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Abstract

The Hippo signaling pathway has emerged as a critical regulator for organ size control. The serine/threonine
protein kinases Mst1 and Mst2, mammalian homologs of the Hippo kinase from Drosophila, play the central roles in
the Hippo pathway controlling the cell proliferation, differentiation, and apoptosis during development. Mst1/2 can
be activated by cellular stressors and the activation of Mst1/2 might enforce a feedback stimulation system to
regulate oxidant levels through several mechanisms, in which regulation of cellular redox state might represent a
tumor suppressor function of Mst1/2. As in Drosophila, murine Mst1/Mst2, in a redundant manner, negatively
regulate the Yorkie ortholog YAP in multiple organs, although considerable diversification in the pathway
composition and regulation is observed in some of them. Generally, loss of both Mst1 and Mst2 results in
hyperproliferation and tumorigenesis that can be largely negated by the reduction or elimination of YAP. The
Hippo pathway integrates with other signaling pathways e.g. Wnt and Notch pathways and coordinates with them
to impact on the tumor pathogenesis and development. Furthermore, Mst1/2 kinases also act as an important
regulator in immune cell activation, adhesion, migration, growth, and apoptosis. This review will focus on the
recent updates on those aspects for the roles of Mst1/2 kinases.
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Introduction

The Hippo pathway plays a very important role in con-
trolling cell proliferation and differentiation, and moni-
toring organ size and oncogenesis. This pathway was
first discovered in Drosophila through genetic screens
for regulators of organ size. The loss of function (LOF)
mutant of the protein kinase “Hippo” exhibits tissues
overgrowth and tumorigenesis, in which the increased
cell number is associated with the acceleration of cell
cycle progression and a failure of developmental apop-
tosis [1-5]. The Hippo phenotype closely resembles phe-
notypes of LOF mutants of the protein kinase Warts
[6,7] and the small noncatlytic protein Mats [8] as well
as a milder phenotype of another noncatalytic scaffold
protein Salvador (Sav) [9,10]. Sav binds both Hippo and
Warts, and promotes Hippo phosphorylation of Warts;
Mats is another Hippo substrate that binds to and pro-
motes Warts activation. With the activation of those
downstream elements, the key role of Hippo signaling is
to inhibit Yorkie [11,12], a transcriptional coactivator of
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proliferative and pro-survival genes. These studies in
Drosophila defined a developmentally regulated growth-
suppressive and proapoptotic pathway operated by the
Hippo kinase. Each of the core components of this path-
way is evolutionally conserved and their counterpart(s)
are identified in mammalians respectively. In general,
the mammalian Ste20-like kinases Mstl and Mst2
[13,14] (Mst1/2, corresponding in Drosophila as Hippo),
associated with the WW-domain scaffolding protein
WW45 (corresponding in Drosophila as Sav), that binds
Mstl/2 and phosphorylates Large tumor suppressor
(Lats1/2, corresponding in Drosophila as Warts) [15],
through their respective SARAH coiled coil domains,
thereby promoting Mstl/2 phosphorylation of Lats;
Mstl1/2 also phosphorylates Mps one binder kinase
activator-like 1 (MoblA/B, corresponding in Drosophila
as Mats) [16,17] which enhances Mob1’s ability to bind
and activate Lats1/2; phospho-Mats binds to and pro-
motes Wts/Lats autophosphorylation and activation;
Lats1/2 phosphorylates Yes-associated protein (YAP,
corresponding in Drosophila as Yki) [18], which pro-
motes 14-3-3 binding to YAP, causing YAP nuclear exit,
hereby inhibiting its function. Intranuclear YAP/Yki
mainly promotes cell proliferation and resists cell death
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through the Scalloped/TEAD transcription factor(s).
Loss of Mstl/Mst2 results in a YAP dependent acceler-
ated proliferation, resistance to apoptosis and massive
organ overgrowth. The details of many aspects of the
Hippo signaling pathway can be found in depth discus-
sion from several recent reviews [19-24]. In this review,
we will focus on the recent updates of the roles of mam-
malian “Hippo” kinases, ie. Mstl and Mst2, on the cellu-
lar redox state regulation and their involvement in organ
size control, tumorigenesis, and immune regulation.

