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Nuclear hormone receptors in podocytes
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Abstract

Nuclear receptors are a family of ligand-activated, DNA sequence-specific transcription factors that regulate various
aspects of animal development, cell proliferation, differentiation, and homeostasis. The physiological roles of nuclear
receptors and their ligands have been intensively studied in cancer and metabolic syndrome. However, their role in
kidney diseases is still evolving, despite their ligands being used clinically to treat renal diseases for decades. This
review will discuss the progress of our understanding of the role of nuclear receptors and their ligands in kidney
physiology with emphasis on their roles in treating glomerular disorders and podocyte injury repair responses.

Keywords: Glucocorticoid receptor, Mineralocorticoid receptor, Podocyte injury, Proteinuria, Focal segmental
glomerulosclerosis (FSGS), Diabetic and non-diabetic nephropathy

Overview

Nuclear hormone receptors (NRs) belong to family of
sequence specific and ligand activated transcription fac-
tors that both positively and negatively regulate gene ex-
pression and are involved in many developmental, cell
survival, and endocrine functions in metabolism [1,2].
Consequently, aberrant NR signaling can lead to various
reproductive, proliferative, and metabolic diseases. The
ability of small molecule hormones to regulate NR activ-
ity make them excellent pharmaceutical targets; for ex-
ample, retinoic acid (a ligand for retinoic acid receptor
alpha, RARa), the synthetic antagonist tamoxifen (a lig-
and for estrogen receptor alpha, ERa), dexamethasone (a
ligand for glucocorticoid receptor alpha, GRa) or thiazo-
lidinediones (ligands for peroxisome proliferator-
activated receptor gamma, PPARy) are used in acute
promyelocytic leukemia, ERa-positive breast cancer, in-
flammatory disorders and type II diabetes, respectively
[3]. This family of hormones also plays important roles
in the kidney development, in adult renal homeostasis
and in disease responses. The kidney functions in the
physiologic maintenance of acid—base and salt-water bal-
ance, and in removing toxins and metabolic waste while
preserving nutrients in the bloodstream. The latter filtra-
tion function is largely mediated by the glomerular
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podocyte, a highly differentiated kidney cell that opposes
the exterior of fenestrated capillaries in the renal glom-
erulus. Loss or injury of podocytes results in impaired
blood filtration and causes many common renal diseases
characterized by nephrotic syndrome. In this review, we
will discuss the roles of NRs in normal podocyte devel-
opment and in glomerular diseases and their physio-
logical hormones and synthetic ligands as potential
treatments for nephrotic syndrome.

Nuclear hormone receptors: classification and
functional domains

In humans, there are 48 NRs that can be broadly classi-
fied into four subfamilies based on their ligand binding,
DNA binding and dimerization properties (Table 1).
NRs bind to their DNA response elements either as
monomers, dimers, or heterodimers. Class I receptors
bind to DNA inverted repeats as homodimers, and in-
clude the estrogen receptor (ER), glucocorticoid receptor
(GR), mineralocorticoid receptor (MR), progesterone re-
ceptor (PR) and androgen receptors (AR). Class II recep-
tors bind to DNA direct repeats and heterodimerize
with retinoid X receptors (RXR), and include the thyroid
hormone receptors (TR), retinoic acid receptors (RAR)
and retinoic X receptors (RXR), peroxisome proliferator-
activated receptors (PPAR), vitamin D3 receptors (VDR),
and Liver X receptors (LXR). Receptors belonging to
class III are known as orphan receptors since their nat-
ural ligands have not been identified. These NRs bind to
the DNA direct repeats as homodimers. Class IV
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Table 1 Classification of nuclear hormone receptors
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Class Nuclear Receptor Abbreviation Hormones and Synthetic Ligands
| Androgen receptor AR testosterone, flutamide
Estrogen receptor, alpha and beta ERa, B estrogens, tamoxifen, raloxifene
Glucocorticoid receptor GR glucocorticoidl, dexamethasone, RU486
Mineralocorticoid receptor MR aldosterone, spirolactone
Progesterone receptor PR progesterone, medroxyprogesterone acetate,
RU486
Il Constitutive and rostane receptor CAR androstane
Farnesoid X receptor FXR bile acids, Fexaramine
Liver X receptor, alpha and beta LXRa, B oxysterols, T0901317, GW3965
Peroxisome proliferator-activated receptor alpha PPARa fibrates
Peroxisome proliferator-activated receptor beta/delta PPARB/S fatty acids
Peroxisome proliferator-activated receptor gamma PPARy prostaglandins
Pregnane X receptor PXR xenobiotics
Retinoid A receptor, alpha, beta and gamma RARa, B,y all-trans retinoic acid
Thyroid hormone receptor, alpha and beta TRa, B, v thyroid hormone
Vitamin D receptor VDR vitamin D
Il Chicken ovalbumin upstream promoter-transcription factor | COUP-TFI n/a
Chicken ovalbumin upstream promoter-transcription factor |l COUP-TFII n/a
V-erbA-related receptor EAR-2 n/a
Germ cell nuclear factor GCNF n/a
Hepatocyte nuclear factor-4, alpha and gamma HNF4q, y Fatty acids
Photoreceptor cell-specific nuclear receptor PNR 9-cis retinoic acids
Retinoid X receptor, alpha, beta and gamma RXRa, B, v 9-cis retinoic acids
Testicular receptor 2 TR2 n/a
Testicular receptor 4 TR4 n/a
Homologue of the Drosophila tailless gene TLX n/a
v Estrogen-related receptor alpha, beta and gamma ERRa, B, ¥ 9-cis retinoic acid
Liver receptor homolog-1 LRH-1 phosphatidylinositols
Nerve Growth factor IB NGFIB n/a
Neuron-derived orphan receptor 1 NOR1 N/As
Nuclear receptor related 1 NURR1 N/A
Rev-ErbA, alpha and beta Rev-Erba, B heme
RAR-related orphan receptor, alpha, beta and gamma RORq, B, ¥ cholesterol, all-trans retinoic acids
Steroidogenic factor 1 SF1 phosphatidylinositols
Dosage-sensitive sex reversal, adrenal hypoplasia critical region, on DAX n/a
chromosome X, gene
Small heterodimer partner SHP n/a

