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Abstract

Human papillomavirus (HPV) infections are particularly problematic for HIV + and solid organ transplant patients
with compromised CD4+ T cell-dependent immunity as they produce more severe and progressive disease
compared to healthy individuals. There are no specific treatments for chronic HPV infection, resulting in an
urgent unmet need for a modality that is safe and effective for both immunocompromised and otherwise normal
patients with recalcitrant disease. DNA vaccination is attractive because it avoids the risks of administration of live
vectors to immunocompromised patients, and can induce potent HPV-specific cytotoxic T cell responses. We have
developed a DNA vaccine (pNGVL4a-hCRTE6E7L2) encoding calreticulin (CRT) fused to E6, E7 and L2 proteins of HPV-16,
the genotype associated with approximately 90% vaginal, vulvar, anal, penile and oropharyngeal HPV-associated cancers
and the majority of cervical cancers. Administration of the DNA vaccine by intramuscular (IM) injection followed
by electroporation induced significantly greater HPV-specific immune responses compared to IM injection alone
or mixed with alum. Furthermore, pNGVL4a-hCRTE6E7L2 DNA vaccination via electroporation of mice carrying an
intravaginal HPV-16 E6/E7-expressing syngeneic tumor demonstrated more potent therapeutic effects than IM
vaccination alone. Of note, administration of the DNA vaccine by IM injection followed by electroporation elicited
potent E6 and E7-specific CD8+ T cell responses and antitumor effects despite CD4+ T cell-depletion, although no
antibody response was detected. While CD4+ T cell-depletion did reduce the E6 and E7-specific CD8+ T cell response,
it remained sufficient to prevent subcutaneous tumor growth and to eliminate circulating tumor cells in a model of
metastatic HPV-16+ cancer. Thus, the antibody response was CD4-dependent, whereas CD4+ T cell help
enhanced the E6/E7-specific CD8+ T cell immunity, but was not required. Taken together, our data suggest that
pNGVL4a-hCRTE6E7L2 DNA vaccination via electroporation warrants testing in otherwise healthy patients and
those with compromised CD4+ T cell immunity to treat HPV-16-associated anogenital disease and cancer.
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Introduction

Of the over one hundred known Human papillomavi-
ruses (HPVs), a dozen high risk types are associated with
cancer. These oncogenic types infect the genital mucosa
and are sexually transmitted. The oncogenic HPVs are
the primary etiologic agents of cervical cancer and are
also known to cause a subset of head and neck, vaginal,
vulvar, anal and penile cancers [1-3]. HPV-16 is the most
problematic type as it causes at least half of all cervical
cancers and the great majority (approximately 90%) of
the HPV-associated cancers at the other anogenital sites
and oral cavity. HPV-associated diseases are a significant
problem for HIV+ and otherwise immunocompromised
patients who are less able to clear their HPV infections
than healthy individuals. HPV-associated cancer inci-
dence is significantly elevated at multiple sites in HIV +
patients, notably cervical cancer, which has been desig-
nated an HIV-associated malignancy [4], and anal cancer
that is predominantly driven by HPV-16 [5]. In addition,
HIV + patients more frequently acquire multi-type in-
fections; many of which are infrequently seen in healthy
individuals, and consequently are not targeted by the
current HPV vaccines [6]. Furthermore, benign HPV dis-
ease is also more severe and intractable in HIV + and solid
organ transplant patients [4]. There are no specific treat-
ments for chronic HPV infection, and warts are typically
treated with limited success by surgery, ablation via cryo-
therapy or non-specific immune modulators. Therefore,
there remains an urgent need for a therapy to effectively
treat chronic oncogenic HPV infection, particularly
HPV-16, and associated diseases using an approach that
is safe and effective even for immunocompromised
patients [7].

One potential strategy to treat HPV infection and disease
in immunocompromised patients is DNA vaccination.
DNA vaccines elicit cell-mediated and/or humoral immune
responses and are considered safe even for immunocom-
promised individuals because they do not contain live
pathogen [8]. Although intramuscular (IM) DNA injection
has a low efficiency of host cell transduction and encoded
antigen expression on its own, delivery is greatly enhanced
with immediate electroporation at the injection site [9].
We have previously generated various therapeutic HPV
DNA vaccines encoding HPV antigens and including
various enhancement strategies such as targeting the
antigen to the endosomal/lysosomal compartment [10],
as well as linkage to HSP70 [11], to the extracellular do-
main of Fms-like tyrosine kinase 3-ligand [12] and to the
translocation domain of a bacterial toxin [13]. In par-
ticular, we have found that linkage to the heat shock
protein calreticulin (CRT) in DNA vaccines potently
enhances the immune response to heterologous antigens
[14-16]. Indeed, one of these DNA vaccines encoding
CRT linked to HPV-16 E7 antigen (CRT/E7(detox)) has
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advanced to clinical trials. The CRT/E7(detox) DNA
vaccine is currently being tested in Phase I clinical
trials in patients with HPV-16+ head and neck cancer
(NCT01493154) and in a trial in HPV-16+ grade 2/3
cervical intraepithelial neoplasia (NCT00988559).

