular
and moderate exercise training might be a promising,
safe and economical method to help improve body iron
status. Our previous results showed that the levels of
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serum iron and transferrin saturation in moderately
exercised rats were significantly higher than that of the
controls [48]. This in turn induced an increased iron
transport from blood to bone marrow to synthesize
hemoglobin and erythrocytes, resulting in enhanced
oxygen-carrying capacity [48].

Studies also investigated the changes of hepcidin
expression level during moderate exercise, and found
that the moderate exercise did not induce but de-
creased hepcidin expression [48,49]. Studies further
demonstrated that the expression of DMT1 and FPN1
in duodenum of the moderately exercised rats increased
significantly as compared to the controls, suggesting
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that moderate exercise may increase duodenal iron
absorption [48]. These results, from a different aspect,
imply that hepcidin plays an important role during
exercise.

Hepcidin regulation by exercise

Hepcidin is produced primarily by hepatocytes. Other
tissues and cells, such as macrophages, have been shown
to express hepcidin as well, though at a much lower
level [50]. So far, it has been demonstrated that hepcidin
expression can be influenced by inflammation [51], body
iron status [52], erythropoiesis [53], as well as hypoxia
[54] (Figure 2).
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Figure 2 Molecular mechanisms of hepcidin regulation. So far, three molecular pathways are found to be involved in the regulation of hepcidin,
JAK/STAT3, BMP/SMAD and HFE/TfR2 pathways. Inflammatory stimuli, such as IL-6, induce hepcidin synthesis through the JAK/STAT3 pathway. Hepatic
cellular iron can increase the expression of BMP-6. The released BMP6 then interacts with BMPR and HJV to form a complex and activates the SMAD
pathway. The SMAD pathway involves phosphorylation of SMADT, 5, and 8 (pSMADs), formation of pSMADs/SMAD4 complex, and the subsequent
translocation of this complex to the nucleus to activate the expression of the hepcidin gene. Extracellular Tf-Fe?* mediates a second iron signal. When
the serum transferrin saturation increases, Tf-Fe”* displaces HFE from TfR1. HFE then interacts with TfR2 to form the HFE/TfR2 complex. The HFE/TfR2
complex activates hepcidin transcription via H)V/BMP/SMAD and/or ERK/MAPK signaling pathway. Furthermore, HJV is subjected to cleavage by furin
and TMPRSS6 to form a soluble HJV (sHJV), which can selectively inhibit BMP-induced hepcidin expression. Furin and TMPRSS6 can be regulated by
hypoxia via HIF-1. Erythropoiesis may control hepcidin expression by EPO production. EPO subsequently stimulates GDF15 expression, which acts
together with TWSGT to inhibit hepatic hepcidin expression by inhibiting the BMP/SMAD pathway.
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Hepcidin regulation by inflammation during exercise

A variety of studies have demonstrated that exercise
induces notable physiological changes in the immune
system [55]. Strenuous exercise can induce a dramatic
increase in the levels of pro-inflammatory cytokines and
inflammation-responsive cytokines [56]. Interleukin-6
(IL-6) is the major cytokine that was produced at a
significant higher amount in response to exercise than
other cytokines [57,58], while the contracting muscles
contribute to most of the IL-6 production in the circulation
in response to exercise [57,59].

Hepcidin synthesis was markedly induced by infection
and inflammation [51,60], and IL-6 itself is sufficient to
induce hepcidin expression during inflammation [61].
Significant higher amount of hepatic hepcidin mRNA was
detected 3 to 6 h after IL-6 stimulation, which indicates
that the production of IL-6 in contracting skeletal muscles
results in the exercise-induced hepcidin increase. Studies
by Peeling et al. [38] support this hypothesis as it was
found that hepcidin levels elevated 3 h after the peak
production of IL-6 induced by exercise. In addition,
animals treated with cyclosporin A, a calcineurin inhibitor
to blunt plasma IL-6 during exercise, showed lower
hepcidin levels as compared to the exercised group
without cyclosporin A treatment [62]. These results
suggest that IL-6 is involved in the exercise-induced
increase of hepcidin expression. Furthermore, it has
been demonstrated that the stimulatory effect of IL-6
on hepcidin expression exhibits at the transcriptional
level. Hepcidin expression is directly induced by IL-6
through the activation of the janus kinase/signal transducer
and activator of transcription-3 (JAK/STAT3) signaling
pathway during inflammatory stimulation [63-65].