receptors are also orphan receptors but bind to DNA as
monomers [3].

All NRs are evolutionarily related [3] and have a com-
mon modular structure consisting of four domains
(Figure 1). Among these domains, the DNA binding do-
main (region C) and the ligand binding domain (region E)
are the most highly conserved, whereas the N-terminal A/
B domain and the D region are comparatively less well

conserved [3]. The A/B domain harbors an activation do-
main that stimulates transcription in a ligand-independent
manner. In different NRs, both the length and the se-
quence of the A/B region are variable. The central C-
domain of NRs is the evolutionarily conserved DNA bind-
ing domain. NRs bind DNA at highly specific nucleotide
sequence motifs of 5-10 base pairs generally known as
hormone response elements (HREs) [4-7]. The DNA
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Figure 1 A schematic representation of a nuclear receptor: Nuclear receptors consist of four domains (A-F): The N-terminal ligand-
independent transactivation domain (A/B), the DNA binding domain (C), hinge region (D), and C-terminal E/F domain including LBD
and ligand dependent transactivation domain. Functions of specific domains are indicated in the text boxes.

|

binding domain consists of two cysteine-rich zinc finger
motifs, two o-helices, and a C-terminal extension, and
plays important roles in both nuclear localization and in
the interaction with other transcription factors [3]. The D
region serves as a linker between the DNA binding do-
main and the ligand-binding domain and contains a nu-
clear localization signal. The ligand binding domain is
contained in the C-terminal E region and harbors four
functionally interconnected regions including the ligand-
binding pocket, a dimerization surface and a transcrip-
tional co-regulator binding surface which participates in
protein-protein interactions with other transcription fac-
tors, and an activation helix known as AF-2, which med-
iates ligand dependent transactivation [8].

Mechanism of transcriptional regulation by NRs

NRs regulate transcription through the recruitment of
accessory proteins known as co-regulators (coactivators
and corepressors) that dictate the transcriptional activity
of the receptors. In the absence of ligand, NRs including
RAR, TR, and antagonist-bound steroid receptors, recruit
corepressors such as nuclear receptor corepressor
(NCoR) and silencing mediator for retinoid and thyroid
hormone receptors (SMRT) to inhibit transcription initi-
ation [9,10]. Unliganded steroid hormone receptors such
as GR, MR and ER do not normally interact with NCoR
or SMRT, but interact strongly with these corepressors in
the presence of antagonists [11-13]. Chromatin immuno-
precipitation assays have shown that N-CoR and SMRT
complexes are recruited to NR targeted promoters [10].
Both NCoR and SMRT contain a region at their C-
termini that specifically binds to a hydrophobic groove in

the surface of the ligand-binding domain of unliganded
NRs. NCoR and SMRT interact with unliganded recep-
tors through a conserved helical motif (I/L) XX (I/V) I
(L = leucine, I = isoleucine, V = valine and X = any
amino acid) [14-16]. Both NCoR and SMRT do not
possess intrinsic enzymatic activity; however, they re-
cruit other proteins containing histone deacetylase
(HDACs) and methyltransferase (SUV39H1) activity
[17,18]. HDACs repress transcription by deacetylating
lysine residues on the N-terminal tails of histone pro-
teins. This condenses the chromatin, which in turn
restricts access of the basic transcriptional machinery to
the target promoter.