Mst1/2 and the cellular redox state

Oxidative stress induces the activation of Mstl/2 [25].
Thioredoxin-1 (Trx1), a conserved antioxidant protein
that is well known for its disulfide reductase activity, can
physically associate with the SARAH domain of Mstl in
intact cells and inhibit the homodimerization and auto-
phosphorylation of Mstl, thereby prevents Mstl activa-
tion; whereas H202 abolishes this interaction and
eventually causes the activation of Mstl. Thus, Trx-1
might function as a molecular switch to turn off the oxi-
dative stress-induced activation of Mstl [26]. Besides the
Trx-1 as a redox-sensitive inhibitor of Mst1, the molecu-
lar mechanism of reactive oxygen species (ROS)-induced
Mstl activation needs to be further defined. Hippo/
Mstl kinase directly phosphorylates and activates the
forkhead box proteins (FOXO), which causes expres-
sion of proapoptotic genes, such as the FASL and
TRAIL genes under stress conditions. The apoptosis of
cultured neurons induced by oxidative stress or by
Mstl over expression is blocked by RNAi depletion of
FOXO [27]. Mstl mediates oxidative stress-induced
neuronal cell death by phosphorylating the transcrip-
tion factor FOXO3 at serine 207 [27], or FOXO1 at
serine 212 [28]. Mstl and its scaffold protein Norel are
required in cell death of granule neurons upon growth
factors deprivation and neuronal activity [28]. Yuan’s
group further demonstrates that oxidative stress in-
duces the c-Abl-dependent tyrosine phosphorylation of
Mstl and increases the interaction between Mstl and
FOXO3, thereby activating the Mstl-FOXO signaling
pathway, leading to cell death in both primary culture
neurons and rat hippocampal neurons. These results
suggest that c-Abl-Mst-FOXO signaling cascade plays
an important role in cellular responses to oxidative
stress and might contribute to pathological states in-
cluding neurodegenerative diseases in the mammalian
central nerve system (CNS) [29,30]. Indeed, Mstl me-
diated FoxO3 activation in response to B-amyloid (Ap)
has been shown to mediate death of selective neuron in
Alzheimer's disease (AD) [31]. Furthermore, amyo-
trophic lateral sclerosis (ALS) associated SOD1(G93A)
mutant induces dissociation of Matl from a redox pro-
tein trx-1 and promotes Mstl activation in spinal cord
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neurons in a reactive oxygen species-dependent man-
ner. Genetic deficiency of Mstl delays disease onset
and extends survival in mice expressing the ALS-
associated G93A mutant of human SOD1 [32].

Lim’s group recently also shows that Hippo-Foxa2 sig-
naling pathway plays a role in peripheral lung maturation
and surfactant homeostasis [33]. In the immune system,
Mstl deficient peripheral T cells have impaired FOXO1/3
and decreased FOXO protein levels indicating a crucial
role of the Mst1-FOXO signaling pathway for the main-
tenance of naive T cell homeostasis [34]. Mstl deficient
lymphocytes and neutrophils exhibit enhanced loss of
mitochondrial membrane potential and increased suscep-
tibility to apoptosis [35]. More recently, Valis K. et al. fur-
ther demonstrated that the activation of Hippo/Mstl is
able to stimulate the transcription of another proapoptotic
mediator NOXA in a FOXOIl-dependent Manner via
acetylation of the histone proteins in the NOXA promoter
[36]. The Hippo/Mst1-FOXO1-Noxa axis is a novel tumor
suppressor pathway that controls apoptosis in cancer cells
exposed to anticancer drugs such as a-TOS [36]. In con-
trast, a recent study demonstrates that Ras activation and
mitochondrial dysfunction cooperatively stimulate pro-
duction of ROS resulting in activation of JNK signaling
which cooperates with oncogenic Ras to inactivate the
Hippo pathway, leading to up regulation of YAP targets
Unpaired (an Interleukin-6 homologue) and Wingless (a
Wnt homologue) in Drosophila [37], although -earlier
study show activated K-Ras induces apoptosis by engaging
the RASSF1A-Mst2-Lats1 pathway [38].

