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Primary brain tumors, in particular, glioblastoma multiforme (GBM), continue to have dismal survivability despite
advances in treating other neoplasms. The goal of new anti-glioma therapy development is to increase their
therapeutic ratios by enhancing tumor control and/or decreasing the severity and incidence of side effects. Because
radiotherapy and most chemotherapy agents rely on DNA damage, the cell's DNA damage repair and response
(DRR) pathways may hold the key to new therapeutic strategies. DNA double-strand breaks (DSBs) generated by
jonizing radiation and chemotherapeutic agents are the most lethal form of damage, and are repaired via either
homologous recombination (HR) or non-homologous end-joining (NHEJ) pathways. Understanding and exploitation
of the differences in the use of these repair pathways between tumor and normal brain cells will allow for an
increase in tumor cell killing and decreased normal tissue damage. A literature review and discussion on new
strategies which can improve the anti-glioma therapeutic ratio by differentially targeting HR and NHEJ function in
tumor and normal neuronal tissues is the focus of this article.
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Introduction

Primary brain tumors

In 2012, it is predicted that nearly 23,000 new primary
brain tumors will be diagnosed, [1] of which 70% will be
gliomas [2]. The most common type of glioma is glio-
blastoma multiforme (GBM), which accounts for 54% of
all gliomas (42% of all primary brain tumors). Five-year
survival is a dismal 4.70% for patients with GBM, [3]
with a median survival time of just over 3 months fol-
lowing resection [4]. Despite a massive research effort,
outcomes remain dismal in malignant brain tumors.

Our limited understanding of the mechanisms which
underlie brain tumorigenesis severely limit preventative
and therapeutic options for patients. The current stand-
ard treatment for GBM involves surgical resection fol-
lowed by adjuvant radiotherapy (RT), with or without
concomitant chemotherapy [5]. Disappointingly, this
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regimen only affords GBM patients a median survival
benefit of 14.6 months- a 12 month improvement over
resection alone [4,6]. It is important to note that radio-
and chemotherapies are, at the molecular level, based on
inducing enough DNA damage in the tumor cell to re-
sult in lethality. Unfortunately, these therapies also cause
DNA damage to surrounding neuronal tissue, resulting
in a variety of local and systemic toxicities. With regard
to ionizing radiation (IR) treatments to the brain, side
effects can be severe and include nausea, vomiting, seiz-
ure, and permanent cognitive and focal neurological def-
icits [7].

As such, there is a substantial research effort seeking
to discover new therapeutic regimens that maximize
tumor killing while minimizing these normal tissue toxi-
cities, based on understanding of the differences in the
behaviors and pathways of healthy and neoplastic cells.
Current research and understanding of DNA damage re-
sponse and repair (DRR) in glioma tumorigenesis and
treatment response is the focus of this review.
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DNA double-strand breaks (DSBs)

A critical feature of the eukaryotic cell is its ability to
maintain genome stability across generations, attributed,
in part, to the sophisticated and precisely regulated
DNA lesion-specific repair mechanisms. Deficiencies in
DRR have been widely associated with a number of
astrocytoma subtypes [8]. The pathways by which cells
rectify DSBs are of particular note, as one unrepaired
DSB can trigger apoptosis [9]. Erroneous repair of DSBs
leads to gross genomic rearrangement, which can result
in genomic instability and tumorigenesis. One example
is the KIAA1549-RAF gene fusion generated by misre-
pair of DSBs found in pediatric astrocytomas [10]. As
such, efficient and faithful DSB repair is critical to nor-
mal cell function and the prevention of neoplastic trans-
formation in brain.

It has been well established that, in mammalian cells,
DSBs are repaired through at least two distinct path-
ways: homologous recombination (HR) and non-
homologous end-joining (NHE]). Both repair mechan-
isms have implications in tumorigenesis, impact tumor
response to current treatment, as well as potentially
serve as therapeutic targets in brain tumor management.

Homologous recombination (HR)

HR is a critical pathway for accurate repair of DSBs and
maintenance of genomic stability. HR-mediated repair is
characterized by deriving of the correct sequence from a
homologous strand of intact DNA. This modeling
process allows for high-fidelity repair of DSBs- much
more so than repairs via NHE] [11]. It is the primary
pathway of DSB repair during the S and G2 phases of
the cell cycle, in part due to the availability of sister
chromatids to be used as repair templates [12].