Hepcidin regulation by iron status during exercise

How iron regulates the expression of hepcidin has been
a hot area of study in this field. By studying the naturally
occurring mutations in humans and using transgenic
mouse models, valuable information has been obtained
regarding the key molecules involved in the regulation
of hepcidin expression by circulating iron and hepatic
stored iron. These molecules include HFE (HLA2-linked
hemochromatosis gene) [66,67], transferrin receptor 2
(TfR2) [68-70], hemojuvelin (HJV) [71] and bone
morphogenetic protein (BMP) [72]. A possible model
on the regulation of hepcidin by iron is proposed based
on these results (Figure 2). Briefly, hepcidin expression is
regulated by hepatic cellular iron stores through Bone
morphogenetic protein 6 (BMP6) signaling. BMP6 is an
activating ligand for BMP receptor (BMPR), and its level
reflects the level of hepatic iron stores. When liver iron
concentration is high, the production of hepatocyte
BMP6 is increased. Then, the released BMP6 from
the hepatocyte forms a complex with BMPR and HJV.
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Binding of BMP6 to BMPR controls the transcription
of hepcidin by activating the SMAD pathway. The
liver uses transferrin saturation as an extracellular
iron sensor. When the serum transferrin saturation
increases, HFE is dislodged from its binding site on
TfR1, and then interacts with TfR2 to form the HFE/TfR2
complex. This complex participates in the hepcidin
regulation though activation of the extracellular signal-
regulated kinases/the mitogen activated protein kinase
(ERK/MAPK) pathway and/or HJV/BMP/SMAD pathway
[36,52,73-76].

HJV plays a central role in the regulation of hepatic
hepcidin expression. HJV acts as a coreceptor for BMP
to increase the sensitivity of BMPR to BMP, and various
hepcidin regulatory pathways seem to be converged at
this protein (Figure 2). Recent researches showed that
HJV is not only highly expressed in liver, but also in
skeletal muscles. Studies from our laboratory found the
levels of HJV mRNA in liver and skeletal muscle were
remarkably higher in the exercised rats than in the
controls [20]. Thus, hepcidin expression may also be
induced by the elevation of HJV during exercise. However,
the underlying mechanism of HJV-regulated hepcidin
expression in response to sport remains to be explored.

Hepcidin regulation by erythropoiesis during exercise

Studies by Qian et al. [25] and Tian et al. [26] both
indicated that extensive exercise could lead to an increase
in erythropoietic activity of bone marrow. It has also been
demonstrated that increased erythropoiesis can suppress
hepcidin expression significantly [51]. However, the
relationship between increased erythropoiesis and decreased
hepcidin expression and the molecules involved remain
unclear. Erythropoietin (EPO), an endogenous hormone
produced primarily by kidney, is a key regulator of erythro-
poiesis. EPO promotes the proliferation and differentiation
of the erythroid progenitor cells [77]. Increases in serum
EPO concentration have been observed in athletes [78],
and many studies also reported that hepatic hepcidin
expression strongly reduced by EPO treatment [79,80].
Therefore, EPO has been considered to be a potential
mediator of hepcidin regulation. The in vitro studies by
Pinto et al. [81] indicated that the EPO suppression on
hepcidin expression was achieved by modulating the
C/EBPa mRNA and decreasing its protein levels, thereby
resulting in significant changes in the transcription of
hepcidin mRNA. However, this hypothesis has not been
confirmed in vivo. Studies in animal models found
that the suppression of hepcidin expression by EPO
administration could be recovered by using the inhibitors
of erythropoiesis via irradiation or posttransfusion polycy-
themia [82,83]. These results suggest that EPO decreases
hepcidin transcription only when the erythropoiesis is
active. Therefore, the suppression of hepcidin expression
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was not directly mediated by EPO, and other erythropoietic
factors may be involved.

