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Abstract

Mechanical force is present in all aspects of living systems. It affects the conformation of molecules, the shape of
cells, and the morphology of tissues. All of these are crucial in architecture-dependent biological functions.
Nanoscience of advanced materials has provided knowledge and techniques that can be used to understand how
mechanical force is involved in biological systems, as well as to open new avenues to tailor-made bio-mimetic
materials with desirable properties.
In this article, we describe models and show examples of how force is involved in molecular functioning, cell shape
patterning, and tissue morphology.
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Introduction
Life relies on the ability of size and shape control at dif-
ferent scales. At the molecular and sub-cellular levels,
chemical signaling relies on conformational changes of
molecules. Mutations leading to abnormal conforma-
tional changes often cause diseases such as tumors and
tissue malfunction. At the cellular and tissue levels, the
ability of cells to form specific shapes is of vital import-
ance [1,2]. This ability appears to control the fate of cells
and tissues. For example, it has been shown that control-
ling cell shape on micro-fabricated devices can induce
cell apoptosis [3], direct cell migration [4], and stem
cells differentiation [5]. All of these functions are im-
portant in normal tissue development and homeostasis.
From a theoretical point of view, the control of mo-

lecular conformation, cell shape, and tissue morphology
relies on how mechanical forces are created, distributed,
and transmitted. There is a growing interest in the role
of mechanical force in tissue development, remodeling,
regeneration, and tumorigenesis [6-10]. In most cases,
force is transmitted through filaments such as actomyo-
sin bundles inside the cells and collagen fibers outside
* Correspondence: guochin@caltech.edu; chkiang@rice.edu
1Department of Bioengineering and Department of Applied Physics,
California Institute of Technology, MC 138–78, Pasadena, CA 91125, USA
2Department of Physics and Astronomy, Rice University, Houston, TX, USA
Full list of author information is available at the end of the article

© 2013 Guo et al.; licensee BioMed Central Ltd
Commons Attribution License (http://creativec
reproduction in any medium, provided the or
the cells. The spatial scales of these filaments can be as
small as nanometers, while their integrated, mechanical
influence on biological systems can be as large as the
size of an organ. To understand how the mechanical
properties of filamentous molecules at nanometer scales
affect the structure and function of biological systems,
lessons learned from nanoscience can be applied. In ad-
dition, recent advances in nanomaterial sciences open a
new door for customized bio-mimetic materials with de-
sired structures and mechanical properties [11].
Understanding how cells create, distribute, transmit,

and use forces is essential for using nanomaterials tech-
nology in biological systems. At the cellular level, the
creation of force within single cells depends on the
orientation and distribution of cytoskeleton proteins,
such as actomyosin filaments, the organization of which
is further regulated by chemical signaling that relies on
conformational changes of molecules. Likewise, the
propagation of force within tissues is parameterized by
the distribution and the orientation of extracellular
matrix (ECM) molecules.
Molecular mechanics
Polymer physics models of biomolecules
The mechanical properties of proteins and DNA can
be described using polymer physics models such as the
freely-jointed chain (FJC) model and the wormlike chain
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Figure 1 Polymer elasticity models commonly used in single molecule manipulation. a, The FJC model consists of segments of length
lk connected via freely-rotating joints. b, The eFJC model consists of elastic segments with segment elasticity kseg. c, The WLC model describes a
polymer molecule as a flexible rod with stiffness defined by the persistence length lp.
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(WLC) model. The FJC model assumes a polymer chain
consisting of n segments of characteristic length lk (Kuhn
length) connected via freely-rotating joints (Figure 1a)
[12]. The FJC model accounts for the entropic elasticity of
the polymer chain up to the contour length, lc=nlk. At
high forces, a molecule may be stretched beyond its
contour length. Such overstretching transitions can be
described by extensible FJC (eFJC) [13,14], which takes
into account the additional extension by modeling each
segment as an elastic spring with segment elasticity kseg
(Figure 1b). The WLC model treats a polymer molecule as
a homogenous elastic rod, or a wormlike chain, characte-
rized by its contour length, lc, and persistence length, lp
(Figure 1c) [12]. The persistence length lp defines the
bending stiffness of the polymer. In single molecule exper-
iments, the force-extension curves are fitted with these
polymer physics models to determine the elasticity of the
molecules. Typically, single-stranded DNA (ssDNA) is
best described by the FJC model, whereas double-stranded
Figure 2 Human cardiac protein titin. a, A schematic of titin in the sarco
c, Typical force-extension data of titin I27. Curves are WLC model fits to eac
over which the WLC model was fit are in blue.
DNA (dsDNA) and proteins can be characterized by the
WLC model.