HR mediated DSB repair follows a general scheme of
nuclease-mediated resection of damaged DNA ends,
polymerization of new DNA, and ligation to restore
strand integrity. Detailed biochemistry of the pathway
has been well described by others [13]. One of the im-
portant and well-studied proteins in the HR pathway is
BRCAL, a tumor suppressor. BRCAI serves as a “master
controller” of HR, binding and regulating many down-
stream affectors including Mrell-Rad50-NBS1 (MRN)
complex [14]. The MRN complex binds to DNA ends,
and recruits nucleases, including Emel, to clean up
damaged bases and initiate the HR process [15,16]. The
binding of MRN also activates ATM, which in turn phos-
phorylates and activates BRCA1 function in activating
cell cycle checkpoints. This prevents the cell from enter-
ing mitosis before damage is repaired [17]. BRCAL also
indirectly interacts with the key HR effector protein
Rad51. Rad51 and its paralogs such as XRCC3 are critical
in homology searching to identify a homologous se-
quence on the sister chromatid [18,19]. When a
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homologous sequence is found, there is an exchange of
the damaged strands, such that each strand is now paired
with a homologous template. The damaged strands are
then extended and ligated, restoring the original double-
strand [20,21].

HR is a critical pathway for DSB repair fidelity. As
such, dysregulation of HR processes resulting from func-
tional deficiency of HR proteins has been associated with
glioma development in many instances [8]. SNPs in the
XRCC3 gene have been correlated with increased risk of
glioma, [22,23] as have SNPs in BRCA1[24] and EME1
[25]. Identification of these risk SNPs and the mechan-
isms by which they increase glioma risk may provide
novel targets for new therapies in the future.

Therapeutic significance: induced HR deficiency mediates
tumor sensitization to poly (ADP-ribose) polymerase 1
(PARP1) inhibition

Given the replication demands in proliferating tumor
cells, the HR pathway, which functions during S/G2,
may be a valuable target for new and high-therapeutic
index GBM treatment regimens. DNA single-strand
breaks (SSBs) can lead to DSBs at the replication fork.
Unrepaired DSBs are lethal to proliferating cells. Dys-
function in the repair of both SSBs and DSBs would be
synthetically lethal. The enzyme poly(ADP-ribose) poly-
merase 1 (PARP1) plays a key role in the repair of SSBs,
[26] while the tumor suppressor BRCA1 is essential for
HR-mediated repair of DSBs [27,28]. PARP1 inhibitors,
including Olaparib, target cancers which are deficient in
the repair of DSBs, exhibit up to 1,000-fold selectivity in
killing BRCA1-mutated (DSB-repair deficient) cells, and
provide an overall survival and progression-free survival
benefit with minimal toxicity in patients with BRCA1-
deficient familial breast cancer [29-33]. Unfortunately,
the majorities of patients who develop sporadic tumors
including malignant gliomas carry wild-type (wt) BRCA1
and are proficient in DSB repair, precluding them from
this potent avenue of therapy [34]. We have previously
shown that transiently exporting wt-BRCA1 protein
from the nucleus (where DSBs are repaired) to the cyto-
sol (where apoptosis is activated) makes cancer cells de-
fective in the repair of DSBs [35]. We propose to
develop an innovative therapeutic strategy that uses this
export of BRCA1 from nucleus to cytoplasm to transi-
ently convert BRCA1-proficient GBM cells into func-
tionally BRCA1-deficient cells and thereby render them
susceptible to PARP inhibitor—induced cell killing
(Figure 1).