Crytallographic studies have shown that ligand binding
triggers a conformational change in the ligand-binding
domain of the receptor [19-23]. This conformational
change is accompanied by release of the corepressor
complexes and recruitment of the coactivator complexes
containing histone acetyltransferase and methyltransfer-
ase activity [10] (Figure 2). Binding of these coactivators
allows the subsequent recruitment of RNA polymerase
II and general transcription machinery to a targeted pro-
moter [24], thereby stimulating transcription. Structur-
ally, helix 12 of the AF-2 region of the ligand-binding
domain plays an important role in the recruitment of
coactivators. Upon ligand binding, there is a reorienta-
tion of helix 12 which results in the formation of a
hydrophobic groove that accommodates coactivator
binding. Thus, this co-regulator exchange ultimately
controls transcription through the steric opening or
closing of the local chromatin structure through the
modification of histone tails.
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Figure 2 Ligand-dependent conformational change and transactivation of a nuclear receptor. In the absence of ligand, nuclear receptors
are associated with corepressor complexes such as SMRT, HDACs and histone methyltransferases (HMTs) and inhibit transcription by keeping the
chromatin tightly bound around the promoter. Ligand binding induces a conformational change in the structure of nuclear receptors which
exchanges the corepressors with coactivators. The coactivators including CBP/p300, PCAF and SRCs loosen chromatin by acetylating histone tails.
Acetylation of histone tails opens up the chromatin which in turn allows basal transcriptional machinery to target promoters.

Significance of the LXXLL motif in coactivators in
NR-mediated transcription

Coactivators interact with NRs through the highly con-
served NR interaction domain known as the NR box.
The NR interaction domain consists of a short «-helical
LXXLL motif. The number of LXXLL motifs varies
among different coactivators and also accounts for the
preferential binding of some coactivators to a specific
NR [25-29]. Among the coactivators discovered so far,
the SRC (steroid receptor coactivator) family of proteins,
CBP (cAMP response element-binding protein) and
p300 are known for their ability to interact with and co-
activate NRs [30-33]. The SRC family of coactivator con-
sists of three family members: SRCI1, the first identified
nuclear receptor coactivator (also known as p160-1 and
N-CoAl), SRC-2 (TIF-2, GRIP1, and N-CoA2) and SRC3
(also known as P/CIP, ACTR, AIB1, RAC3, and
TRAM1) [34]. All three SRC family members share a
common domain structure and have three equally
spaced conserved LXXLL motifs to interact with NRs.
Note that most coactivators including PCAF (p300/CBP-
associated factor) independently interact with NRs and
with each other. Chromatin immunoprecipitation
experiments have demonstrated that these coactivators
are recruited to NR targeted promoters in a sequential,
cyclic manner [35]. All together, these observations sug-
gest that SRC coactivators function by recruiting chro-
matin modifying enzymes to the liganded receptors on
the HREs. PCAF and p300/CBP harbor potent HAT ac-
tivity, while the C-termini of SRC-1 and SRC-3 exhibit
weak HAT activity [3].

Some NRs are capable of eliciting ligand-dependent
transcriptional repression activity [36]. Liganded GR and
TR can repress gene expression through negative re-
sponse elements [37,38]. In addition, NRs such as GRs,
PPARs, LXR, VDR and RAR repress NF-kB and AP-1
target gene expression in an agonist-dependent manner
[39] (Figure 3). The mechanisms underlying this transre-
pression activity include a) competition with coactivators
[40,41] b) disruption of the recruitment of positive act-
ing complexes and c¢) sumoylation-dependent recruit-
ment of corepressor complexes to AP-1 and NF-«B
targeted promoters [42]. It should be noted that many of
these AP-1 and NF-kB target genes are key mediators of
the inflammatory response.

Role of NRs in glomeruli and related diseases

While the physiological roles of NRs and their ligands
have been intensively studied in cancer and metabolic
syndrome X, understanding their roles in kidney devel-
opment and podocytes is still evolving. It has been a
longstanding clinical practice to use NR ligands to
treat kidney diseases, especially nephrotic syndrome
and diseases that damage the glomerulus and podo-
cyte, despite the lack of a clear understanding of their
mechanism of action. Recent studies in multiple ex-
perimental models of renal diseases have begun to in-
vestigate the direct and indirect effects of NR in renal
cells to better utilize NR ligands as therapeutic agents
in common diseases such as focal segmental glomeru-

losclerosis (FSGS).
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Figure 3 Mechanisms underlying NR-mediated transrepression. A, Liganded GR binds to Fos subunit of activator protein 1 (AP-1) and
represses a subset of AP-1-dependent genes through GR interacting protein 1(GRIP-1). B. Liganded GR binds to p65 subunit of nuclear factor-«B
(NF-kB) and prevents the binding of interferon regulatory factor 3 (IRF3) or positive transcription elongation factor b (P-TEFb) to the promoter of
some NF-kB target genes. C, Liganded GR binds to Fos subunit of AP-1 and represses a subset of AP-1 dependent genes through nuclear thyroid
receptor interactor 6 (NTRIP6). D, Liganded PPARy (or LXR) is posttranslationally modified by Sumo1 (or Sumo2) conjugation, which facilitates an
interaction with nuclear receptor corepressor (NCoR) complex to inhibit the recruitment of ubiquitin-conjugating enzymes and 19S proteasome
components (not shown) required for the degradation of NCoR. Transcription start site is shown as +1. GTF refers to the general transcription
factors. Pol Il refers to RNA polymerase II. This figure is adopted from Glass and Saijo (42).

