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Abstract

RNA sequencing (RNA-Seq) is rapidly replacing microarrays for profiling gene expression with much improved
accuracy and sensitivity. One of the most common questions in a typical gene profiling experiment is how to
identify a set of transcripts that are differentially expressed between different experimental conditions. Some of
the statistical methods developed for microarray data analysis can be applied to RNA-Seq data with or without
modifications. Recently several additional methods have been developed specifically for RNA-Seq data sets.
This review attempts to give an in-depth review of these statistical methods, with the goal of providing a
comprehensive guide when choosing appropriate metrics for RNA-Seq statistical analyses.

Introduction

Transcriptomics holds the key to understanding how the
information encoded in the genome is translated into
cellular functions, and how this translation process
responds to the changing environment. Given a tran-
scriptome, or the collection of all the transcripts includ-
ing both protein coding mRNAs and noncoding RNAs,
one of the outstanding questions in transcriptomics is to
accurately quantify the abundance of each transcript
within different tissues and time points, and to correlate
changes in abundance to genetic and environmental
perturbation in order to understand genome function
and adaptation.

Transcriptome profiling, or gene expression profiling,
is the technology used to determine the steady state
abundance of each transcript within a transcriptome.
Transcriptome profiling is traditionally done using either
quantitative RT-PCR (reviewed in [1]) to interrogate a
few genes, or microarrays (cDNA array [2] or whole
genome tiling array [3-5]) to investigate genome-wide
transcriptional activity. Recently, as a result of the low
cost of next generation sequencing technologies [6],
transcriptome profiling by RNA sequencing (RNA-Seq)
is becoming the method of choice because of its unpre-
cedented sensitivity and accuracy (reviewed in [7,8]).
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Unlike prior technologies, next-generation sequencing
technologies allow reference transcriptomes to be assembled
directly from RNA-Seq data, thereby eliminating the
need for existing reference genomes or transcriptomes
[9]. This capability is particularly attractive for non-
model organisms or microbial communities that lack
high quality references.

There are both shared and unique aspects in the
experimental design and data generation phases of
expression microarrays and RNA-Seq technologies, and
these attributes are compared elsewhere [7,8,10,11].
For data analysis there are three major steps for both
technologies: data preprocessing, statistical analysis and
functional interpretation (Figure 1). Preprocessing micro-
array data normally includes background correction,
normalization and summation, while preprocessing RNA-
Seq data includes artifact filtering and short read align-
ment/assembly. The bioinformatics details involved in
preprocessing microarray and RNA-Seq data have been
reviewed previously [8,12,13]. After data preprocessing
the expression level of each transcript is determined. For
microarrays the levels are often represented as continuous
numbers, while for RNA-Seq datasets expression levels
are represented as discrete read counts. Statistical anal-
ysis is then performed to identify differentially expressed
transcripts among different samples/conditions, and the
results can be further analyzed to gain functional insights
(Figure 1). In this review we focus on the statistical meth-
ods that are used to identify differentially expressed tran-
scripts in RNA-Seq experiments. Some of them (for
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example, likelihood ratio test) have been used for micro-
array data analysis and then were adapted for RNA-Seq
data analysis, while others were developed specifically for
RNA-Seq.

Over the past decade, various statistical analysis tools
have been developed to analyze expression profiling data
generated by microarrays (Reviewed in [14]). Before
these tools can be applied to RNA-Seq data, it is worth
noting that microarray data and RNA-Seq data are in-
herently different. As mentioned earlier, microarray data
is “analog” since expression levels are represented as
continuous hybridization signal intensities. In contrast,
RNA-Seq data is “digital”, representing expression levels
as discrete counts. This inherent difference leads to the
difference in the parametric statistical methods that are
used since they often depend on the assumptions of
the random mechanism that generates the data. For
example, the normal distribution is a common distribu-
tion for statistical comparisons involving continuous
data. It is generally assumed that the log intensities
(or expression levels) in a microarray experiment are
approximately normally distributed. In contrast, the
Poisson, Binomial and Multinomial distributions are
more suitable for modeling discrete data in an RNA-Seq
experiment. Therefore a statistical method developed
for microarray data analysis cannot be directly applied
to RNA-Seq data analysis without first examining
the underlying distributions. Recently several statistical
methods have been developed to deal specifically
with RNA-Seq count data [14-17]. In this review

we summarize these methods, while focusing on the
pros and cons of each method in the context of spe-
cific applications.