Recently, Morinaka et al. demonstrate that peroxiredoxin-
1 (Prdx1), a cysteine-containing, highly conserved enzyme
that reduces H202 to H20 and O2, interacts with Mstl
under conditions of oxidative stress and Prdx1 is required
for Mstl activation by H202, as knockdown of Prdx1 is
associated with loss of Mstl1 activity [39]. Chernoff’s group
also shows that both Mstl and Mst2 interact with Prdx1
in HEK-293 or in human hepatocarcinoma HepG2 cells
under oxidative stress conditions [40]. However, the later
one supports that Prdx1 represents a downstream target,
rather than an upstream regulator of Mstl. Mstl phos-
phorylates Prdx1 at the highly conserved Thr-183 site
resulting in inactivation of Prdxl with subsequent in-
creased H202 levels in cells. As Mstl can be activated by
increased H202 levels, inactivation of Prdxl resulted
from the activated Mstl might enforce a feedback
stimulation system to prolong or intensify Mstl activa-
tion. Such a feedback stimulation system, resulting in
higher oxidant levels and DNA damage, might represent
a tumor suppressor function of Mstl/2 to prevent the
accumulation of mutations [40]. Consistently, our re-
cent study shows that elimination of Mst1/2 from liver
cells is accompanied by increased expression of a cohort
of anti-oxidant enzymes important for ROS elimination
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[41]. The increased expression levels of those enzymes,
such as glutathione reductase (GSR), NAD(P)H:quinone
oxidoreductase (NQO1), y-glutamyl-cysteine ligase (GCL,
including catalytic subunit (GCLC) and modifier subunit
(GCLM)), catalase (CAT), copper/zinc superoxide dismu-
tase (SOD), cytosolic thioredoxin (Txnl) and mitochon-
drial thioredoxin (Txn2), promote the accumulation of
glutathione (GSH). The accumulation of GSH in the Mst1/
2 deficient liver results in the activation of the GA-binding
protein (GABP) which is a critical transcription factor for
the expression of YAP [41,42]. In addition, Mst2-Lats1 can
physically bind and promotes phosphorylation of GABPB
which interrupts GABPa/f homodimerization, prevents
their nuclear localization and inhibits their transcriptional
activity. Thus, in addition to inhibit YAP function by
phosphorylation of YAP and promoting YAP nuclear
exit, Mst1l/2-Lats signaling can also inhibit YAP func-
tion by downregulating its expression level [41]. In con-
trast to the Mstl-FOXO signaling pathway leading to
the decreased ROS production, the activation of the
Mstl/2 pathway inhibiting YAP in liver tissues main-
tains the higher levels of ROS (Figure 1). There is no
doubt that oxidative stress activates Mstl/2 signaling;
however the conflict effects on regulating the cellular oxi-
dative state upon the activation of Mst1/2 are reported in
different cell contexts. It is possible that the Mst-FOXO
signaling pathway is predominantly activated in neuron or
immune cells resulting in the decreased ROS production,
whereas in other cell types, such as hepatocyte, the acti-
vation of Mst1/2-GABP-YAP signaling leads to increased
ROS production. These critical but inconsistent findings

Page 3 of 9

indicate the importance and complexity of inter-regu
lation among mitochondrial function, oxidant generation
and/or clearance, and the Hippo signaling pathway.