Experiments conducted in our laboratory have demon-
strated proof of this concept in GBM cells. The HR
pathway was inhibited by causing loss of BRCA1 func-
tion in three ways: (1) siRNA-mediated BRCA1 knock-
down, (2) IR-mediated export of BRCAI to the cytosol,
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Figure 1 Targeting HR repair with poly (ADP-ribose) polymerase inhibition results in tumor-specific synthetic lethality. Model depicting
potential targeting of HR repair to increase the therapeutic index of anti-glioma treatment. Sequestration of BRCA1 to the cytoplasm inhibits
repair of DSBs and sensitizes cells to DNA-damaging agents. Following DNA damage, BRCA1 facilitates the repair of DNA in the nucleus. By
targeting BRCAT1 subcellular location, tumor cells retain unrepaired damaged DNA and are subsequently sensitized to poly (ADP-ribose)
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and (3) erlotinib-induced BRCA1 nuclear depletion.
siRNA-mediated BRCA1 knockdown results in suppres-
sion of HR repair in several cancer and non-cancer cell
model systems. BRCA1 is also a nuclear-cytosolic shut-
tling protein, and its function is regulated by its subcel-
lular location. When in the nucleus, BRCA1 participates
in HR repair of DSBs. When in the cytosol, it enhances
apoptosis. We have recently found that IR induces nu-
clear export of BRCAL1 in response to DNA damage via
the CRM1I/exportin-dependent pathway. Additionally,
inhibition of EGER by erlotinib results in DNA damage
and BRCA1 nuclear export [36]. In all three instances,
HR-mediated DSB repair was attenuated, and tumor
cytotoxicity response to the PARP inhibitor ABT-888
was significantly increased versus non-HR-inhibited con-
trols. By inducing tumor-specific HR deficiencies, we be-
lieve that PARP inhibitor therapy will result in more
efficacious, safer treatment of both HR-deficient and
HR-competent tumors.

Non-homologous End-joining (NHEJ)

While HR provides some genomic protection, NHE] is
another major DSB repair pathway in mammalian cells.
In contrast to HR, NHE] repairs on a wide variety of
DSBs with distinct break structures and sequences [37]
and functions predominantly during G1 when the HR
repair is not available [38]. However, it demonstrates
decreased fidelity compared to HR, as NHE] repairs

DSBs using no or little homologous template to
ensure that the repaired strand reflects the original
sequence [39].

Similarly to the HR process, NHE] repair follows a basic
motif of damaged base digestion, re-polymerization/repair,
and ligation. Its details have been well-characterized by
others [39]. Briefly, following identification of the DSB by
the cell, Ku70 and Ku80 bind to the exposed breakpoints
as a heterodimer and serve to recruit other necessary pro-
teins [40]. DNA-dependent protein kinase (DNA-PK) is
recruited to the site and exposes the DNA ends to
recruited nucleases [41,42]. DNA-PK also activates the G1
DNA damage checkpoint and arrests the G1-S transition
[43]. A wide variety of nucleases digest nucleotides from
the DNA on both strands, and strand re-extension is
facilitated by X family DNA polymerases, [44] although in
a less extensive fashion than occurs in HR [11]. Finally,
the DNA ligase IV complex joins the two repaired DNA
ends [45].

Due to NHEJs role as a DNA repair system and
checkpoint activator, it is no surprise that there appears
to be a connection between its malfunction and tumori-
genesis in the brain. SNP variations in several NHE]
genes, including those that code for the DNA ligase IV
complex, [46] Ku80 and Ku70, [47] and DNA-PK’s cata-
lytic subunit [24] have been correlated with increased risk
of glioma. Furthermore, loss of DNA-PK function has
been demonstrated to increase IR resistance in GBM
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cells [48]. Despite these implications, it may be possible to
exploit the tumor’s NHE] deficiency in planning treatment
strategies.

Therapeutic significance: NHEJ potentiation mediates IR
neuroprotection

While proliferating tumor cells can repair DSBs through
both HR during S/G2 and NHE] during G1, differen-
tiated normal neuronal cells largely rely on NHE] to sur-
vive from DSBs [37,49]; Thus, exploration of the
difference in regulation of NHE]J activities in GBM ver-
sus normal neurons may provide neuronal protection
from IR-induced cytotoxicity without affording the same
benefit to tumor cells, thereby improving therapeutic
gain. One promising target is glycogen synthase kinase
3B (GSK3p), which regulates glucose metabolism by
phosphorylating glycogen synthase and inhibits glycogen
synthesis. Interestingly, we and others have recently
demonstrated that GSK3 is also involved in suppression
of NHE] activity [50]. Furthermore, inhibition of GSK3[
either genetically or by its specific inhibitors (lithium or
SB216763) accelerates NHEJ-mediated DSB repair and
protects hippocampal neurons from IR-induced apop-
tosis via restoration of DNA-PK-dependent NHE] repair
of DNA DSBs, [51] and attenuates neuro-cognitive tox-
icity in mice. Most importantly, this GSK3p-mediated
radioprotection does not occur in glioma cells examined
in the studies [51-53].