Growth differentiation factor 15 (GDF15), a member of
the transforming growth factor-beta superfamily, is
produced by erythroid cells during erythroblast maturation
to promote differentiation of erythroid [84]. It has been
found that GDF15 significantly increased immediately after
a 246-km foot-race, and then it showed a decline at 48 h
post-exercise, but was still above the baseline level.
Erythroid-specific production of GDF15 is fully dependent
on EPO stimulation [85]. Therefore, GDF15 might provide
a link between erythropoiesis and hepatic hepcidin
regulation. In fact, GDF15 has been identified as a
hepcidin-suppression factor that expresses at high
levels in thalassemia patients with ineffective erythro-
poiesis. In cultured hepatocytes, high level of GDF15
has also been found to suppress hepcidin expression
[86]. Twisted gastrulation (TWSG1), an erythroid sig-
naling molecule that expresses at early stages during
erythropoiesis, was proposed to act together with GDF15
to inhibit hepatic hepcidin expression through inhibiting
the BMP-dependent activation of SMAD-mediated signal
transduction [87]. However, this proposed mechanism
is still controversial. Casanovas et al. [88] found that
hepatic hepcidin mRNA expression was not altered in
GDF15”'~ mice under steady state conditions or upon
phlebotomy as compared to wild-type mice, which sug-
gests that GDF15 is not involved in the down-regulation
of hepcidin under steady state conditions or in response
to blood loss in mice. Therefore, whether GDF15 is
involved in the hepcidin regulation by erythropoiesis
during exercise needs to be further studied.

Hepcidin regulation by hypoxia during exercise

Many studies have demonstrated that training athletes at
high altitude may significantly increase their VO,max
and RBC mass and thereby improve their endurance
performance [89,90]. Further studies found that the
adaptation in iron metabolism will appear under high
altitude and hypoxia conditions in mountaineers. Under
hypoxia conditions, serum duodenal DMT1 and FPN1
mRNA increased and hepcidin level decreased. These
changes would result in increased dietary iron uptake
and iron release from iron stores to ensure a sufficient
iron supply for hypoxia-induced erythropoiesis [91].

The mechanism of hepcidin suppression by the
hypoxia at high altitude is also unclear. It is likely
that hypoxia-inducible transcription factor (HIF), the
master regulator of the systemic and cellular adaptation to
hypoxia, plays a role in hepcidin regulation. Peyssonnaux
et al. [92] proposed that HIF regulates hepcidin expression
directly via transcriptional suppression. However, this
could not be confirmed in the isolated hepatocytes [93],
and other indirect pathways by which HIF regulates
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hepcidin expression may exist. It has been found that HIF
could regulate renal and hepatic EPO synthesis directly
under hypoxia [94], and the activation of hepatic HIF itself
without the concomitant increase in EPO transcription
did not suppress hepcidin expression [95]. Therefore,
the regulation of HIF on hepcidin may be mediated
by affecting the EPO synthesis. Taken together with
the above mentioned association between EPO induction
and elevated serum GDF15 level [91], it can be inferred
that HIF-associated suppression of hepcidin may occur
indirectly through EPO-induced erythropoiesis and its
subsequent signaling via GDF15 [95]. Furthermore, HIF
was reported to induce the production of furin and
transmembrane serine proteinase TMPRSS6 (also known
as matriptase-2), two proteases that mediate the release of
soluble hemojuvelin (s-HJV) by cleaving HJV off from the
cell membrane [96,97]. s-HJV was found to competi-
tively inhibit BMP-induced hepcidin expression [98,99].
Therefore, HIF may also suppress hepcidin expression by
increasing the breakdown of HJV and inhibiting the
BMP-induced hepcidin expression.

Hepcidin in the premenopausal female athletes

It is believed that female athletes may experience higher risk
of sports anemia than male athletes due to the iron losses in
some physiologic processes, such as menstruation [100].
However, it has been found that erythropoiesis induced by
blood loss could lead to a decrease in hepcidin expression,
thereby increasing iron level in the body. By using the
serum enzyme-linked immunosorbent assay, it was found
that healthy women had lower serum hepcidin levels than
healthy men [101]. Animal studies also found that bleeding
provoked by repetitive phlebotomies was associated with a
dramatic decrease in hepatic hepcidin level [51]. However,
the precise mechanism on hepcidin regulation associated
with sex differences is not clear. Studies by Ikeda et al.
showed that the female sex hormone, estrogen, can stimu-
late hepcidin expression in a GPR30-BMP6-dependent
pathway [102]. In contrast, testosterone can suppress hepci-
din expression potently via testosterone/AR/SMAD [103] or
testosterone/EGF/EGEFR signaling pathways [104]. Based on
these above results, it puzzles to find that the serum hepci-
din level in women is lower than that in men. We hypothe-
sized that physiological loss of blood in pre-menopausal
women had a suppressive effect on hepcidin transcription,
which may counteract the stimulating effect of estrogen on
hepcidin expression to some extent. If menstruation in the
female athletes does not exist, they still would develop iron
deficiency anemia much rapider than the male athletes
because of the high level of hepcidin induced by estrogen.