Stretching reveals folding-refolding characteristics of titin
I27 domain
To illustrate how force measurements of molecules are
done to obtain the parameters that define the mecha-
nical properties of molecules, we use single molecule
force studies of a protein with repeated units. The single
molecule manipulation studies are performed using an
engineered polyprotein consisting of repeats of the I27
domain of human cardiac titin. Titin is a giant muscle
protein of 1 μm in length and 3 MDa in size, found in
the striated cardiac and skeletal muscle tissue [15]. Titin
molecules span half the sarcomere, from the Z-disc to
the M-line, constituting a third of the sarcomeric fila-
ment system that binds to both the thick and thin fila-
ments [16]. Figure 2a shows a schematic of the cardiac
sarcomere. Titin is divided into an extensible I-band
mere. b, Structure of I27 domain of titin (Protein Data Bank, ID 1TIT).
h individual domain stretching event. The force-extension regions



Figure 3 The stretching of DNA. a, A schematic of pulling dsDNA and ssDNA by AFM. b, Force-extension curves of poly(dA), poly(dT) and
λ-phage ssDNA and dsDNA. The curves indicate that transitions occur at 0.6 nm base separation for both dsDNA and poly(dA), but not poly(dT)
or λ-phage ssDNA. Adapted from Ref. [41].

Figure 4 A schematic for the self-organization of myofibrils.
A single myocyte is patterned into a square shape to bias the
distribution of focal contacts (green) at the corners. The contractile
units, stress fibers, connect focal contacts to one another. The final
pattern of myofibril is predicted to result from the coordination of
the geometrical cues and the self-alignment of stress fibers.
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region, which is responsible for the protein's elasticity,
and an inextensible A-band region, which functions as a
stiff scaffold. Titin has a modular architecture in which
both regions are composed primarily of repeats of Im-
munoglobulin (Ig)-like and Fibronectin type 3 (FN3)-like
domains [17]. These domains exhibit a β-barrel structure
formed from seven anti-parallel β-strands. Domains are
linked to neighboring domains via an elastic linker re-
gion, which is thought to be the main source contri-
buting to the overall flexibility of the chain [18]. The
A-band and the I-band are composed primarily of
FN3 domains and the stronger Ig domains, respect-
ively. Mechanical stability dictates the arrangement of
domains in the I-band, with the weakest Ig domains
near the Z-line (proximal Ig region) and the most
mechanically stable domains near the M-line (distal Ig
region) [19].
The mechanical nature of titin's function makes it par-

ticularly suitable for single molecule stretch-relaxation
studies [20-26]. In particular, the I27 domain of titin,
which was the first structurally determined Ig domain
from titin's I-band (Figure 2b) [16], has been widely
studied using single molecule manipulation experi-
ments. In these experiments, a biomolecule attaches
to the AFM tip and substrate and is stretched as the
piezoelectric transducer moves the substrate surface
away from the tip, thereby increasing the molecular
end-to-end distance. This stretching results in a nega-
tive cantilever deflection, followed by an abrupt jump
back to the cantilever equilibrium position when one
of the domain unfolds or the molecule detaches from
the tip [27]. Figure 2c shows a force-extension curve
from an AFM stretching experiment, in which each
I27 force peak, representing an individual domain stret-
ching event, was fit with the WLC model (red lines).
Using nonequilibrium single molecule measurements
and Jarzynski’s equality, the free energy surface of
both mechanical stretching and unfolding of the I27
domain of human cardiac titin can be reconstructed
[22]. Quantitative information about the free energy
of unfolding of I27 may allow us to quantify the pro-
tein folding free energy landscape, and therefore, to
predict the pathways of biological interactions.