The differential effect on NHE] and radiation protec-
tion in normal neuron versus tumor cells may be attrib-
uted to following: (1) GSK3 is constitutively expressed
at high level in differentiated cells but not expressed in

Page 4 of 6

proliferating cells, [54] (2) additional inhibition of GSK3p
activity in proliferating tumor cells. 40% of primary gli-
omas demonstrate loss of phosphatase and tensin homo-
log (PTEN) function [55]. Canonically, PTEN inhibits
the action of AKT, which in turn inhibits GSK3p [56].
As such, loss of PTEN function and /or increased AKT
activity in tumor cells results in strong suppression
in GSK3p activity. While most gliomas demonstrate
markedly decreased GSK3pB function, [57] lithium or
SB216763 will not be able to generate significant modifica-
tion in GSK3B-NHE] activity as in normal neuronal cells.
Together, these findings have demonstrated that the differ-
ence in GSK3B-mediated NHE] regulation between
healthy neural tissue and glioma cells can be exploited to
benefit the patient, and have provided strong preclinical
evidence and rational for clinical implementation of
GSK3p inhibition in combination with standard GBM
treatment (Figure 2).

Future directions

Current therapies for primary brain gliomas are not ef-
fective in tumor control and often cause severe and dele-
terious neruo-congnitive and systemic toxicities. It is
urgent to develop novel treatment with significantly
improved therapeutic gains. By utilizing the strategies
outlined above, it is possible to exploit differences be-
tween tumors’ and CNS cells’ DRR pathways, specifically
their DSB repair mechanisms. An increased therapeutic
ratio can be accomplished by either tumor-specific
sensitization (BRCA1 nuclear export and HR attenu-
ation) or by neuron-specific radioprotection (GSK3p in-
hibition and NHE] potentiation). As we proceed toward
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genetics-driven, individualized cancer therapeutics, a
deep understanding of the DRR pathways will become
even more important, as they will likely harbor new
treatment targets and provide new insights into how
tumorigenesis occurs in the brain.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

WLS & FX participated in the literature search. WLS drafted the manuscript.
FX edited the manuscript. All authors read and approved the final
manuscript.

Received: 22 August 2012 Accepted: 6 December 2012
Published: 6 February 2013

References

1.

2.

Siegel R, Naishadham D, Jemal A: Cancer statistics, 2012. CA Canc J Clin
2012, 62:10-29.

Ohgaki H: Epidemiology of brain tumors. In Cancer Epidemiology. Edited by
Verma M, Totowa NJ. New York: Humana Press; 2009:323-342 [Walker JM
(Series Editor): Methods in Molecular Biology, vol 4721].

CBTRUS Statistical Report: Primary Brain and Central Nervous System Tumors
Diagnosed in the United States in 2004-2008 (March 23, 2012 Revision).
Hinsdale, IL: Source: Central Brain Tumor Registry of the United States; 2012.
Tran B, Rosenthal MA: Survival comparison between glioblastoma
multiforme and other incurable cancers. J Clin Neurosci 2009, 17:417-421.
Batchelor T, Curry WT: Clinical manifestations and initial surgical approach
to patients with malignant gliomas. In UpToDate. Edited by Loeffler JS,
Waltham MA. Philadelphia: Wolters Kluwer Health; 2012.

Van Meir EG, Hadjipanayis CG, Norden AD, Shu HK, Wen PY, Olson JJ:
Exciting new advances in neuro-oncology: the avenue to a cure for
malignant glioma. CA Canc J Clin 2010, 60:166-193.

Lawrence YR, Li XA, el Naga I, Hahn CA, Marks LB, Merchant TE, Dicker AP:
Radiation dose-volume effects in the brain. Int J Rad Onc 2010, 76:520-527.
Gu J, Liu Y, Kyritsis AP, Bondy ML: Molecular epidemiology of primary
brain tumors. Neurotherapeutics 2009, 6:427-435.