Although the clinical grade CRT/E7 (detox) DNA
vaccine has been used in the clinic, it could be poten-
tially improved by the fusion of additional HPV anti-
gens. It has been shown that T cell-mediated immune
responses against HPV E6 antigen are associated with a
favorable clinical outcome, and may be immunodomi-
nant in some patients [17,18]. Furthermore, humoral
immune responses against the L2 capsid protein have
been shown to provide broad protection against infection
by a wide spectrum of HPV subtypes in animal models
[19,20]. Therefore, we developed a preventive and thera-
peutic HPV DNA vaccine encoding CRT linked to HPV-
16 E6, E7 and L2 proteins (pNGVL4a-hCRTE6E7L2) [21].
The cross-protective effects of L2-specific neutralizing
antibody have the potential to prevent the unusual HPV
types and multi-type HPV infections seen in the HIV +
population. Indeed, we previously found that vaccination
with pPNGVL4a-hCRTE6E7L2 DNA vaccine was capable
of generating HPV neutralizing antibodies as well as con-
trol of HPV-16 E6/E7-expressing tumors in a preclinical
model [21]. In contrast to patients, E6 is poorly immu-
nogenic in the C57/BL6 mouse, but immunization with
a DNA vaccine expressing E6 fused to CRT elicits thera-
peutic responses [15]. Taken together, the pNGVL4a-
hCRTE6E7L2 DNA vaccine has promise for the treatment
of HPV16-associated lesions as well as to generate a
pan-HPV protective effect against new or re-infection.
However, it is unclear whether the vaccine will be active
in patients with compromised CD4+ T cell-dependent
immunity who so urgently need such a treatment. In
the current study, we test the immunogenicity and
therapeutic effects of the pNGVL4a-hCRTE6E7L2 DNA
vaccine against an E6/E7-expressing murine model of
anogenital HPV-16+ cancer in both immunocompetent
and immunosuppressed settings.

Results

In vivo electroporation enhances cell-mediated and
humoral HPV antigen-specific immune responses to
intramuscular vaccination with CRTE6E7L2 DNA

In the current study, we first sought to determine the ideal
route of administration of the CRTE6E7L2 DNA vaccine.
C57BL/6 mice were vaccinated three times at two-week
intervals with CRTE6E7L2 DNA at doses of 2 pg or 20 pg
and either with or without alum (Figure 1A). The vaccines
were administered intramuscularly with or without elec-
troporation. Two weeks after the last vaccination, spleno-
cytes and serum were collected from treated mice and
analyzed by CD8+ T cell intracellular cytokine expression
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Figure 1 Comparison of immunogenicity of CRT/E6E7L2 DNA vaccine

with anti-mouse CD8 followed by intracellular IFN-y. The data were acquire
HPV16 L2-specific neutralizing antibody responses.

experiment. Briefly, 5-8 week old female C57BL/6 mice (5 mice/group) were vaccinated with either 2 ug/mouse or 20 pg/mouse of CRT/E6E7L2
DNA, or CRT/E6E7L2 DNA formulated with 45 ug of aluminum phosphate by intramuscular injection, or followed by electroporation. The mice
were boosted with the same regimen twice with a 2-week interval. Two weeks after last vaccination, serum and splenocytes were collected.
Summary of HPV16 E6- (B) or E7- (C) specific CD8" T cell responses analyzed by IFN-y intracellular staining. Splenocytes were stimulated with

1 ug/ml of HPV16 E6aa48-57 or HPV16 E7aa49-57 peptide at the presence of GolgiPlug (1 ul/ml) overnight at 37°C. The cells were then stained

administered by various methods. (A) Schematic illustration of the

d with FACSCalibur and analyzed with CellQuest. (D) Summary of the

and HPV-16 fcPsV neutralization assays, respectively. As
shown in Figure 1B and C, in general, IM administration
of the CRTE6E7L2 DNA vaccine with electroporation was
significantly better for generating HPV antigen-specific
CD8+ T cells compared to IM administration of the DNA
without electroporation. This was true for both E6 and E7,
and was generally consistent between the low and high
dose DNA vaccine groups. Furthermore, we observed that
alum did not further enhance the generation of antigen-
specific T cells elicited by IM injection of CRTE6E7L2
DNA vaccine with electroporation (Figure 1B and C). In
addition, as shown in Figure 1D, at a dose of 20 g,
vaccination with CRTE6E7L2 DNA with either alum or
electroporation generates similar levels of HPV-specific

antibodies, and CRTE6E7L2 DNA vaccine administration
with the combination of alum and electroporation only
generates a minimal increase in antibody levels compared
to vaccination with either DNA with alum or DNA with
electroporation. Overall, these data suggest that DNA vac-
cination followed by electroporation generates a superior
HPV-specific immune response compared to IM injection
alone or with alum.