Increased production of ROS during pro-oxidant con-
ditions would lead to Mst1/2 activation resulting in phos-
phorylation of GABP, inhibition of its transcription
activity, and downregulation of YAP expression, conse-
quently decreased the expression of a variety of genes that
encode mitochondrial proteins and proteins with antioxi-
dant properties, resulting in increased cellular ROS and a
diminished GSH/GSSG ratio [41]. On the other hand,
GABP itself helps modulate oxidative metabolism of the
cell through regulating the expression of many genes ne-
cessary for cellular respiration in mitochondria, including
enzymes involved in oxidative phosphorylation, such as
cytochrome ¢ oxidase subunits IV and Vb [43]. Growing
evidence points that the cellular redox state and redox sig-
naling has significant roles in regulating the metabolic fate
and regenerative potential of adult tissues [44,45]. The
GABP will emerge as a critical component of the Hippo
signaling pathway for its role in regulating the cellular
redox state and cell growth.

The roles of Mst1/2 in organ size control and
tumorigenesis

The Hippo signaling pathway is a tumor suppresser
pathway. Mstl or Mst2 single knockout mice are viable
and do not exhibit obvious organ overgrowth or tumor
development, whereas Mstl and Mst2 double-knockout
(DKO) mice exhibit early embryonic lethality [46,47]. To
define the roles of Mstl and Mst2 in vivo, conditional

Antioxidant defense (NQO-1, TXN1,2 etc.)

Yap) S

Cell proliferation and survival (CTGF, cMye, Cyclin E etc.)

Figure 1 Mammalian Mst1 and Mst2 kinases play essential role in the regulation of cellular redox state. See text for details.
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knockout mouse of Mstl and Mst2 in variety tissues
were generated and severe context-dependent pheno-
types were observed (Table 1). For example, Hippo
seems to control cell-cycle exit and terminal differenti-
ation in some tissues without having major effects on
organ growth, whereas in other tissues Hippo signaling
maintains stem cell/progenitor compartments. The
Hippo-Lats-Yorkie tumor-suppressor pathway predi-
cated in Drosophila does not prevail in all mammalian
tissues. In mammalian liver, Mst1/Mst2 negatively reg-
ulates Yapl, whereas, in mouse embryo fibroblasts
(MEFs), the cell-cell contact results in Yapl phos-
phorylation and nuclear exclusion equally well in wild
type and Mstl/Mst2 DKO MEFs [46]; in mouse
keratinocytes, Yap inactivation during cellular diffe-
rentiation occurs independently of Mst1/2 and lats1/2
[48]. Thus, it appears that the wiring upstream of Yapl
and downstream of Mstl/Mst2 has been diversified
considerably in mammals compared with the Drosophila
Hippo pathway.

Liver
We and other groups have demonstrated that Mstl and
Mst2 are the most potent tumor suppressors in liver and
a single copy of either Mstl or Mst2 can significantly in-
hibit tumor formation in the liver [46,49,50]. Elimination
of both alleles of Mstl together with heterozygosity for
Mst2, and vice versa, results in the development of
spontaneous hepatocellular carcinomas associated with
loss of the remaining wild-type Mstl or Mst2 allele in
the tumors, whereas no tumors were observed in other
organs of these mice. Conditional inactivation of Mst1/
Mst2 in the liver results in the immediate onset of
dramatic hepatocyte proliferation and hepatomegaly fol-
lowed by the development of Hepatocellular carcinoma
(HCC) and cholangiocarcinoma within 2 month, in
which loss of Mstl/2-dependent inhibition of YAP con-
tributes to the liver cell proliferation and tumorigenesis.
Inactivation of Mstl/Mst2 in liver leads to the loss of
YAP(Ser127) phosphorylation and increased YAP nu-
clear localization. Knocking-down YAP in Mstl/Mst2-
deficient HCC cell lines results in massive cell death and