Frosina G: DNA repair and resistance of gliomas to chemotherapy and
radiotherapy. Mol Canc Res 2009, 7:939-999.

Lawson AR, Hindley GF, Forshew T, Tatevossian RG, Jamie GA, Kelly GP,
Neale GA, Ma J, Jones TA, Ellison DW, Sheer D: RAF gene fusion
breakpoints in pediatric brain tumors are characterized by significant
enrichment of sequence homology. Genome Res 2011, 21:505-514.

Mao Z, Bozzella M, Seluanov A, Gorbunova V: Comparison of
nonhomologous end joining and homologous recombination in human
cells. DNA Repair (Amst) 2008, 7:1765-1771.

Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P: Molecular Biology
of the Cell. 5th edition. Oxford: Garland Science; 2008.

Moynahan ME, Jasin M: Mitotic homologous recombination maintains
genomic stability and suppresses tumorigenesis. Nat Rev Mol Cell Biol
2010, 11:196-207.

Powell SN, Kachnic LA: Roles of BRCA1 and BRCA2 in homologous
recombination, DNA replication fidelity and the cellular response to
ionizing radiation. Oncogene 2003, 22:5784-5791.

Uziel T, Lerenthal Y, Moyal L, Andegeko Y, Mittelman L, Shiloh Y:
Requirement of the MRN complex for ATM activation by DNA damage.
EMBO J 2003, 22:5612-5621.

Miyagawa K: Clinical relevance of the homologous recombination
machinery in cancer therapy. Canc Sci 2008, 99:187-194.

Bucher N, Britten CD: G2 checkpoint abrogation and checkpoint kinase-1
targeting in the treatment of cancer. Brit J Canc 2008, 98:523-528.

Zou Y, Liu Y, Wu X, Shell SM: Functions of human replication protein A
(RPA): from DNA replication to DNA damage and stress responses. J Cell
Phys 2006, 208:267-273.

Brenneman MA, Wagener BM, Miller CA, Allen C, Nickoloff JA: XRCC3
controls the fidelity of homologous recombination. Mol Cell 2002,
10:387-395.

20.

22.

23.

24.

25.

26.

27.

28.

29.

30.

32.

33.

34,

35.

36.

37.

38.

39.

40.

41.

42.

Page 5 of 6

Maloisel L, Fabre F, Gangloff S: DNA polymerase delta is preferentially
recruited during homologous recombination to promote heteroduplex
DNA extension. Mol Cell Biol 2008, 28:1373-1382.

Goetz JD, Motycka TA, Han M, Jasin M, Tomkinson AE: Reduced repair of
DNA double-strand breaks by homologous recombination in a DNA
ligase I-deficient human cell line. DNA Repair (Amst) 2005, 4:649-654.
Zhou K, Liu Y, Zhang H, Liu H, Fan W, Zhong Y, Xu Z, Jin L, Wei Q, Huang F, Lu
D, Zhou L: XRCC3 haplotypes and risk of gliomas in a Chinese population: a
hospital-based case-control study. Int J Canc 2009, 124:2948-2953.

Kiuru A, Lindholm C, Heinavaara S, llus T, Jokinen P, Haapasalo H, Salminen
T, Christensen HC, Feychting M, Johansen C, Lonn S, Malmer B, Schoemaker
MJ, Swerdlow AJ, Auvinen A: XRCC1 and XRCC3 variants and risk of
glioma and meningioma. J Neuro Oncol 2008, 88:135-142.

Wang L, Bondy ML, Shen H, El-Zein R, Aldape K, Cao Y, Pudavalli V, Levin
VA, Yung WK, Wei Q: Polymorphisms of DNA repair genes and risk of
glioma. Canc Res 2004, 64:5560-5563.

Chang JS, Yeh RF, Wiencke JK, Wiemels JL, Smirnov |, Pico AR, Tihan T,
Patoka J, Miike R, Sison JD, Rice T, Wrensch MR: Pathway analysis of single-
nucleotide polymorphisms potentially associated with glioblastoma
multiforme susceptibility using random forests. Canc Epidemiol Biomarkers
Prev 2008, 17:1368-1373.

Ame JC, Spenlehauer C, de Murcia G: The PARP superfamily. Bioessays
2004, 26:882-893.