CRTEG6E7L2 DNA vaccine administered intramuscularly
followed by electroporation generates potent antitumor
effects

C57BL/6 mice were challenged with firefly luciferase-
expressing TC-1 tumor cells (TC-1-Luc) intravaginally.
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As shown in the treatment schedule in Figure 2A, mice
were treated with CRTE6E7L2 DNA vaccine by IM ad-
ministration with or without subsequent electroporation
on days 7, 11 and 14 after tumor challenge. As shown in
Figure 2B, IM administration of CRTE6E7L2 DNA vac-
cine followed by electroporation significantly reduced
the intensity of luminescence indicating a reduction of
tumor volume compared to IM vaccine without electro-
poration. Furthermore IM administration of CRTE6E7L2
DNA vaccine followed by electroporation prolonged sur-
vival compared to IM vaccine administration without
electroporation (Figure 2C). These data indicate that
electroporation significantly enhances the antitumor ef-
fects generated by the CRTE6E7L2 DNA vaccine.

CRTE6E7L2 DNA vaccine administered intramuscularly
followed by electroporation elicits antigen-specific

CD8+ T cells systemically and locally

Next, we examined which vaccine administration method
most effectively generated E7-specific CD8+ T cells. Mice
were challenged with TC-1-Luc tumor cells intravaginally
and treated beginning one week later with three IM in-
jections at three-day intervals of CRTE6E7L2 DNA
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vaccine either with or without subsequent electropor-
ation. Splenocytes and tumor infiltrating lymphocytes
were harvested 8 days after the last vaccination and ana-
lyzed for the presence of E7-specific CD8+ T cells. As
shown in Figure 3A, IM injection of CRTE6E7L2 DNA
vaccine followed by electroporation generated the high-
est percentage of E7-specific CD8+ T cells systemically.
Furthermore, mice treated with CRTE6E7L2 DNA vac-
cine administered by IM injection followed by electropor-
ation generated significantly greater E7-specific CD8+ T
cells among vaginal tumor infiltrating lymphocytes com-
pared to those treated with IM injection alone (Figure 3B).
These data suggest that IM injection followed by electro-
poration is the better method of administration for the
CRTEG6E7L2 DNA vaccine compared to IM injection alone
for the generation of antigen-specific CD8+ cell-mediated
immune responses both systemically and locally.

CRTE6E7L2 DNA vaccine generates potent protective
antigen-specific immune responses and antitumor effects
against E6/E7-expressing tumors in CD4-depleted mice
We found that vaccination of mice with CRT-E7(detox)
DNA elicits a potent E7-specific CD8" T cell response
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Figure 2 Comparison of antitumor effect induced by CRT/E6E7L2 DNA vaccination with electroporation. (A). Schematic illustration of the
experiment. C57BL/6 mice were (6-12 mice/group) were challenged intravaginally with 2x10* TC-1 Luc cells. From day 7, mice were either left
untreated or immunized with 10 pg/mouse of CRT/E6E7L2 DNA vaccine by intramuscular injection only or followed by electroporation. The mice
were boosted twice with 3-day interval with the same regimen. (B) Tumor growth was followed every week by bioluminescence measurement
(photons/sec/cm?). (C) Survival of the mice was monitored every other day.
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tumor infiltrating (B) HPV16 E7-specific CD8" T cells. Briefly, 5-8 week old female C57BL/6 mice were (5 mice/group) were challenged intravaginally with
2x10" TC-1 Luc cells/mouse. From day 7, mice were either left untreated or immunized with 10 pug/mouse of CRT/E6E7L2 DNA vaccine by intramuscular
injection only or followed by electroporation. The mice were boosted twice at 3-day intervals with the same regimen. 8 days after the last vaccination,
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even in mice depleted for CD4+ T cells, suggesting that
this vaccine may still be active even in CD4-depleted/HIV+
hosts (Additional file 1: Figure S1). Given our intent to
also target E6 and L2, we further examined whether the
CRTEG6E7L2 DNA vaccine was effective in the generation
of HPV antigen-specific T cell-mediated immune response
as well as antitumor effects against E6/E7-expressing
tumors under conditions of CD4+ T cell depletion.
Mice were depleted of CD4+ T cells by administration
of anti-mouse CD4 antibody on the schedule shown
in Figure 4A, including prior to administration of
CRTE6E7L2 DNA vaccine. The efficiency of CD4+ T
cell depletion was verified by peripheral blood CD4
staining followed by flow cytometry analysis. As shown
in Figure 4B, CD4+ T cells were completely depleted by
day 6 after the initiation of antibody depletion. We first
characterized the generation of HPV antigen-specific
immune response by CRTE6E7L2 DNA vaccine with or
without CD4 depletion using ELISA. We found that
CD4 depleted mice treated with CRTE6E7L2 DNA vac-
cine had essentially no E7-specific antibody responses
compared to non-depleted mice (Figure 4C), further
suggesting successful ongoing CD4+ T cell depletion. In
contrast, as shown in Figure 4D, CD4-depleted mice
treated with CRTE6E7L2 DNA vaccine generated sig-
nificantly greater E7-specific CD8 + T cells among total
CD8+ T cells compared to naive mice, although levels
of E7-specific CD8+ T cells were lower than those in
non-depleted mice. Nevertheless, the CRTE6E7L2 DNA
vaccine conferred 100% protection against subcutane-
ous TC-1 tumor challenge in both CD4-depleted mice
and non-depleted mice (Figure 4E). These data indicate
that vaccination with CRTE6E7L2 DNA generated a
potent HPV antigen-specific CD8+ T cell-mediated