Figure 6 The schematics of lateral inhibition. Lateral inhibition
requires a short-range activation that self amplifies and a long-range
inhibition that inhibits remote activations. The strength of the
stimulation and the spatial characteristics of the activation and the
inhibition determine the spacing L.
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Figure 5 Immunostains and traction force map of square cardiac myocytes. Actin (a, d and green in c, f) stained in a square myocyte was
seen to be aligned along the diagonal, while sarcomeric α-actinin (b and red in c) marks the z-lines of the sarcomeres. Vinculin stains (e and
red in f) show that this protein aggregates to corners of a square, with fibril-like structures appearing to emanate from the internal angle and
radiating towards the center of the cell. The chromatin was stained with blue in c and f. Scale bar: 10 μm. The contractile traction measurement
(i) shows that the contraction of myofibrils is centripetal with the highest traction concentrated at the corners, correlating with the distribution of
the vinculin (g: DIC image; h: displacement field; i: contractile traction field). Adapted from Ref. [4].
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Mechanical melting of DNA exhibits unique overstretching
transitions
There has been renewed interest in understanding the
details of thermodynamics and kinetics of DNA melting
due to recent advances in both single molecule experi-
mental techniques [13,28-34] and theoretical modeling
methods [35-37]. DNA's mechanical properties influence
a variety of its biological functions such as how it wraps
around histones, packs into phage heads, and interacts
with proteins [13]. It is believed that many biological
machines depend on the mechanical properties of double-
stranded DNA (dsDNA) [30,35]. These mechanical prop-
erties can be exploited by novel therapeutics whose design
is guided by information extractable from single molecule
force measurements [38,39].
AFM is used to pull single-stranded DNA (ssDNA)

and dsDNA molecules, and measure the force associated
with the conformational changes (Figure 3). DNA melting
transitions were characterized by repeatedly stretching
and relaxing an individual double-stranded λ-DNA mo-
lecule [40]. A force-induced transition between B form
DNA (B-DNA) and S form DNA (S-DNA), prior to
dsDNA melting, was observed [40]. The mechanical prop-
erties of the various conformations, B-DNA, S-DNA, and
ssDNA, were quantified using the FJC and WLC polymer
elasticity models, and were shown to agree well with ex-
pectations from previous experiments and theory.



Figure 7 Models for mechanical force-mediated patterning processes. a, Different motilities between two types of cells can lead to lateral
inhibition. b-b’, The spatial distributions of an orthogonal pair of mechanical forces, Fx and Fy, created by (b) myosin or (b’) cell motions, are
anisotropic along their principle axes, x and y, respectively.

Guo et al. Cell & Bioscience 2013, 3:25 Page 5 of 10
http://www.cellandbioscience.com/content/3/1/25
Poly(dA), a single-stranded DNA composed of uni-
form A bases [41], has also been studied with force
measurements, and was found to have multiple over-
stretching pathways, with the molecule being able to
hop between these two states. These results suggest
that poly (dA) has a novel conformation when highly
stretched, and the unique conformation makes poly
(dA) more stable at large extensions. These unique pro-
perties of poly(dA) may play a role in biological pro-
cesses such as gene expression. Taken together, these
results demonstrate that single molecule force meas-
urement allows us to quantify the elastic and thermo-
dynamic properties of biological macromolecules, and
the technique may ultimately be developed into a tool
for drug screening.
Figure 8 Epithelium-mesenchyme interaction in skin appendage patt
mesenchymal condensation. b, The progressive formation of feather buds
feather primodia. d, A localized treatment of FGF4 leads to a local enlargem
from Ref. [61].
Cell and tissue mechanics
Force-mediated self-patterning of myofibril
Living cells continuously consume energy to organize
and maintain asymmetric architectures dictating their
functions. One specific example is the orientation of
myofibrils, which is a cord-like structure consisting of
several different types of filamentous proteins that are
organized into a regularly repeated subunit, the sarco-
mere. Myofibril matures in a force-dependent manner
[4]. Within cells, force is maximized when all the con-
tractile units are aligned. Cells develop contractile units
such as stress fibers by establishing cell-substrate con-
tacts called focal adhesions. It has been shown that the
geometry of cell periphery determines the distribution
of focal adhesions [42,43]. Thus, it is likely that the
erning. a, The schematics of the epithelial placode formation and the
at chicken embryo. c, A homogeneous treatment of FGF4 enlarges
ent of feather primodia. Scale bar in b, d: 5 mm. b-d are adapted



Figure 9 Models for force-mediated patterning process in wound healing and cell shape regulation. a, The time course of wound healing
in xenopus oocyte. Adapted from Ref. [63]. White arrows indicate actomyosin bundles (purse-string). b-c, Models for how (b) cell sheet and (c)
individual cells use the interplay of tension along actomyosin bundles and the geometry-dependent positive feedback of cell protrusions to form
patterning cues.
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patterning of myofibrils is due to the coordination of
extracellular geometrical cues and the self-alignment of
intracellular contractile units (Figure 4). This was sup-
ported by computation simulation and micro-patterning
experiments [4] (Figure 5).