Table 1 Phenotypes of the Mst1/2 conditional knockout mice
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cell cycle arrest, similarly, the restoration of Mstl ex-
pression in these cells restores YAP(Ser127) phosphoryl-
ation and leads to cell cycle arrest and apoptosis. In
contrast to Drosophila, Lats1/2 does not serve as the
Mst1/Mst2 activated YAP kinase in hepatocytes, indica-
ting the existence of an novel, as yet unidentified inter-
mediary kinase downstream of Mst1/Mst2 that is critical
for YAP(Ser127) phosphorylation in the liver [46]. How-
ever, our recently study shows that activation of Mst2/
Latsl can downregulate the expression of YAP by regulat-
ing GABPP1 phosphorylation and cytoplasmic retention
in HepG2 Cells. Besides reduced YAP(Ser127) phosphor-
ylation, the relative expression levels of YAP have also
been shown significantly increased in human HCCs com-
pared with nontumorous livers [41]. Nevertheless, both
the upstream regulation of Mst1/2 and the full spectrum
of Mst1/2 antiproliferative targets remain to be defined as
do the relative role of these pathways in promoting hepatic
carcinogenesis [51].

Intestines

The intestines of Mstl or Mst2 single knockout mice
are indistinguishable from their wild-type counterparts.
Mst1/2 intestinal DKO mice (Mst1™”~Mst2™-villin-Cre)
with ablation of both Mstl and Mst2 in intestinal com-
partment are born normal at birth, however they de-
velop colonic adenomas within 3 months old and can
only survive for about 13 weeks (median age) accompan-
ied by severe wasting. Both the small and large intestine
of Mst1™~Mst2™-villin-Cre mice exhibit an expansion of
stem-like undifferentiated cells expressing high levels
of CD133, Leucine-rich repeat-containing G-protein
coupled receptor 5 (Lgr5) and Achaete-scute complex
homolog 2 (Ascl2), which are stem cell markers in the
intestine, an increased number of cells expressing CD44
and CD24, markers associated with colon cancer stem
cells, and an almost complete absence of all secretory
lineages. The loss of Mst1/2 in intestine decreases phos-
phorylation of YAP(Ser127 and Ser384) and causes
an increase in both YAP abundance and nuclear lo-
calization. The hyperproliferation and loss of differenti-
ation caused by the Mstl/2 deficiency can be entirely

Affected tissue Phenotypes of Mst1/2 deficient mice References
Liver Dramatic hepatocyte proliferation and hepatomegaly; Development of hepatocellular carcinoma (HCC) and 46,49,50
cholangiocarcinoma within 2 months.
Intestines Intestinal dysplasia; An expansion of stem-like undifferentiated cells; An almost complete absence of all secretory 52
lineages; Development of the polypoid lesions and colonic adenomas within 3 months old.
Pancreas A significantly decrease in pancreas mass; Acinar cell atrophy; Overabundance of ductal structures; Smaller islets with 59,60
abnormal o/ cell ratios in pancreas
Heart Expansion of trabecular and subcompact ventricular myocardial layers; Thickened ventricular walls, and enlarged 66

ventricular chambers without a change in myocardial cell size.
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reversed by deleting a single YAP allele in Mst1™~Mst2"
M yillin-Cre mouse [52]. Thus Mst1”~ Mst2"-villin-Cre
mouse exhibits similar phenotype to the transgenic mice
overexpressing YAP(Ser127Ala) in the small intestinal
compartment, wherein intestinal dysplasia and loss of
goblet and Paneth cells are also observed [52,53].

The inactivation of Mstl/2 in the intestine compart-
ment to promote the hyperproliferation of intestinal
stem cells and to inhibit intestinal epithelial differenti-
ation is attributed largely to an enhancement of p-
catenin action and an activation of Notch signaling. The
enhanced (-catenin transcriptional activity in the intes-
tine compartment of Mst1™~Mst2""-villin-Cre mouse is
evident by the increased abundance of the activated
form of P-catenin (dephospho-Ser37/Thr41l) and Wnt
targets Lgr5 and Ascl2 [52]. The expression levels of the
Notch ligand Jagged 1, mediated possibly in part through
up-regulated Wnt signaling [54,55], the intranuclear
Notch intracellular domain (NICD) and the abundance
of Hairy and enhancer of split 1 (Hesl), a Notch target
gene, are all increased in Mstl/Mst2 deficient intestine.
Those evidences indicate that the Notch signaling path-
way is highly activated in the intestine of Mst1~~Mst2"
M_villin-Cre mouse. Mst1/Mst2 deficient intestines de-
velop colonic adenomas, and unlike the polyps described
in the Savl-deficient colon [56], the polypoid lesions in
the Mstl/Mst2-deficient colon do not exhibit a saw-
tooth/serrated architecture but hyperproliferative aden-
oma which might result from an activation of p-catenin
and/or the inactivation of the Hippo signaling pathway
in these lesions [52,57].