immune response, which translated into a protective
antitumor effect in the absence of CD4+ T cells.

CRTEG6E7L2 DNA vaccine generates potent therapeutic
antigen-specific immune responses and antitumor effects
in CD4-depleted tumor-bearing mice

Next, we tested whether the CRTE6E7L2 DNA vaccine
could treat TC-1 tumor-bearing mice in CD4-depleted
mice. Mice were depleted of CD4+ T cells in the priming
phase and were challenged with TC-1 tumor cells by tail
vein injection. Mice were then treated with CRTE6E7L2
DNA vaccine three times at one-week intervals by IM
injection followed by electroporation (Figure 5A). In
addition, DNA vaccinated mice without CD4+ T cell
depletion were included for comparison. We found
that CD4-depleted mice treated with CRTE6E7L2
DNA vaccine had a significantly greater percentage of
E7-specific CD8+ T cells among total CD8+ T cells com-
pared to naive or untreated tumor-bearing mice (Figure 5B).
Furthermore, the number of E6- and E7-specific CD8+
T cells among splenocytes was significantly greater in
CD4-depleted mice treated with CRTE6E7L2 DNA
vaccine compared to naive or untreated tumor-bearing
mice (Figure 5C). Importantly, CD4-depleted mice treated
with CRTE6E7L2 DNA vaccine had zero lung metasta-
sis nodules, as did non-depleted mice (Figure 5D).
Additionally, CD4-depleted mice treated with CRTE6E7L2
DNA vaccine had significantly lower lung weight compared
to untreated tumor-bearing mice with or without CD4
depletion (Figure 5E). Furthermore, DNA vaccinated
mice with or without CD4 depletion demonstrated sta-
tistically similar lung weights (Figure 5E). These data
suggest that the CRTE6E7L2 DNA vaccine is effective
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Figure 4 Effect of CD4" T cell depletion on the immunogenicity of 4a-CRT/E6E7L2 DNA vaccine. (A) Schematic diagram of the treatment
schedule. Briefly, 5-8 weeks old female C57BL/6 mice (5 mice/group) treated with 200 pg/mouse of anti-mouse CD4 depletion antibody (clone
GK1.5) or PBS via intraperitoneal injection for 3 days and the depletion was maintained by weekly injection of the depletion antibody (100 pg/
mouse). (B) Success of CD4" T cell depletion was verified by peripheral blood CD4 staining followed by flow cytometry analysis. 1 week after
depletion initiation, mice were vaccinated with 20 pug/mouse of 4a-CRT/E6E7L2 DNA vaccine via intramuscular injection followed by electroporation.
The mice were boosted with the same regimen twice at a 2-week interval. (C) One week after the last vaccination, serum was collected for the analysis
of HPV16 E7-specific antibody response by ELISA. (D) HPV16 E7-specific CD8" T cell responses were analyzed by staining PBMCs with HPV16 E7aa49-57
peptide loaded H2-DP tetramer followed by flow cytometry analysis. (E) Two weeks after last vaccination, the mice were challenged with 5 x 10* TC-1

cells subcutaneously. Tumor growth was monitored twice a week.

in treating TC-1 tumor-bearing mice despite the ab-
sence of CD4+ T cells.