Methods to measure the hepcidin level
Because of the important functions of hepcidin in athlete’s
iron homeostasis, a reliable assay to measure hepcidin
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levels in the body fluids of athletes should be developed.
However, for many years, it has been difficult to detect
hepcidin by the conventional immunochemical assay. This
is mainly due to the problems in generating specific
anti-hepcidin antibodies in animals because of low
immunogenicity of the short hepcidin peptides [79].
Hepcidin is synthesized by the liver in the form of an
84 amino-acid pro-peptide, but it is detected in the
plasma as three isoforms including hepcidin-20, -22,
and -25 [105]. The hepcidin-20 and -22 isoforms
play no role in the regulation of iron metabolism, but
they can interfere with the quantification of hepcidin-25,
because the antibodies used in the immunoassays can
react with all of three hepcidin isoforms.

In recent years, substantial progress has been made in
the measurement of hepcidin. These methods can be
divided into two main methodologies. The first one is mass
spectrometry (MS)-based hepcidin measurement, which
has the advantage of distinguishing hepcidin-25, -22,
and 20 in various body fluids, including serum and urine
samples, but it requires relatively expensive equipment
[106-109]. The second method, immunochemical assays
including competitive radioimmunoassay (RIA) [110],
competitive enzyme-linked immunosorbent assay (ELISA)
[107,111] and dual-monoclonal sandwich ELISA [112],
is suitable for the large-scale quantification of serum
hepcidin because of its low cost and high-throughput
features, but these assays usually measure the amount
of all three hepcidin isoforms [112].

Treatment of sports anemia

The use of iron-supplementary

For iron deficiency anemia, iron supplement therapy is a
relatively safe and economical method, but the efficacy
of iron supplement is often very low. Previous studies
have demonstrated that iron supplementation can lead
to the increase of serum ferritin without accompanied
by the increase in hemoglobin concentration [113]. On
the other hand, increased iron stores in the body are
a common finding in elite athletes who have used
long-term iron supplementation, putting the athletes at an
increasing risk of developing iron overload-related diseases
[114]. The combination of exercise-induced decrease of
iron absorption in duodenum and increase of iron retention
in hepatocytes and macrophages may be responsible for the
above observation. Therefore, investigations to explore
new methods for the treatment of sports anemia should
be initiated.

The use of hepcidin antagonists

The recent advances in the molecular mechanisms of
iron regulation reveal that the elevated hepcidin expres-
sion is a key factor in the development of sports anemia.
Hepcidin inhibits iron absorption in enterocytes and
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causes iron sequestration in hepatocytes and macrophages
[36]. Therefore, using hepcidin antagonists to modulate
hepcidin expression is a novel alternative therapy for the
treatment of sports anemia. Although no such therapy has
yet been available, several candidates are currently under
development.

Methods to neutralize hepcidin’s activity

Monoclonal antibodies of hepcidin Cooke et al. [115]
generated anti-hepcidin human antibodies as a potential
therapeutic for the treatment of anemia of inflammation
(AI), which has the similar iron-related disorders to
sports anemia. They found that these antibodies can
increase the availability of serum iron and lead to enhanced
red cell hemoglobinization both in mouse and cynomolgus
monkey models of AL. However, hepcidin antibodies may
reduce the natural clearance of hepcidin in the circulation
and thus result in further hepcidin accumulation.

Small-molecule antagonists of hepcidin Fung et al
[116] identified a small molecule, named fursultiamine,
which inhibits the hepcidin-FPN1 interaction. They
found that fursultiamine directly interfered with hepcidin
binding to FPNI, thereby preventing hepcidin-induced
FPN1 ubiquitination, endocytosis and degradation. This
allowed continuous cellular iron export despite of the pres-
ence of hepcidin. Studies by Schwoebel et al. [117] found
another anti-hepcidin compound, NOX-H94, which can
also protect FPNI1 from hepcidin-induced degradation.

Methods to decrease hepcidin expression

In addition to directly interfering with hepcidin activity,
therapies can be effective by targeting erythropoiesis
pathway, inflammatory pathway, or HJV/BMP/SMAD
signaling pathway to decrease the hepcidin production.