RNA-Seq count data
As mentioned previously, the expression levels measured
by RNA-Seq experiments are represented by the number
of reads derived from each transcript in a transcriptome.
We will not discuss the problem of resolving the expres-
sion levels of alternatively spliced transcript isoforms
from a single gene, since this is still a challenge and
undergoing active research [7,18-20]. Here, for simpli-
city, we use the term “gene” or “transcript” to generically
refer to a spliced mRNA isoform, a non-coding RNA, a
small RNA, or any product resulted from a transcrip-
tional, splicing, or post-transcription-modification event.
RNA-Seq count data can be organized into a numer-
ical (p x n) matrix (M), with p representing the number
of genes and n the number of samples. We use pheno-
type to refer to an experimental condition, treatment,
tissue, or time point. Typically the number of genes is
far greater than the number of samples (p > #). Another
dimension often present in RNA-Seq datasets is the
number of replicates. Since the RNA-Seq protocol is
highly reproducible [21-23], technical replicates are usu-
ally not necessary, and instead 2—-3 biological replicates
are used to reduce the degree of noise resulting from
biological variations. Generally we assume that there are
ny biological (or technical) replicates under the K"
phenotype, k=1,2, -, t. As a result, a typical RNA-Seq
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data set has a series of two-dimensional sub-matrices
containing non-negative integers (counts), with each
sub-matrix being derived from a specific phenotype.
Therefore, we have n = Zf(:lnk, and the data matrix
can be arranged As M below, with the element mg‘)
being the expression level of the i”* gene from the ;%
replicate in the K phenotype, i=1,2,:-,p,j=1,2, -, 1y,
k=1,2,-¢L

RNA-Seq count data normalization

An important consideration to make prior to statistical
analysis is normalization. The sequencing depth, or
library size, which is usually defined as the total number
of aligned sequences in each sample, often varies from
one sample to another. Denote L}k) as the sequencing
depth for the j# sample in the kK phenotype. Then

we have L}(k) = Zizlmgjk). Normalizing count data trans-
forms it from discrete to continuous. For example, the
RPKM metric (Reads Per Kilobase of transcript per Mil-
lion mapped reads [22]) is used to measure the relative
expression level of a transcript. Although RPKM consid-
ers the length of the transcript, and thus allows for
comparison among different transcripts, in most studies
the gene length is not an issue because the comparison
is made for the same gene between different conditions
[24]. RPKM-based expression measurements cannot be
directly used for the count-based models.

In this review we assume that the data in the matrix
M are raw read counts without normalization. Unlike
microarray data analysis which often requires sophisti-
cated normalization procedures to compensate for biases
introduced from sample loading, imaging, and other
technical or biological factors [25], RNA-Seq data typic-
ally does not require a separate normalization step for
two reasons: 1) The difference in the sequencing depths
or library sizes between different samples is addressed
through the parameterization of the underlying distribu-
tions (see below). 2) Some models already take into ac-
count the variation among biological replicates. For
example, the over-dispersion parameter (discussed
below) in the Negative Binomial model accounts for the
variation across the biological replicates [26].

In the next section we will discuss the statistical meth-
ods that have been developed to address whether or not
a gene is differentially expressed among a group of time
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points or conditions. In the case of t=2,this problem
reduces to the two-group (pair-wise) comparison.