Discussion

In the current study, we examined the protective and
therapeutic effects of CRTE6E7L2 DNA vaccine against
E6/E7-expressing tumors in immunocompetent and im-
munosuppressed mice. We first demonstrated that ad-
ministration of the CRTE6E7L2 DNA vaccine by IM

injection followed by electroporation generated greater
HPV neutralizing antibody titers and cell-mediated
immune responses compared to IM injection alone.
Although the use of alum enhanced the HPV neutraliz-
ing antibody titers, it was no more effective than elec-
troporation alone, and the combination did not yield a
clear advantage. In addition, the use of alum failed to
enhance the HPV-specific cellular immune responses
elicited by IM vaccination. IM injection of CRTE6E7L2
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Figure 5 Effect of CD4" T cell depletion on the therapeutic antitumor immunity generated by 4a-CRT/E6E7L2 DNA vaccine.

(A) Schematic illustration of the experiment. Briefly, 5-8 week old female C57BL/6 mice (5 mice/group) were treated with 100 pg/mouse of anti-mouse
CD4 deletion antibody (clone GK1.5) or PBS via intraperitoneal injection for 3 days and the depletion was maintained by weekly injection of the
depletion antibody (100 pug/mouse). 5 days after the initiation of the depletion, mice were injected with 1x 10° TC-1 cells intravenously. 3 days
after TC-1 cell injection, mice were vaccinated with 20 pg/mouse of 4a-CRT/E6E7L2 DNA vaccine via intramuscular injection followed by
electroporation. The mice were boosted with the same regimen twice with 1-week interval. (B) One week after last vaccination, PBMCs were
collected and HPV16 E7-specific CD8* T cell responses were analyzed by HPV16 E7aa49-57 peptide loaded H2-DP tetramer staining followed by
flow cytometry analysis. (C) 13 days after last vaccination, splenocytes were harvested for the detection of HPV-16 E6 and E7-specific CD8" T cell
responses analyzed by IFN-y intracellular staining. Diagram of the number of TC-1 cell metastasis nodules (D) and the weight of lungs (E).




Peng et al. Cell & Bioscience 2014, 4:11
http://www.cellandbioscience.com/content/4/1/11

DNA vaccine followed by electroporation elicited more
potent E7-specific CD8+ T cell responses and therapeutic
antitumor effects in tumor-bearing mice compared to IM
injection without electroporation, and these responses
effectively targeted tumors in the vaginal tract. Notably,
we also observed these potent cell-mediated immune re-
sponses and antitumor effects in CD4-depleted tumor-
bearing mice. Taken together, our data suggest that
CRTEG6E7L2 DNA vaccine may be appropriate for use
in immunocompromised patients, including HIV + pa-
tients, to control of HPV-16-associated cancer.

Here we observed that mice vaccinated with CRTE6E7L2
DNA vaccine were capable of generating potent HPV
antigen-specific CD8+ T cell-mediated immune responses
in the absence of CD4+ T cells. We have previously shown
that DNA vaccines encoding CRT linked to the target
antigen are capable of generating high levels of antigen-
specific CD8" T cell responses as well as significant antitu-
mor immunity [14,15] [21]. CRT is a heat shock protein
that associates with peptides delivered into the ER [22] as
well as with MHC class I-B2 microglobulin molecules to
aid in antigen presentation [23]. Furthermore, CRT has
been shown to bind with CD91 (also known as o,-macro-
globulin receptor or low density lipoprotein-related pro-
tein), a cell surface receptor on antigen presenting cells
[24]. Thus, CRT may be able to deliver the linked antigens
to dendritic cells through their specific binding with CD91
to facilitate cross priming activities. Furthermore, CRT has
been shown to activate dendritic cells (DCs) [25].

A critical safety feature of the CRTE6E7L2 DNA vac-
cine is that it contains mutated (detox) versions of the
E6 and E7 oncogenes. This is essential for the clinical
translation of the CRTE6E7L2 DNA vaccine. Previously,
it has been shown that mutation of E7 at position 24
and/or 26 disrupts the Rb binding site of E7 thus allevi-
ating the concerns for the oncogenicity of E7 [26] and
that mutation at position 91 destroys the single zinc fin-
ger in E7 [26]. This construct is being used in ongoing
clinical studies. Additionally, mutation of E6 in positions
that have been shown to destroy several key oncogenic
functions, including the ability to bind p53, which pre-
vent the E6 (detox) protein from immortalizing human
epithelial cells [27,28], were included. We further deleted
the PDZ protein-binding domain at the C-terminus of E6
(aald6-151) [29] as this is also critical for transformation.
The DNA construct used in the current study includes
HPV-16 E6 and E7 genes that contain the mutations de-
scribed above, thus minimizing safety concerns for clinical
translation.