Mechanical processes pattern cell shape and tissue
architecture
In most tissues, cells can iteratively pattern morpho-
genetic units of similar size into complex forms. This oc-
curs at both single- and multi-cell levels. For example, in
the morphogenesis of a growth cone, single neuron cells
form multiple, regularly separated neurites, which then
differentiate into axon and dendrites [44]. Likewise, re-
petition of multi-cellular units is observed in the bran-
ching morphogenesis of tubular organs including lungs
[45,46], blood vessels [46,47], salivary glands [48], mam-
mary glands [46], and renal ducts [46,49,50]. In bran-
ching morphogenesis, cells reiteratively branch out from
pre-existing cell sheets into the surrounding extracellular
matrix (ECM) [46,47]. Similar processes occur in embryo
gastrulation, where a group of cells from the ectoderm
bend inward to form the endoderm [51].
Figure 10 Regular spacing in the invasion of tumor colonies. a, Experi
patterned traps followed by the overlay of type I collagen gel (1 mg/ml) to
became random if cells were treated with myosin inhibitor Blebbistatin (10
inter-branch distance L1 after 6 h. N = 100 and data are normalized to the
One appealing mechanism to control repetitive cell/
tissue patterning is the chemical-based reaction–diffu-
sion scheme proposed by Alan Turing (lateral inhibition)
[52]. Lateral inhibition relies on the interplay of short-
range activation and long-range inhibition (Figure 6).
Such inhibition can result from the consumption of pre-
cursors or the creation of inhibitors. Lateral inhibition
requires that the activation self amplifies, while creating
inhibition to suppress other activations. As a result, indi-
vidual activations mutually repel each other. This leads
to a regular spacing, L, between neighboring activations.
In turn, position cues can spontaneously emerge to pat-
tern cell/tissue into regular/periodic shape.
To form lateral inhibition, it is required that the acti-

vation and the inhibition possess different spatial scales.
In chemical-based lateral inhibition, this requirement
can be achieved by having different diffusion coefficients
for molecules that mediate the activation or the inhi-
bition [45,46,50,53-59]. On the other hand, using mech-
anical processes to generate patterning cues has shown
promise as an alternative method.
Compared with chemical-based processes, several fea-

tures of mechanical processes make them easier to create
mental setup. Tumor cells (the Human MCF-7) were seeded in micro-
induce cell migration. b, Representative invasion patterns. The pattern
μM). Time is in hour and minute. Scale bar: 200 μm. c, Distribution of
maximum.



Figure 11 Force as an attractive morphogen. a, Experimental setup. Epithelial cells (The Human MCF-10A) were spread on basement
membrane (BM) gels (ECM1) to form epithelial acini, followed by the overlay of collagen (ECM2) on top. b, Representative branch induction by
mechanical attraction (black arrow) between acini. Note branches originated from different acini attract each other, while branches originated
from the same acinus move in opposite direction (black and white arrows). The attraction was inhibited when cells were treated with myosin
inhibitor Blebbistatin (10 μM). Time is in hour and minute. Scale bar: 100 μm.

Figure 12 Model for force-mediated branch patterning. a, The
long-range traction forces (pink arrows) align cell motions in the
same orientation. b, The spatial distributions of traction forces,
Fx and Fy, created by the constrained (red) and escaping (blue)
cells, respectively, are anisotropic along x and y axes. Here, the
constrained cells move along aligned linear ECM polymers (green)
such as type I collagen (COL) fibers. On the other hand, the
escaping cells are attracted by un-aligned ECM polymers. The
densities of the constrained and escaping cells are ρc and ρe,
respectively.
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patterning cues. One example is that cells use differential
motility to pattern tissues. For two types of cells that inter-
act with each other (Figure 7a), they exhibit different mo-
tility by tuning cytoskeletal mechanics or the expression
level of surface receptors that mediate cell-cell or cell-
ECM adhesions. Assuming that the slow-moving cells act
as the activator and the fast-moving cells act as the inhi-
bitor, we can then see how their interplay leads to lateral
inhibition. This can be found in the patterning of skin ap-
pendages, such as hair follicles [54] and feather buds [60],
where mesenchymal cells interact with epithelium and
change motility by expressing different amounts of recep-
tor N-CAM (Figure 8).
Another feature that makes mechanical force useful in