Podocytes - terminally differentiated cells critical
for kidney filtration function

One of the key functions of the kidney is to filter the
blood, removing catabolic byproducts that can become
toxic if not eliminated. The filtration apparatus of the
kidney is the glomerulus, a tuft of capillaries, consisting
of three components: the fenestrated glomerular endo-
thelium, the glomerular basement membrane, and a vis-
ceral epithelium also known as the podocyte. Podocytes
cover the exterior of the capillary and attach to the outer
layer of the glomerular basement membrane. They form
novel marcromolecular structures that function like a
molecular sieve, allowing high volume fluid flow while
preventing passage of blood cells and large serum pro-
teins such as albumin from entering the urine. Podocytes
also contribute significantly to the formation of the
glomerular basement membrane and the integrity of the
vascular endothelium. Thus, podocyte damage is a hall-
mark of nephrotic syndrome characterized by severe
proteinuria (protein in the urine) and hypoalbuminemia
(low levels of blood albumin).

Podocytes are highly specialized terminally differen-
tiated cells that extend numerous lamellipodia that
branch into primary and secondary processes, which
further ramify into smaller processes known as foot
processes [43]. The latter are composed of highly
ordered parallel contractile actin filament bundles
[44,45]. Foot processes from neighboring cells interdigi-
tate and are connected by a modified adherent junction
called slit diaphragms that span a 30-50 nm wide inter-
cellular space that provides for the passage of fluid. The
slit diaphragm of podocytes is composed of the extra-
cellular domains of a number of transmembrane pro-
teins such as nephrin, Neph-1, P-cadherins and FAT
[45] (Figure 4). The ability of podocytes to act as a fil-
tration barrier depends on the integrity of the slit dia-
phragm [43]. Recent studies have indicated that the
components of foot processes not only serve as a struc-
tural barrier; they also respond to and mediate extracel-
lular signaling events and are indispensable for proper
physiological responses of the podocyte to the environ-
ment [46].
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Figure 4 The structure of podocyte. The glomerular capillary wall consists of a fenestrated endothelium, a basement membrane and podocyte
foot processes. The foot processes form the filtration slits and are spanned by slit diaphragms. The slit diaphragm is composed of the extracellular
domains of a number of unique transmembrane proteins such as Nephrin, Neph-1, P-cadherins and FAT.

Focal segmental glomerulosclerosis

Focal segmental glomerulosclerosis is common patho-
logical condition consisting of local and sectional degen-
eration and scarring within the glomerular tuft. It occurs
in many inherited and acquired kidney disease, and is
frequently a consequence of direct podocyte injury.
Upon injury, the podocyte responds with cytoskeletal
reorganization and ultimately the foot processes become
disorganized. At the molecular level, podocyte injury is
associated with 1) increased reactive oxygen species
(ROS) and endoplamic reticulum (ER) stress, 2) aberrant
activation of mammalian target of rapamycin (mTOR),
Wnt and transforming growth factor beta (TGE-B) sig-
naling, 3) activation of small GTPase RhoA and 4)
decreased expression of slit diaphragm components such
as nephrin [47]. Any type of oxidative or inflammatory
stress leading to effacement of podocyte foot processes
further deteriorates the filtration barrier and overall kid-
ney function, and eventually results in renal failure. Gen-
etic studies have identified mutations in many known
podocyte structural proteins such as the slit diaphragm
components nephrin, CD2 associated protein (CD2AP),
transient receptor potential cation channel, subfamily C,
member 6 (TRPC6) and podocin or in proteins regulat-
ing actin dynamics including alpha actinin 4 (ACTN4)
and inverted formin 2 (INF2) as being tightly linked to
FSGS. Animal studies confirm that knock-in of disease-
associated mutations or podocyte-specific gene deletions

leads to FSGS. These studies highlight the important
role of the slit diaphragm and actin architecture in the
integrity of podocytes. A reverse correlation between the
degree of proteinuria and nephrin expression levels has
also been documented [48-50]. Furthermore, mutations
in the ACTN4 and synaptopodin promoters have been
found in patients and these mutations are associated
with reduced promoter activity [51], suggesting that loss
of nephrin, ACTN4 or synaptopodin expression may
contribute to FSGS. These findings further imply suggest
that mis-regulation of transcriptional networks control-
ling slit diaphragm component gene expression can con-
tribute to podocyte disorders. Alternatively, focal
segmental glomerulosclerosis can be caused secondarily
from metabolic or immunologic dysfunction that also
leads to podocyte injury and proteinuria [52,53].