In the clinical setting, DNA vaccines can be delivered
by a variety of methods, which include particle-mediated
intradermal delivery by gene gun, intralesional injection,
intramuscular injection, and intramuscular injection fol-
lowed by electroporation [30-33]. The gene gun enables
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delivered DNA to directly transfect keratinocytes and epi-
dermal Langerhans cells (immature DCs). This stimulates
DC maturation and migration to the local lymphoid tissue,
where DCs prime T cells for HPV antigen—specific im-
mune responses. DNA vaccine administration with
electroporation increases the number of HPV DNA-
transfected cells and enhances the magnitude of gene
expression, while requiring less time to reach a maximal
immune response compared to conventional intramuscu-
lar vaccine injection. The use of an electroporation device
may be even more important in non-human primates and
humans than mice [34]. Recent reports from clinical trials
indicated that delivery of naked DNA vaccines with elec-
troporation was capable of generating potent cellular as
well as humoral immune responses against encoded HPV
antigens [35]. Additionally, the CRT/E7 (detox) DNA vac-
cine, administered by IM injection and electroporation, is
being tested in HPV-16-associated head and neck cancer
patients (NCT01493154), as well as via intracervical injec-
tion or a gene gun like device (PMED) (NCT00988559).

The current study suggests the potential of CRTE6E7L2
DNA vaccination to treat HPV-16 infections or HPV-16-
associated diseases in both HIV- and in HIV + patients.
HIV + patients in particular need a preventive and thera-
peutic HPV vaccine because they are more susceptible
to HPV infection and often have frequent multi-type
infections including uncommon HPV subtypes. Fur-
thermore, HIV + patients exhibit more severe and progres-
sive HPV infections compared to healthy individuals. The
CRTE6E7L2 DNA vaccine has the potential to fulfill this
urgent need because it safe, effective in the absence of
CD4+ T cells and elicits potent cell-mediated immune
responses and therapeutic antitumor effects in murine
studies.

Methods

Mice

5~ 8 week old female C57BL/6 mice were purchased
from the National Cancer Institute (Frederick, MD).
All mice were housed at Johns Hopkins University
School of Medicine cancer center animal facility under
specific-pathogen free conditions, and all procedures
were performed according to approved protocols and
in accordance with recommendations for the proper
use and care of laboratory animals.

Peptides, antibodies and regents

The H-2DP-restricted HPV16 E7aa49-57 peptide, RAHY-
NIVTE and H-2K"-restricted HPV16 E6aa50-57 peptide,
YDFAFRDL, were synthesized by Macromolecular Re-
sources (Denver, CO) at a purity of > 80%. FITC-
conjugated anti-mouse CD3 (clone 145-2C11), FITC,
PE and APC-conjugated anti-mouse CD8a (clone
53.6.7), and FITC-conjugated anti-mouse IFN-y (clone
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XMG1.2) antibodies were purchased from BD Pharmin-
gen (BD Pharmingen, San Diego, CA). PE-conjugated
anti-mouse CD4 (clone RM4-4) antibody was purchased
from Biolegend (San Diego, CA). PE-conjugated, HPV16
E72ad9-57 peptide and RAHYNIVTE loaded H2-D" tetra-
mers were obtained from the National Institute of Allergy
and Infectious Diseases Tetramer Facility (Atlanta, GA).
Medroxyprogesterone acetate was purchased from Green-
stone LLC (Peapack, NJ), and 4% Nonoxynol-9 (N-9)
was purchased from Revive personal products company
(Madison, NJ).

Cells

HPV-16 E6 and E7-expressing TC-1 cells were generated
as previously described [36]. TC-1-Luc cells were estab-
lished by transducing TC-1 cells with luciferase. The cells
were maintained in RPMI medium supplemented with
2 mM glutamine, 1 mM sodium pyruvate, 100[Uml™"
penicillin, 100ugml™" streptomycin and 10% fetal bovine
serum (FBS). The creation of 293TTF and Lovo-T has
been described [37] and cultured in DMEM medium
containing 2 mM glutamine, 1 mM sodium pyruvate,
100IUml ™ penicillin, 100pugml™ streptomycin and 10%
EBS.

DNA vaccine

The DNA vaccine, pNGVL4a-CRTE6E7L2 used in this
study was constructed as follows. Briefly, CRTdE6E7L2
contains human calreticulin (CRT), E7 with three mu-
tations [38], E6 with two mutations [38] and deletion
of aal46-151 [29], and 11-200aa of HPV16 L2. To clone
pNGVL4a-CRTAE6dE7L2, human CRT was isolated from
pNGVL4a-hCRTE6E7L2 [21] by Sal I/EcoRI. DE6E7L2
codon, modified and synthesized by Genescript (Piscat-
away, NJ), was cut EcoRI/BamHI. The digested human
CRT and dE6E7L2 were cloned into pNGVL4a vector
digested with Sal/BamHI. The mutation and deletion
sequences of E6 and E7 are detailed in Additional file 2:
Figure S2.