Pancreas

The Hippo pathway is necessary for proper development
and to preserve homeostasis in the liver and intestines,
both of which, as well as the pancreas, are developed
from a primitive gut tube derived from the embryonic
endoderm [58]. Thus the pancreas specific Mstl and
Mst2 conditional knockout mice using Pdx1-Cre were
generated to study the effect of the Hippo pathway dur-
ing mouse pancreas development. Mstl/2 pancreas-
specific knockout (Mstl/2-Pdx-Cre) mice were born
with no distinctive pancreatic defects at birth, however,
in contrast to Mstl1/2 liver-specific knockout mice with
the hepatomegaly phenotype, Mst1/2-Pdx-Cre mice have
a significantly decrease in pancreas mass relative to that
of wild-type littermate controls at adult age [59,60].
These mice exhibit obvious morphologic alterations,
including acinar cell atrophy, overabundance of ductal
structures, and smaller islets with abnormal o/f cell ra-
tios in pancreas. In brief, the pancreas became more
ductal and less acinar in phenotype. Furthermore, a
YAP-dependent loss of acinar cell identity and extensive
disorganization in Mstl/2 deficient exocrine tissue leads
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to pancreatitis-like autodigestion which might result in
tissue necrosis and pancreas mass decrease.

In mouse embryo, normal pancreatic differentiation is
divided to two stages, the primary transition and the sec-
ondary transition. The primary transition occurring be-
tween embryonic days 9.5 and 12.5 (E9.5 and E12.5
respectively) marks the appearance of very low levels of
acinar digestive enzymes and the first wave glucagon-gene
and subsequently insulin-gene expressing cells. The sec-
ondary transition (between E13.5 and E16.5) characterized
by intense proliferation and differentiation throughout the
pancreas epithelium spans the geometric increase of aci-
nar digestive enzymes and insulin [61]. Mstl (but not
Mst2) and YAP proteins are detected in the wild type pan-
creas during the secondary transition stage, and was al-
most undetectable at birth before returning to higher
levels at postnatal day 7 (P7) and P14. Mst1/2 deficiency
does not affect YAP protein levels in the embryonic pan-
creas, but lost of Mst1/2 was associated with higher levels
of total YAP at adult age [59]. Within the adult pancreas,
Yap expression is limited to the exocrine compartment, in-
cluding ductal and acinar cells, whereas loss of Mst1/2 in-
creases the YAP protein level and nuclear accumulation of
nearly all exocrine cells accompanied with increased cell
proliferation rate. Those evidences suggested that Mst1/2
signaling does not play a major role in pancreas organo-
genesis, but become functionally active during the second-
ary transition. The activation of Mstl/2 is required for
regulating postnatal YAP levels and phosphorylation status
in acinar cells to maintain differentiation [59,60].