EPO doping EPO is the primary signal that triggers
erythropoiesis in anemic and hypoxic conditions. Therefore,
EPO has been investigated as a drug to increase oxygen
transport and improve athletic endurance capacity [118].
EPO has been frequently used by athletes as a performance-
enhancing agent [119]. In 1990, the International Olympic
Committee (IOC) prohibited the use of EPO in sports.
Without considering its legality, EPO doping administration
has the potential of correcting some misregulations in iron
metabolism of athletes. Previous studies in our lab observed
that administration of recombinant human erythropoietin
(rHUuEPO) induced a dramatic reduction in hepcidin expres-
sion, which is closely associated with the increased intestinal
iron absorption and macrophage iron release [53,120].
However, athletes, who use EPO to enhance their perform-
ance, are taking great health risks. Elevated haematocrit and
dehydratation during intense exercise may induce high
blood viscosity, which is often associated with high blood
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cardiovascular problems, such as hypertension, heart
hypertrophy and brain vascular congestion [121].

Anti-IL6 antibodies and STAT modulators Anti-cyto-
kine therapeutics, such as anti-IL-6 antibodies, can
block the induction of hepcidin and improve anemia
[122,123]. AG490, a small molecule of STAT3 inhibitor,
can suppress hepcidin transcription and increase serum
iron levels in mice by inhibiting the JAK/STAT signaling
pathway [124]. CO-releasing molecules can also inhibit
the IL-6-induced hepcidin expression through inhibition
of the STAT3 pathway [125]. However, the anti-cytokine
therapy may lead to an increased risk for severe infections
due to the impaired host defense [126].

BMP modulators As mentioned above, s-HJV decreases
hepcidin expression by competing with HJV and interfering
with BMP signaling [98]. Studies by Theurl et al. [127]
demonstrated that inhibition of hepcidin expression by
using the soluble hemojuvelin-Fc (sHJV.Fc) in a rat model
of Al resulted in the mobilization of iron stores, increase of
serum iron levels, stimulation of erythropoiesis, and
correction of anemia. In addition, inhibition of BMP type 1
receptor signaling by small molecules, such as dorsomor-
phin, was also effective in alleviating iron deficiency
anemia. Dorsomorphin can block BMP-mediated SMAD1/
5/8 phosphorylation, reduce hepcidin expression and raise
serum iron levels [128]. Heparin, another potent inhibitor
of hepcidin expression, can induce a strong reduction in
serum hepcidin both in animal models and humans, which
finally led to an increase in serum iron levels [129]. It
functions likely by sequestering BMP6 and blocking of
SMAD signaling [129]. However, since BMP pathway plays
a variety of important functions in the body, the use of
BMP modulators may have various adverse effects.
BMP modulators as potential drugs to reduce hepcidin
expression should have a great specificity.

Conclusions

Iron is an essential trace element required to support
the physical functions in human body. However, iron
deficiency is commonly found in strenuous exercised
athletes. In addition to those well-known processes of
iron loss, such as hemolysis, hematuria, sweating and
gastrointestinal bleeding, exercise-induced up-regulation
of hepcidin expression might be the main reason that
results in iron deficiency in athletes. Taken together of our
work with others’ reports, we infer that the increased
hepcidin inhibits both brush border iron uptake and
basolateral export through the down-regulation of key
iron transporters, DMT1 and FPN1. In hepatocytes
and macrophages, hepcidin decreases FPN1 expression
and results in a decreased iron export and cellular iron
retention. Reduced intestinal iron absorption, sequestered
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iron in hepatocytes and macrophages, and elevated iron
demand for erythropoiesis after extensive exercise can
lead to a low-iron status, indicated by low serum iron con-
centration, transferrin saturation and markedly decreased
non-heme iron concentration in some tissues. If the
amount of iron in marrow could not meet the needs for
erythropoiesis during exercise, iron deficiency anemia
will be developed. Therefore, iron homeostasis will be
destroyed after the prolonged strenuous exercise, which
does harm athletes’ performance and health. Molecules
IL-6, HJV, EPO and HIF were found to be involved in
the exercise-induced alteration of hepcidin expression.
The possible regulatory mechanism for each molecule was
discussed in this review. However, our current under-
standing of the detailed mechanisms on exercise-induced
alteration of iron metabolism is still incomplete, and
further studies are needed. Recent advances regarding
the drugs that can decrease hepcidin expression were
summarized in this review, which will provide some
insights into the development of potential therapeu-
tics for treatment of sports anemia in the future.
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