Electroporation-mediated DNA vaccination
pNGVL4a-CRT/E6E7L2 DNA vaccine was administered
to C57BL/6 mice via intramuscular (IM) injection in the
flank with or without subsequent electroporation with
Ichor TriGrid™ Electroporation Delivery System (TDS)
(Ichor Medical Systems Inc., San Diego, CA) as described
previously [9]. When aluminum phosphate was used,
DNA was mixed with 22.5 pg of aluminum phosphate
with a final volume of 50 pl. The DNA/aluminum phos-
phate mixture was used within half hour after prepar-
ation. When vaccination schedules required a booster
vaccination, the contralateral leg was used for vaccin-
ation, and subsequent vaccinations used alternating
hind legs.
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In vivo CD4" T cell depletion

To deplete CD4" T cells, mice were injected with a de-
pleting anti-mouse CD4 antibody (Clone GK1.5) for 3
days via intraperitoneal injection. The depletion was
maintained through the experiment by injecting the
antibody once per week. The success of depletion was
confirmed by staining peripheral blood cells with an
anti-mouse CD4 antibody that recognizes a different
epitope than the depleting antibody.

Production of furin-cleaved HPV16 pseudovirus
Production of furin-cleaved HPV16 pseudoviruses (fcPsV)
is described elsewhere [37]. Briefly, fcPsV were produced
by following the standard PsV production protocol [39,40]
with the following modifications: (1) instead of 293TT
cells, 293TTF cells were used; (2) ammonium sulfate was
excluded from the maturation buffer; (3) the concentra-
tion of CaCl, in the maturation buffer was increased to
5 mM; and (4) maturation time was increased from 24
hours to 48 hours.

In vitro HPV pseudovirus neutralization assay

The details of the in vitro HPV pseudovirus neutralization
assay are described elsewhere [37]. Briefly, 1.5 x 10* LoVoT
cells were plated into 96-well tissue culture plate. The next
day, mouse serum was serially diluted and mixed with
fcPsV containing luciferase, incubated at 37°C for 2 hours
before adding to the cells. These plates were then incubated
at 37°C for 72 hours. Luciferase activity was analyzed and a
50% reduction in luciferase activity was considered as posi-
tive for neutralization.

ELISA

HPV16 E7-specific antibody response was determined
by an enzyme-linked immunosorbent assay (ELISA) as
described previously [41] and the optical density (OD)
value was read with xMark microplate spectrophotom-
eter (BioRad, Hercules, CA) ELISA reader at 450 nm.

Preparation of single-cell suspensions from spleens and
TC-1/luciferase tumors

Single splenocyte suspensions were prepared by meshing
spleens and lysing red blood cells. To prepare single cells
from vaginal TC-1-Luc tumors, tumors were surgically
resected under sterile conditions and placed in RPMI
1640 medium containing 100Uml ™! penicillin, 100;1gml’1
streptomycin on ice, and washed with phosphate-buffered
saline (PBS). The solid tumors were then minced into 1-
to 2-mm pieces and incubated with serum-free RPMI
1640 medium containing 1mgml™" collagenase D, and
0.25mgml’1 DNase I (both from Roche, Indianapolis, IN),
100Uml ™" penicillin, 100ugml™" streptomycin and incu-
bated at 37°C with periodic agitation. The cells were then
filtered through a 70-pum nylon filter mesh to remove
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undigested tissue fragments. The resultant single tumor
cell suspensions were washed twice in Hank’s buffered salt
solution (HBSS) (400¢ for 10 min), and viable cells were
determined using Trypan blue dye exclusion.

Tetramer staining

For tetramer staining, 1 x 10° splenocytes or tumor infil-
trating lymphocytes were stained with purified anti-
mouse CD16/32 (Fc block, BD Pharmingen, San Diego,
CA) first, and then stained with anti-mouse CDS8-FITC,
PE-conjugated, HPV16 E7aa49-57 peptide, RAHYNIVTE
loaded H2-D tetramer at 4°C. After the wash, cells
were stained with 7-AAD prior to flow cytometry ana-
lysis to exclude dead cells. The cells were acquired with
FACSCalibur and analyzed with CellQuest (BD Bio-
science, Mountain View, CA) or FlowJo software (Tree
Star, Ashland, OR).