Heart

It has been shown that Mstl regulates heart size by acti-
vating its downstream kinase, Lats2, and inhibiting YAP
activity, thereby attenuating compensatory cardiomyocyte
growth. In cardiomyocytes, Mstl is activated by patho-
logical stimuli, such as hypoxia/reoxygenation in vitro and
ischemia/reperfusion in vivo [62]. Mstl mediates cardiac
troponin I phosphorylation and play a critical role in the
modulation of myofilament function in the heart. The
function of Mstl in cardiomyocytes can also be negatively
regulated by a new identified Mstl-interacting protein
protein-L-isoaspartate (D-aspartate) O-methyltransferase
(PCMT1) [63]. Cardiac-specific over-expression of Mstl
in mouse results in activation of caspases, increased apop-
tosis and dilated cardiomyopathy, whereas the inhibition
of endogenous Mstl prevents apoptosis of cardiomyocytes
and cardiac dysfunction after myocardial infarction with-
out producing cardiac hypertrophy [62,64]. Furthermore,
Del Re DP and colleagues show that RassflA is an en-
dogenous activator of Mstl in the heart and the function
of RassflA/Mstl pathway is different between cardio-
myocytes and fibroblasts. The Rassf1A/Mst1 pathway pro-
motes apoptosis in cardiomyocytes playing a detrimental
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role; while the same pathway inhibits fibroblast pro-
liferation and cardiac hypertrophy through both cell-
autonomous and autocrine/paracrine mechanisms,
playing a protective role during pressure overload [65].
More recently, cardiac conditional knockout mice with
either WW45, Lats2 or Mstl/2 using the Nkx2.5-cre
exhibit expansion of trabecular and subcompact ven-
tricular myocardial layers, thickened ventricular walls,
and enlarged ventricular chambers without a change in
myocardial cell size [66]. Yapl protein was robustly
detected in neonatal and juvenile mouse heart and de-
clined with age. Cardiomyocyte-restricted loss of Yapl
in Fetal resulted in marked, lethal myocardial hypopla-
sia and decreased cardiomyocyte proliferation, whereas
fetal activation of Yapl stimulated cardiomyocyte pro-
liferation [67]. Thus, the Mstl/2-WW45/Lats2-Yapl
pathway is critical of cardiomyocyte proliferation, car-
diac morphogenesis, and myocardial trabeculation, but
it does not influence physiological hypertrophic growth
of cardiomyocytes during the experimental context.
Gene expression profiling and chromatin immunopre-
cipitation revealed that Hippo signaling negatively regu-
lates a subset of Wnt target gene in cardiomyocyte [66].

The functions of Mst1/2 in immune system

The murine Mstl and Mst2 kinases are most abundant in
tissues of the lymphoid system. Mst1 kinase acts as an im-
portant regulator in T cell selection, adhesion, migration,
growth, and apoptosis [68-73]. The Mstl deficient mouse
exhibits a reduction in white pulp, decreased numbers of
total CD4" T cells, CD8" T cells and B220" B cells and
absence of marginal zone B cells. Compared to the wild
type littermates, Mstl-deficient mice have much fewer
CD62L"/CD44'° naive peripheral T cells and a high pro-
portion of CD62L'°/CD44™ effector/memory T cells in tis-
sues, such as liver and lung. Inactivation of Mstl and
Mst2 does not have obvious effect on the thymocytes de-
velopment, although a lightly small size thymus is found
in the Mst1™~Mst2""-VayCre mouse. This might due to
the very low abundance and activity of Mst1/2 kinases in
double-positive (DP) cells and developmentally earlier thy-
mocytes. Recently, patients bearing LOF mutations of
Mstl are reported with a primary immunodeficiency syn-
drome characterized by naive CD4'and CD8" T-cell
lymphopenia in particular, as well as neutropenia, closely
assembling with the major defect of Mstl deficient mice
in lymphocyte homeostasis. Those patients have recurrent
bacterial infections, viral infections, and autoimmune ma-
nifestations with autoantibodies [35,74,75]. In contrast to
defects seen with deletion of Mstl, a global deletion of
Mst2 caused no changes in lymphocyte numbers in any
compartment. However, the additional elimination of
Mst2 in the entire hematopoietic lineage on an Mstl1 defi-
cient background (Mst1™~Mst2™-VavCre mouse) causes
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a marked exacerbation of the deficits seen in Mstl defi-
cient T cells, suggesting that Mst2 might play a redundant
role in lymphoid tissues during the absence of Mstl [69].
The kinase activity of Mstl is essence for T cell homeosta-
sis, since the defective phenotype of Mst1/Mst2 deficiency
in the lymphoid compartment can only be restored by the
transgenic expression of wild type but not catalytically in-
active Mstl.