NRs in podocyte pathophysiology

To date, there are no known mutations in NRs that are
linked to familial forms of focal segmental glomerulo-
sclerosis and nephrotic syndrome. However, clinical evi-
dence and mouse genetic studies have implicated several
NRs in contributing to podocyte development and dis-
ease (Table 2). Among the known NRs, the mineralocor-
ticoid receptor (MR) and its agonists have been strongly
associated with proteinuria [54,55]. Recent studies from
animals and cultured human or mouse podocytes indi-
cate that synthetic hormones for class I and II NRs
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Table 2 A summary of the physiological function of nuclear hormone receptors in podocytes

Nuclear receptor Role in kidney function/disease Reference

Estrogen receptor renoprotective blocks podocyte apoptosis [61-64]
Glucocorticoid receptor well-known renoprotective functions of GR ligands [56,65-67]

Mineralocorticoid receptor renoprotective when suppressed [68-74]
Peroxisome proliferator-activated receptor-a renoprotective enhances Nephrin expression [75-78]
Peroxisome proliferator-activated receptor-y renoprotective blocks podocyte apoptosis blocks podocyte hypertrophy/proliferation [79-82]
Retinoic acid receptor-a renoprotective enhances podocyte differentiation [83-90]
Vitamin D receptor reduces renal inflammation enhances Nephrin expression [91-95]

including estradiol, glucocorticoid, retinoid, pioglitazone,
vitamin D3 and WY-14643 protect or rescue podocytes
from experimental injury [56-60]. Post treatment of
injured podocytes with ligands for the above-mentioned
NRs restores cytoskeletal architecture and enhances ex-
pression of nephrin. A unified theme derived from clin-
ical, animal and cell culture studies suggest that NRs,
except MR, elicit renoprotective activity by inhibiting
apoptosis, by acting as antioxidants and by enhancing/
restoring nephrin expression.

Class | NRs

Class I NRs including MR, GR, ER, PR and AR bind to
the DNA inverted repeats (IRs) as homodimers (Table 1).
Among these, MR and GR are the best studied in the
kidney due to the early cloning of their genes and dis-
covery of their physiological ligands. Furthermore, re-
cently the physiological importance of ER in kidney
pathophysiology has emerged.

MR (mineroglucocorticoid receptor)

MR function in the kidney has been studied extensively
focusing on its roles in controlling blood pressure and
salt and water balance, functions primarily associated
with the renal tubule not glomerulus. Consequently, the
renally important MR ligand, aldosterone, is well-known
to be involved in renal disease and pathology, and MR
antagonists are used extensively in treating hypertension
[68]. MR is normally expressed in many cells of the kid-
ney, not just tubular epithelia, but also glomerular
mesangial cells and podocytes [69,70,96]. Studies in vari-
ous animal models have therefore also linked MR func-
tion to mesangial cell proliferation and podocyte injury
and proteinuria [69,97-99]. Recent studies have identified
podocytes as a direct target of aldosterone through the
MR [55,69,71]. MR blockade with eplerenone (an antag-
onist of MR) reduces podocyte injury and proteinuria
and induces podocin and nephrin expression in podocyte
in type 1 and type 2 diabetic animal models [72,73,100].
By contrast, chronic infusion of aldosterone induces
hypertension with massive proteinuria and glomerular

podocyte injury in uninephrectomized (surgical excision
of one kidney) rats [69]. Furthermore, the induced podo-
cyte injury is associated with significantly reduced
nephrin and podocin expression [101]. In addition, treat-
ment with the MR antagonist eplerenone significantly
decreased podocyte injury and proteinuria in rodent
models of hypertensive glomerulosclerosis [68,74].

The mechanisms by which aldosterone induces pro-
teinuria are likely complex. However, the observation
that podocytes express MR suggests a direct role of
liganded MR in podocyte injury. In podocytes, aldoster-
one treatment induces nuclear translocation of MR, acti-
vation of reduced nicotinamide adenine dinucleotide
phosphate (NADPH) oxidase, and accumulation of ROS.
Additionally, aldosterone increases expression of an oxi-
dative stress effector kinase, Sgkl, and significantly delays
wound- healing and promotes apoptosis in cultured
mouse podocytes [69]. Taken together, these data suggest
that some of the aldosterone-induced proteinuric effects
and podocyte damage are derived from increases in oxi-
dative stress in podocytes. Consistent with this hypoth-
esis, the antioxidant tempol markly attenuates podocyte
injury and proteinuria in aldosterone-infused rats and
other rodent models of glomerulosclerosis. In addition to
podocytes, MR is expressed in vascular endothelial and
smooth muscle cells in the glomeruli, suggesting that
MR action in these cells may also play a role in glomeru-
lar podocyte injury. Taken together, MR and its agonists
are critical mediators of podocyte injury under several
pathological conditions.

GR (glucocorticoid receptor)

Glucocorticoid therapy is a mainstay treatment option
for many forms of nephrotic syndrome. However, the
mechanisms by which the glucocorticoids as GR ligands
ameliorate proteinuria and inflammation-associated
glomerular disease are not completely understood.

All cell types in the glomerulus express GRs [102].
Both glucocorticoid inactivating enzyme (11B-hydroxys-
teroid dehydrogenase type II) and GR are expressed in
podocytes [103]. Moreover, cultured podocytes also
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express the key components of the GR-mediated signal-
ing pathway including HSP90 and the immunophilins
FKBP51 and FKBP52 [103]. Data, including our unpub-
lished results, demonstrate that the glucocorticoid dexa-
methasone treatment alters gene expression patterns of
cultured podocytes following either short-term high-
dose treatment or long-term low-dose treatment [103].
These observations indicate that podocytes are a major
target cell type for the action of glucocorticoids.