Zhang J, Willers H, Feng Z, Ghosh JC, Kim S, Weaver DT, Chung JH, Powell
SN, Xia F: Chk2 phosphorylation of BRCA1 regulates DNA double-strand
break repair. Mol Cell Biol 2004, 24:708-718.

Gudmundsdottir K, Ashworth A: The roles of BRCA1 and BRCA2 and
associated proteins in the maintenance of genomic stability. Oncogene
2006, 25:5864-5874.

Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, Richardson TB,
Santarosa M, Dillon KJ, Hickson I, Knights C, Martin NM, Jackson SP, Smith
GC, Ashworth A: Targeting the DNA repair defect in BRCA mutant cells as
a therapeutic strategy. Nature 2005, 434:917-921.

Bryant HE, Schultz N, Thomas HD, Parker KM, Flower D, Lopez E, Kyle S, Meuth
M, Curtin NJ, Helleday T: Specific killing of BRCA2-deficient tumours with
inhibitors of poly(ADP-ribose) polymerase. Nature 2005, 434:913-917.
Turner NC, Lord CJ, lorns E, Brough R, Swift S, Elliott R, Rayter S, Tutt AN,
Ashworth A: A synthetic lethal siRNA screen identifying genes mediating
sensitivity to a PARP inhibitor. EMBO J 2008, 27:1368-1377.

Fong PC, Boss DS, Yap TA, Tutt A, Wu P, Mergui-Roelvink M, Mortimer P,
Swaisland H, Lau A, O'Connor MJ, Ashworth A, Carmicheal J, Kaye SB,
Schellens JH, de Bono JS: Inhibition of poly(ADP-ribose) polymerase in
tumors from BRCA mutation carriers. N £ngl J Med 2009, 361:123-134.
Underhill C, Toulmonde M, Bonnefoi H: A review of PARP inhibitors: from
bench to bedside. Ann Oncol 2011, 22:268-279.

Banerjee S, Kaye S: PARP inhibitors in BRCA gene-mutated ovarian cancer
and beyond. Curr Oncol Rep 2011, 13:442-449.

Wang H, Yang ES, Jiang J, Nowsheen S, Xia F: DNA damage-induced
cytotoxicity is dissociated from BRCA1’s DNA repair function but is
dependent on its cytosolic accumulation. Canc Res 2010, 70:6258-6267.

Li L, Wang H, Yang ES, Arteaga CL, Xia F: Erlotinib attenuates homologous
recombinational repair of chromosomal breaks in human breast cancer
cells. Canc Res 2008, 68:9141-9146.

Lieber MR, Ma Y, Pannicke U, Schwarz K: Mechanism and regulation of human
non-homologous DNA end-joining. Nat Rev Mol Cell Biol 2003, 4:712-720.
Shibata A, Conrad S, Birraux J, Geuting V, Barton O, Ismail A, Kakarougkas A,
Meek K, Taucher-Scholz G, Lobrich M, Jeggo PA: Factors determining DNA
double-strand break repair pathway choice in G2 phase. EMBO J 2011,
30:1079-1092.

Weterings E, Chen DJ: The endless tale of non-homologous end-joining.
Cell Res 2008, 18:11-124.

Spagnolo L, Rivera-Calzada A, Pearl LJ, Llorca O: Three-dimensional
structure of the human DNA-PKcs/Ku7-/Ku80 complex assembled on
DNA and its implications for DNA DSB repair. Mol Cell 2006, 22:511-519.
Moll U, Lau R, Sypes MA, Gupta MM, Anderson CW: DNA-PK, the DNA-activated
protein kinase, is differentially expressed in normal and malignant human
tissues. Oncogene 1999, 18:3114-3126.

MaY, Pannicke U, Schwarz K, Lieber MR: Hairpin opening and overhang
processing by an artemis/DNA-dependent protein kinase complex in
nonhomologous end joining and V(D)J recombination. Cell 2002,
108:781-794.



Santivasi and Xia Cell & Bioscience 2013, 3:10 Page 6 of 6
http://www.cellandbioscience.com/content/3/1/10

43, Suzuki K, Kodama S, Watanabe M: Recruitment of ATM protein to double
strand DNA irradiated with ionizing radiation. J Bio/ Chem 1999,
274:25571-25575.