Mstl1-deficient naive T cells proliferate vigorously in re-
sponse to TCR stimulation and have enhanced ongoing
apoptosis in vivo. Mstl, but not Mst2, is greatly reduced
in effector/memory T cells compared to that in naive T
cells, thus Mstl might serves as a likely determinant of
the threshold for activation of naive T cells. Upon the T
cell receptor (TCR) stimulation, the increase in tyrosine
phosphorylation of CD3(, ZAP70, Lck, and PLCy is simi-
lar in splenic T cells from wild-type and Mstl deficient
mice, whereas the phosphorylation of Mob1A/B observed
in the wild-type T cells is lost entirely in the Mst1 deficient
T cells. Elimination of Mstl has little effect on the Latsl
carboxyl-terminal phosphorylation, Lats1/2 autophospho-
rylation and YAP phosphorylation in T cells. Thus the ac-
tivation of Mob1A/B might serve as the effector of Mst1’s
antiproliferative effect in naive T cells [69,71]. The disrup-
tion of Mstl, or both Mstl and Mst2, impairs the thymo-
cyte egress and causes an accumulation of nature T cells
in thymus, shown as the increased proportion of single-
positive (SP) thymocytes in thymus, and a decreased num-
ber of lymphocytes in circulation. Mstl-deficient mice
show defects in adhesion, homing, and intranodal mi-
gration in vivo. Furthermore, two independent pools of
the ADAP/SKAP55 module, one of which associates with
RAPL, Mstl, and Rapl, whereas the other interacts
with RIAM, Mstl, Kindlin-3, and Talin are identified that
they are independently recruited to the a- or -chain of
LFA-1 and coordinate CCR7-mediated activation of LFA-
1 as well as T-cell adhesion and migration [76]. Thymo-
cytes express multiple Racl/2 GEFs [77], in which the
deletion of Dock2 resulting in similar defects in migration,
actin polarization, and Rac GTPase activation seen in the
Racl/Rac2-deficient thymocytes [78]. Mst1/Mst2 double
knockout thymocytes lack the ability to activate RhoA
as well as Rac, however, no evidence shows that Dock2
is a regulated downstream of Mst1/Mst2. Although the
limited overlap between Dock8 and Mstl/Mst2 defi-
ciency, loss of phospho-MoblA/B activation of Dock8
might contribute to chemokine-stimulated Racl activa-
tion in Mstl/Mst2-deficient thymocytes and in turn to
the failure of thymic egress [69]. More recently, Mstl in
thymocyte has also been shown to involve in LFA-1/
ICAM-1-dependent high-velocity medullary migration
and is required for migrating thymocytes to associate
with rare populations of Aire* ICAM-1™ mTECs in a
negatively selecting environment. Thus, Mstl might



Qin et al. Cell & Bioscience 2013, 3:31
http://www.cellandbioscience.com/content/3/1/31

have a key role in regulating thymocyte self-antigen
scanning in the medulla [79].

Conclusion

The mammalian Hippo pathway has generated great in-
terests and gained significant progress in the past few
years. In addition to the conserved role of growth con-
trol and tumor prevention, the Hippo pathway has also
been shown to integrate with other critical signaling
pathways, such as Wnt and Notch pathways and extend
its function in many other critical biological events.
There are still many open questions in the Hippo path-
way field remained to be fully elucidated, especially the
mechanism by which upstream regulators of the Hippo
pathway to initiate or terminate signaling, and how the
cellular redox plays a role in this process. Advances in
understanding the Hippo signaling pathway regulation
may not only solve the scientific questions, such as
organ size control and developmental regulations, but
also provide new therapeutic targets for human diseases.
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