Several mechanisms accounting for the renoprotective
of GR ligands effect include: 1) protecting podocytes
from endoplasmic reticulum stress and rescuing a
nephrin trafficking defect due to decreased N-linked
glycosylation in the endoplasmic reticulum [60], 2) re-
storing or protecting cytoskeletal architecture by up-
regulating nephrin expression [65,66], 3) inhibiting
puromycin aminonucleoside (PAN)-induced reduction
of phosphorylated Erk2 [67] and 4) suppressing expres-
sion of NF-kB-dependent cytokines such as IL-6 and
IL-8 [65] by transrepression of NF-kB. While the GR
ligands possess several renoprotective effects in glom-
eruli, steroid-resistance and systemic toxicity remain
major issues for their long-term use. A better under-
standing of the mechanisms by which GR and the glu-
cocorticoids control gene regulatory network and their
crosstalk with other signaling pathways in podocytes
will ensure optimal therapeutic benefits of steroid
treatment.

ER (estrogen receptor)

Podocytes express both ERa and ERp [61]. Estrogens are
protective against podocyte injuries in vitro and in vivo.
First, it has long been noted that women have a better
prognosis in some chronic kidney disorders than men,
suggesting that gender-specific hormones play a role in
glomerular development and related diseases. Second, in
animal models, estrogen shows beneficial effects and
protects podocytes from injury in a model of spontan-
eous progressive kidney disease [62] and type 2 diabetes
[63]. Third, ERa knockout mice are more susceptible to
the development of glomerulosclerosis and show
reduced expression of desmin and nephrin [64]. Further-
more, ERa mediates estrogen protective effects from
PAN-induced podocyte apoptosis both in vitro and
in vivo [61]. Finally, it was recently demonstrated that
ERa-mediated protective effects are associated with
stabilization of mitochondrial membrane potential and
activation of mitogen activated protein kinase 12
(MAPK) [61]. As ER emerges as a critical signaling mol-
ecule in the podocytes, more findings on its roles in pro-
tecting podocytes will likely surface; especially regarding
its roles controlling transcriptional regulatory networks
and mitogenic effects.
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Class Il NRs

Class II NRs bind to HREs with direct repeats (DRs) and
heterodimerize with the common partner, RXR. Class II
NRs include the TRs, LXRs, RARs, RXRs, VDR, PPARs
(Table 1). These NRs were considered orphan receptors
until the discovery of their physiological ligands in the
early 1990s. In fact, the anti-diabetic thiazolidinediones
were in clinical use long before their mechanism of ac-
tion as high affinity PPARy ligands was identified [79].

PPARs

There are three subtypes of PPAR («, /6 and y) in both
humans and rodents [104]. All three PPARs are
expressed in the kidney and are known to play important
roles in renal pathophysiology [105,106]. These receptors
are major sensors for fibrates, polyunsaturated fatty acids
and 15d-prostaglandin J2 and are involved in lipid me-
tabolism and fatty acid oxidation in many tissues.

Several reports have indicated that agonists of
PPARa, PPARB/S and PPARy alleviate renal damage
associated with ischemia/reperfusion injury in rats
[75,76,80,81,107]. This renoprotective activity is associated
with maintenance of nephrin and pro-survival gene ex-
pression. In another model, the anthracycline antibiotic
drug doxorubicin exhibits cytotoxic effects on several
organs including kidney. Doxorubicin induces renal injury
by causing effacement of podocyte foot processes. Treat-
ment of these mice with the PPARa ligand fenofibrate par-
tially alleviates these nephritic symptoms through
restoration of nephrin expression and protecting podo-
cytes from apoptosis [77]. Predictably, PPARa knockout
mice exhibit accelerated doxorubicin-induced kidney in-
jury, diabetic nephropathy and severe proteinuria [77]. In
fact, PPAR« activation in podocytes resulted in an increase
in nephrin expression by stimulating nephrin promoter
activity, stabilizing nephrin mRNA and blocking apoptotic
signaling [58,78]. PPAR ligands potently inhibit expression
of proinflammatory cytokines including vascular cell adhe-
sion molecule (VCAM-1) and IL-6 expression in various
cell types [108,109] and reduce lipopolysaccharide (LPS)-
induced activation of NF-«B in a PPARy—dependent path-
way in human kidney-2 (HK-2) cells [110]. Intriguingly, an
increase in PPARY expression has been observed in both
rat and human kidney sclerotic conditions in vivo, sug-
gesting a compensatory regulatory role of PPARy in re-
sponse to podocyte injury. In vitro data has also indicated
that PPARy activation protects against PAN-induced
apoptosis and necrosis of podocytes [82]. In summary, the
ability of PPAR agonists to protect or rescue podocytes
from injury is attributed to their ability to enhance expres-
sion of slit diaphragm components such as nephrin and
inhibit pro-inflammatory genes. The fact that PPARs and
their ligands play key roles in lipid and cholesterol metab-
olism and fatty acid oxidation suggest a link between their
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ability to protect podocytes from injury and these metabo-
lites and podocyte development and pathology. This will
help rationalize the use of PPAR ligands in the treatment
of podcoyte diseases.