44.  Yamtich J, Sweasy JB: DNA polymerase family X: function, structure, and
cellular roles. Biochim Biophys Acta 2010, 1804:1136-1150.

45, Wilson TE, Grawunder U, Lieber MR: Yeast DNA ligase IV mediates non-
homologous DNA end joining. Nature 1997, 388:495-498.

46. LiuY, Zhou K, Zhang H, Shugart YY, Chen L, Xu Z, Shong Y, Liu H, Jin L,
Wei Q, Huang F, Lu D, Zhou L: Polymorphisms of LIG4 and XRCC4
involved in the NHEJ pathway interact to modify risk of glioma. Hum
Mutat 2008, 29:381-389.

47. LiuY, Zhang H, Zhou K, Chen L, Xu Z, Zhong Y, Liu H, Li R, Shugart YY, Wei Q,
Jin'L, Huang F, Lu D, Zhou L: Tagging SNPs in non-homologous end-joining
pathway genes and risk of glioma. Carcinogenesis 2007, 28:1906-1913.

48. Burma S, Chen DJ: Role of DNA-PK in the cellular response to DNA
double-strand breaks. DNA Repair 2004, 3:009-918.

49. lliakis G, Wang H, Perrault AR, Boecker W, Rosidi B, Windhofer F, Wu W,
Guan J, Terzoudi G, Pantelias G: Mechanisms of DNA double strand break
repair and chromosome aberration formation. Cytogenet Genome Res
2004, 104:14-20.

50. Doble BW, Woodgett JR: GSK-3: tricks of the trade for a multi-tasking
kinase. J Cell Sci 2003, 116:1175-1186.

51.  Yang ES, Wang H, Jiang G, Nowsheen S, Fu A, Hallahan DE, Xia F:
Lithium-mediated protection of hippocampal cells involves
enhancement of DNA-PK-dependent repair in mice. J Clin Invest 2009,
119:1124-1135.

52. Yazlovitskaya EM, Edwards E, Thotala D, Fu A, Osusky KL, Whetsell WO,
Boone B, Shinohara ET, Hallahan DE: Lithium treatment prevents
neurocognitive deficit resulting from cranial irradiation. Canc Res 2006,
66:11179-11186.

53.  Yang ES, Nowsheen S, Wang T, Thotala DK, Xia F: Glycogen synthase
kinase 38 inhibition enhances repair of DNA double-strand breaks in
irradiated hippocampal neurons. Neuro Oncol 2011, 13:459-470.

54. Liang J, Slingerland JM: Multiple roles of the PI3K/PKB (Akt) pathway in
cell cycle progression. Cell Cycle 2003, 4:339-345.

55.  Knobbe CB, Merlo A, Reifenberger G: Pten signaling in gliomas. Neuro
Oncol 2002, 4:196-211.

56. Paez J, Sellers W: PI3K/PTEN/Akt pathway: a critical mediator of
oncogenic signaling. In Signal Transduction in Cancer. Edited by Walker JM.
Boston, MA: Springer Press; 2004:145-167.

57. Korur S, Huber RM, Sivasankaran B, Petrich M, Morin P, Hemmings BA, Merlo
A, Lino MM: GSK3p Regulates Differentiation and Growth Arrest in
Glioblastoma. PLoS One 2009, 4:7443.

doi:10.1186/2045-3701-3-10

Cite this article as: Santivasi and Xia: The role and clinical significance of
DNA damage response and repair pathways in primary brain tumors.
Cell & Bioscience 2013 3:10.

Submit your next manuscript to BioMed Central
and take full advantage of:

¢ Convenient online submission

¢ Thorough peer review

* No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

* Research which is freely available for redistribution

Submit your manuscript at ( -
www.biomedcentral.com/submit BiolVed Central




	Abstract
	Introduction
	Primary brain tumors
	DNA double-strand breaks (DSBs)

	Homologous recombination (HR)
	Therapeutic significance: induced HR deficiency mediates tumor sensitization to poly (ADP-ribose) polymerase 1 (PARP1) inhibition

	Non-homologous End-joining (NHEJ)
	Therapeutic significance: NHEJ potentiation mediates IR neuroprotection

	Future directions
	Competing interests
	Authors’ contributions
	References