patterning processes is its vectorial nature, i.e., spatial
anisotropy (Figure 7b, b’). This is different from mole-
cular diffusion and can easily create patterning cues in
high-dimensional space. For a mechanical process that
involves two orthogonal forces, both forces propagate
along linear polymers such as actin filaments or ECM
fibers (Figure 7b, b’). These forces can be generated by
either motor protein myosin II within individual cells or
by moving cells at the ECM. In contrast to isotropic mo-
lecular diffusion, the magnitude of each force lasts for a
long range along its own principle axis, but limited in
the others. This effect leads to a difference of spatial
scales for the distribution/dispersion of forces between
orthogonal axes. When the mechanical force is coupled
with chemical signaling such as the process of mecha-
notransduction [62], the traction force created by one
cell can act on other cells and allow them to produce
more traction forces along the same axis, which results
in an amplification loop. The amplification loop and the
difference in spatial scales (for the dispersion of forces)
then provide a foundation for lateral inhibition to occur
along one of the principle axes. Typical examples in-
clude the closure of wound and the patterning of cell
shape. In embryos, the healing of wounds is primarily
mediated by the contraction of actomyosin bundles within
multiple cells along the wound edge, i.e., a purse-string
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mechanism [63] (Figure 9a), while individual cells at the
wound edge stochastically form lamellipodia in the di-
rection of the wound [64]. The formation of lamellipodia
occurs in a geometry-dependent manner [42,43] within
individual cells, while the contraction of purse-string oc-
curs across multiple cells along the wound edge, leading
to a difference in spatial scales between these two pro-
cesses. In addition, the tension of actomyosin bundle pro-
vides a bending modulus to suppress cell protrusion [65].
As a result, it is expected that the long-range transmission
of tension along the wound edge and the geometry-
dependent amplification of lamellipodia in the direction of
wound form a foundation to create patterning cues in
wound healing (Figure 9b). A similar idea can be applied
to the patterning of cell shape (Figure 9c). A mathematical
model based on assumptions analog to the proposed con-
cept is discussed in Ref. [65].
Perhaps the most important feature of mechanical

forces is that they can continuously propagate between
and across cells through cytoskeletons, intercellular ad-
hesions [66,67], and ECM [68]. This provides long-range
communication across the multi-cellular system. Like-
wise, patterning cues mediated by mechanical force can
propagate from single-cell to multiple-cell levels without
the transformation of the patterning information by
biochemical cues, such as morphogens. Figure 10 shows
an example where multi-cellular protrusions (formed by
actin filament polymerization [69]) are separated from
each other to form regular spacing, as one would expect
in lateral inhibition. Figure 11 shows an example where
epithelial acini use mechanical force as an “attractive mor-
phogen” to induce branch formation.
The propagation of forces over multiple cells further

reinforces the long-range effect for lateral inhibition.
This will be very useful for creating large-scale coordin-
ation in tissue development and homeostasis. Figure 12
illustrates an example for how mechanical interactions
between cells and ECM can help the creation of patter-
ning processes. Imagine a group of cells surrounded by
linear ECM polymers such as type I collagen (COL) fi-
bers. Through spontaneous migration, these cells create
traction forces between each other via the intercellular
adhesions and the ECM [68] (Figure 12a). The propa-
gation of forces provides a long-range control across
multiple cells to align their locomotion in the same
orientation. In addition, it helps the alignment of col-
lagen fibers. As a result, cells are constrained to move
along aligned collagen fibers (Figure 12b). Now, imagine
that a fraction of cells escapes through interaction with
non-aligned collagen fibers. Traction force created by
escaping cells can then act at the constrained cells to
change their direction of motions through mechano-
transduction [62]. This effect allows the constrained cells
to escape from the aligned collagen fibers, and becomes
more significant as more constrained cells become the
escaping cells, leading to a local amplification of escape.
Taken together, the long-range alignment and the local
amplification of escape form a foundation to create pat-
terning cues.

Conclusion
The effect of mechanical force on biological materials
differs from that of chemical force in that it depends
both on the force-molecular interactions and the struc-
ture of underlying substrate. This opens a door for using
nanotechnology to control the molecular, cellular, and
tissue structure, function, and assembly by changing the
topology and structure of the environment. There are
several advantages of using physical versus chemical for-
ces to control the response of biological materials and
complexes. For example, mechanical force is nonspecific,
which does not depend on the types of molecules, cells,
and tissues involved, so the effect and design principle is
universal. Furthermore, unlike chemical signaling, the
non-specificity of mechanical forces allows them to be
directly combined, and the effect may be amplified by
increasing the magnitude of force applied. These fea-
tures, along with the relatively simple processes required
for generating mechanical processes, make mechanical
force a promising tool to control and manipulate bio-
logical materials.
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