RARs

The retinoids, major ligands of the RARs, are well
known developmental morphogens, important for cell
specification and pattern formation in the development
of many organs including limbs, lung, and kidney [111].
Vitamin A deficiency and mutations of RARs cause ab-
normalities in fetal kidneys, indicating that vitamin A
and its receptors are essential for normal kidney devel-
opment [83]. Similarly, RARa-deficient mice exhibit ab-
normalities in fetal kidney development and a reduced
number of nephrons, the major structural and functional
unit of the kidney [84].

In multiple experimental models of kidney diseases in-
cluding PAN-induced nephropathy, mesangioprolifera-
tive glomerulonephritis, lupus nephritis, and diabetic
nephropathy all-trans retinoic acid, the vitamin A active
metabolite, has been shown to be renoprotective. All-
trans retinoic acid alleviates PAN-induced proteinuria
and the effacement of podocyte foot processes. In
addition, administration of all-trans retinoic acid prior
to PAN treatment protects animals from proteinuria and
podocyte injury [85]. Consistent with this observation,
recovery from PAN-induced nephropathy is significantly
delayed in animals fed with a vitamin A-deficient diet
[59,85]. In streptozotocin-induced diabetic and anti-
Thyl.1 antibody-induced nephritis rats, retinoic acid
markedly protected animals from proteinuria and renal
injury. Furthermore, activation of RARs by selective
ligands prevents oxidative stress-induced apoptosis in
podocytes and mesangial cells [86].

In a unique class of renal disease characterized by
podocyte dedifferentiation and proliferation, HIV-
associated nephropathy and the collapsing glomerulopa-
thies, the expression of retinol dehydrogenase type 1 and
9, two key enzymes in retinoic acid biosynthesis, and the
overall enzymatic activity for retinoic acid synthesis were
markedly reduced, suggesting that endogenous retinoic
acid synthesis is impaired in diseased kidneys [87]. In a
mouse model of HIV-associated nephropathy, Am580
and BD4, water-soluble RARa-specific agonists, pro-
tected animals from proteinuria, glomerosclerosis, and
podocyte proliferation, and restored podocyte differenti-
ation markers [88,89]. This is consistent with data from
the knockout mouse of RAR«, which leads to more ag-
gressive kidney disease. Indeed, retinoids are known to
inhibit glomerular proliferation and ameliorate glomeru-
lar lesions and proteinuria in established models of renal
damage [39]. Activated RARa signaling slows the pro-
gression of kidney disease possibly by preserving the
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quiescent, highly differentiated state of the podocyte. As
such, specific activation of the RAR«a can be considered
a promising therapeutic strategy for patients with renal
diseases associated with abnormal proliferation and cel-
lular dedifferentiation.

As mentioned earlier, proteinruia in diabetic and non-
diabetic diseases is associated with reduced podocyte ex-
pression of nephrin and podocin. All-trans retinoic acid
protected podocytes from injury and enhanced nephrin
and podocin expression in vitro and in vivo [90,112].
The promoter of the human and mouse nephrin gene
(NPHS1) contains three putative retinoic acid response
elements (RAREs) [59,66] and all-trans retinoic acid
enhances nephrin promoter activity in a dose-dependent
manner. However, there is no evidence demonstrating
that RARs or RXRs directly target the putative RAREs in
primary or cultured podocytes. In vitro, all-trans retinoic
acid inhibits HIV-induced podocyte proliferation and
restores podocyte differentiation markers. Although the
exact mechanisms underlying the ability of all-trans ret-
inoic acid to inhibit apoptosis remain unclear, suppres-
sion of a cell death pathway mediated by JNK and
activator protein —1 (AP-1) has been proposed [85]. In
cultured podocytes, high glucose rapidly up-regulates
the monocyte chemoattractant peptide (MCP-1) mRNA
transcript and protein release; however, treatment with
all-trans retinoic acid suppresses MCP-1 transcription,
and significantly inhibits high glucose-induced MCP-1
protein synthesis [113]. Another study demonstrated
that retinoids slow down progression of renal disease by
suppressing important mediators such as angiotensin II,
endothelin and TGF-B in an anti-Thyl.l1 nephritis rat
model [114]. Moreover, recent studies have indicated
that retinoids suppress NF-kB and AP-1 in non-diabetic
nephropathy [115,116]. Thus, RARs may have additional
renoprotective functions through the transcriptional
control of podocyte-specific proteins and pro-inflammatory
cytokines that are know to further escalate pathogenic
cascades in the kidney.

Because all-trans retinoic acid is renoprotective in ani-
mal studies, a phase II clinical study has been approved
for the use of all-trans retinoic acid to treat patients with
steroid-resistant minimal change diseases including focal
segmental glomerulosclerosis and collapsing glomerulo-
pathy (ClinicalTrials.gov Identifier NCT00098020).
Therefore, a complete understanding of the mechanisms
underlying ATRA- and RAR-mediated renoprotective
activity will further support the use of all-trans retinoic
acid and the development of additional RAR agonists for
the treatment of kidney disorders.