Intracellular cytokine staining and flow cytometry analysis
To detect HPV16 E6 or E7-specific CD8" T cell responses
by IFN-y intracellular staining, splenocytes were stimu-
lated with either HPV16 E6aa50-57 or E7aa49-57 peptide
(1 pg/ml) at the presence of GolgiPlug (BD Pharmingen,
San Diego, CA) at 37°C overnight. The stimulated spleno-
cytes were then washed once with FACScan buffer and
stained with PE-conjugated monoclonal rat anti-mouse
CD8a. Cells were subjected to intracellular cytokine stain-
ing using the Cytofix/Cytoperm kit according to the man-
ufacturer’s instruction (BD Pharmingen, San Diego, CA).
Intracellular IFN-y was stained with FITC-conjugated rat
anti-mouse IFN-y. Flow cytometry analysis was performed
using FACSCalibur with CELLQuest software.

In vivo tumor protection experiment

Mice were depleted of CD4" T cells, mice were injected
with a depleting anti-mouse CD4 antibody (Clone GK1.5)
for 3 days via intraperitoneal injection as described above.
Mice were then vaccinated with 20 ug pNGVL4a-CRT/
E6E7L2 DNA by IM injection followed by electroporation
three times at two-week intervals. 8 days after last vaccin-
ation, mice were injected with 5x10* TC-1 cells subcuta-
neously. The tumor growth was monitored by palpation
twice a week.

In vivo tumor treatment experiment in a vaginal tumor
model

To test whether pNGVL4a-CRT/E6E7L2 DNA vaccine-
induced T cell responses could cure existing HPV16 E6E7-
expressing tumors, an orthotopic vaginal tumor model was
used. CD4 depletion was performed as described above.
Briefly, female C57BL/6 mice were treated with 3 mg/
mouse of medroxyprogesterone acetate via subcutaneous
injection. 4 days later, the mice were treated intravaginally
with 4% N-9 overnight. After wash, 2x10* TC-1/luciferase
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cells were instilled into intravaginal cavity. Seven days
after tumor challenge, mice were vaccinated with 10 ug
pNGVL4a-CRT/E6E7L2 DNA by IM injection followed
by electroporation three times at three-day intervals.
Tumor growth was monitored by luminescence imaging
at indicated time points.

In vivo tumor treatment experiment in a hematologic
spread model

After CD4" T cell depletion, mice were injected with
1x10° TC-1 cells intravenously via the tail vein. 3 days
later, mice were vaccinated with pNGVL4a-CRT/E6E7L2
DNA vaccine via IM administration followed by electro-
poration and boosted twice with the same regimen at
one-week intervals. 30 days after TC-1 cell challenge,
mice were sacrificed, splenocytes were prepared to de-
tect HPV-16 E6- and E7-specific CD8+ T cell responses
and lungs were harvested to examine the tumor growth.

Statistical analysis

All data were expressed as means + standard deviations
(SD). Comparisons between individual data point was
analyzed by 2-tailed Student’s ¢ test. Data for tumor
treatment experiments were evaluated by analysis of
variance (ANOVA). Survival distributions for mice in
different groups were compared by the Kaplan—Meier
curves and by use of the long-rank tests. A P value of
less than 0.05 was considered significant.

Additional files

Additional file 1: Figure S1. HPV-16 E7 peptide loaded MHC class |
tetramer staining to characterize the frequency of HPV-16 E7-specific CD8 +
T cells in CRT/E7 DNA vaccinated mice with or without CD4 depletion.
C57BL/6 mice (5 per group) were vaccinated with pcDNA-3 CRT/E7 DNA
[14] intradermally via gene gun twice at 1-week interval using methods
similar to what we have described previously [11]. Mice vaccinated with
empty pcDNA-3 vector were included as controls. One group of CRT/E7
DNA vaccinated mice were depleted of CD4+ T cells 3 days before DNA
vaccination and were continuously depleted of CD4+ T cells twice a
week with mouse monoclonal antibody GK1.5 using methods described
previously [11]. The completeness of the CD4+ T cell depletion was
confirmed by flow cytometry analysis. 5 days after the last DNA vaccination,
spleens from the vaccinated mice were harvested and characterized for

the presence of HPV-16 E7-specific CD8+ T cells using HPV-16 E7 peptide
(aa 49-57) loaded H-2 D° tetramer staining [42] and CD8 staining followed
by flow cytometry analysis.

Additional file 2: Figure S2. Sequences of HPV-16 E6 and E7 (detox)
antigens in pNGVL4a-hCRTEGE7L2 DNA vaccine. The sequences of the
relevant sections of wild type (top) and detox (bottom) HPV-16 E6 and E7
are shown. Letters in red indicate mutations and dashes indicate deletions.

Abbreviations
HPV: Human papillomavirus; HIV: Human immunodeficiency virus;
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