VDR
Vitamin D deficiency is associated with proteinuria [117]
and is commonly found in type 1 and type 2 diabetic
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patients [117-122]. These observations suggest that
decreased vitamin D3 may contribute to increased risk
of diabetes complications and mortality and imply an in-
trinsic anti-proteinuric activity for vitamin D. In fact,
treatment with doxercalciferol, a VDR agonist, alleviates
proteinuria and glomerulosclerosis in type 1 and type 2
diabetic animals [121,123] and prevents diet-induced
obesity and insulin resistance. VDR agonists also protect
animals in non-diabetic models of renal disease, includ-
ing Heyman Nephritis [124], an anti-thy-1 model of
mesangial proliferative glomerulonephritis [125-127],
subtotal nephrectomy-associated podocyte loss and
hypertrophy [128,129], PAN- or adriamycin-induced
podocyte apoptosis and loss [130,131], unilateral ureteral
obstruction [91] and X-linked Fabry disease-associated
proteinuric renal injury [132].

Similar to ERa and RARa knockout mice, VDR knock-
out mice are more susceptible to diabetic kidney injury
[92,133] and streptozotocin-induced diabetic kidney dis-
ease. VDR is expressed in glomerular podocytes, as well
as other cell types in the glomerulus and in the tubular
epithelium [134]. Using 14C-labelled vitamin D3, it was
found that 1,25-(OH)2-vitamin D3 localizes in the nu-
cleus of podocytes, suggesting a regulatory action of the
VDR and vitamin D3 in these cells [134]. Treatment of
diet-induced obese mice with the VDR agonist, paricalci-
tol, has been shown to decrease proteinuria, and podo-
cyte injury. The same agonist also reduces proteinuria in
diabetic nephropathy [132], in part by interrupting the
damaged pathway initiated by lysoglobotriaosylcera-
minde in podocytes.

VDR appears to be highly inducible in podocytes [93],
suggesting that podocytes are a main target of vitamin
D3. Renal injury is accompanied by significant up-
regulation of pB-catenin, predominantly in podocytes and
tubular epithelial cells. The VDR agonist, paricalcitol,
induces a physical interaction between the VDR and
[-catenin in podocytes, thereby suppressing of f-catenin-
mediated gene transcription. Other studies have sug-
gested that vitamin D3 elicits its anti-apototic and
pro-survival response in podocytes through suppression
of caspase-3 activity, TGF-B1 signaling and the expression
of several apoptosis related proteins (Fas, FADD and
Bax). Vitamin D3 also increases anti-apoptotic protein ex-
pression and activates bone morphogenetic protein 7
(BMP-7) signaling. The ability of vitamin D3 to block
high glucose-induced angiotensinogen through inactiva-
tion of NF-«B activity has also been proposed [135]. In
addition, 1,25(0OH)2D3 and its analogs also induce
nephrin mRNA and protein expression [66,136]. A mech-
anism by which 1,25(OH)2D3 induces association of VDR
with its response elements in the nephrin promoter and
the recruitment of RNA polymerase II and histone H4
acetylation has been proposed [94]. Similar observations
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have shown that 1,25(OH)2D3 reverses high glucose-
induced nephrin reduction in podocytes and prevents
nephrin decline in both type 1 and 2 diabetic mice [95].
In summary, a body of evidence indicates that VDR
and its agonists are capable of eliciting renoprotective
effects through enhancing/maintaining nephrin expres-
sion and inhibiting injurious pathways to podocytes.
This suggests that VDR ligands may be promising thera-
peutic agents to prevent/ameliorate glomerulopathy.

Concluding remarks

NRs control many aspects of cell differentiation, animal
development and homeostasis. Some NR ligands have
proven beneficial in treating human diseases including
cancer, inflammatory disease and metabolic syndrome.
However, our understanding of NR function in podo-
cytes is still at an early stage, in part, due to lack of
knowledge of their target genes. We know how NR func-
tions in other tissues and cell types and how they cross-
talk with other signaling pathways. For example, in
addition to ligand-dependent activation of their target
genes, NRs such as GR, PPAR, VDR and RAR possess
ligand-dependent transrepression activity that inhibits
NF-«B and AP-1 [42], and liganded PPARs and TR have
been shown to crosstalk with mTOR signaling [137,138].
Are these mechanisms conserved in podocytes? Given
the facts that TNFa and IL-1f, both of which are NF-xB
activating agents, decrease nephrin expression, this
question is highly relevant to NR action in podocytes.
Are there cell type-specific functions of NRs present in
podocytes? Studies on conditional and podocyte-specific
knockout animals of NRs will likely provide a better
understanding of the role of a given NR in podocyte de-
velopment. Currently, only a handful of NRs has been
studied in podocytes. It is certain that NRs not discussed
in this review will also have important roles in podocyte
development and related disorders. Lastly, cell-cell inter-
actions between podocytes and glomerular endothelial
cells are also critical to podocyte development and main-
tenance of the filtration barrier integrity. As such, NR
function in glomerular endothelial cells will be equally
important to explore.
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