Statistical methods to detect differentially
expressed genes

Several statistical methods have been proposed to detect
the differentially expressed genes from a counts table
(Table 1). The number of samples or replicates in a typ-
ical RNA-Seq experiment is usually small, thereby
excluding the application of nonparametric methods that
implement sample permutations. For this reason, here
we focus on parametric methods only. These methods
differ in their underlying data distributions, how they
handle biological replicates, and their ability to perform
multi-group comparisons. Some of these methods have
been implemented in related R/Bioconductor packages
(Table 1). Each of these methods is discussed in further
detail below.

Methods based on the poisson distribution

In an RNA-Seq dataset, the expression level of a specific
gene, mg‘), is defined as the total number of short
sequences which aligned to the gene. That is, it is the
sum of a series of random events. Each event corre-
sponds to a short sequence and follows a Bernoulli dis-
tribution with the probability of success equating to
the probability that the sequence aligns to the gene.
Since the read alignments can be assumed to be inde-
pendent, the distribution of mg‘) can be approximated by
a Poisson distribution, Poi(/,tgk)), with //ll(k) being the
mean. This Poisson model is verified in the case where
there are only technical replicates using a single source
of RNA [21]. For the i’ gene, the statistical null hypoth-
esis in testing different expression levels across pheno-
types is that all of the means are equal. The statistical
test procedures based upon Poisson modeling are

reviewed in the next subsection.

Fisher’s exact test
This method can be used for comparing two phenotypes
(t=2). For the i’ gene, we can form a 2x2 contingency
table for its expression values in the matrix M [27],
Table 2.

The Fisher’s exact test is to test whether or not there
exists a significant association between the gene expres-
sion and the phenotype, in other words, whether or not

my,, myy My o Mgy,
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Table 1 A comparison of common statistical methods for RNA-Seq differential gene expression analysis

Method Underlying Recommended with Multi-group R/Bioconductor Reference
distribution biological replicates comparison package

Fisher's exact Test Poisson No No No [27]
Likelihood ratio test Poisson No Yes No [21]
edgeR Negative Binomial Yes Yes Yes [28]
DESeq Negative Binomial Yes No Yes [15]
baySeq Negative Binomial Yes Yes Yes [17]
BBSeq Beta-Binomial Yes No Yes [29]
Two-stage poisson model Poisson Yes Yes No [30]

the odds ratio is significantly greater or less than 1. This
test is based on the fact that with the assumption of
Poisson sampling and fixed marginal totals, the count
m$y follows a hyper-geometric distribution. The p value
is the total of the hyper-geometric probabilities for out-
comes at least as favorable to the alternative hypothesis
(the gene expression in phenotype 1 is lower than that
in phenotype 2 (the odds ratio is<1), or vice versa) as
the observed outcome [31]. A simple R function,

>x = matrix(cm <§11), mglz), Lgl) - mg)’ L(12) - mg?),

nrow = 2)

> fisher .test(x, alternative = c(” two.sided ,” greater” ,”less”>>

will give the p value of the test.

Since the null hypothesis of independence in Fisher’s
exact test is equivalent to the null hypothesis that the
odds ratio is equal to 1, one can avoid a potential false
positive due to the difference in the sequencing depths.
As an example, consider the case: m7 =10, m =20,
LV =1e+6,L%? =2¢ +6. The estimated odds ratio is 1
(no association by Fisher’s exact test), but the fold
change is 2 (possibly declared as differential by other
tests based on fold change). Furthermore, though Fish-
er’s exact test was designed for analyzing datasets with-
out replicates, if there are replicates and Poisson
sampling holds true, the test can still be applied — one
simply sums up the replicates under the same condition
to form the 2x2 contingency table.

The p value obtained above is for a single gene. As in
the analysis of expression data from microarray experi-
ments, there are thousands of genes in one RNA-Seq
experiment and thus we need to consider the problem
of an inflated false positive rate due to multiple

Table 2 The 2x2 contingency table for one gene

Gene Not Gene
Phenotype 1 m{P TR
Phenotype 2 m 12— m@

hypothesis testing. This problem can be addressed by dir-
ectly adjusting p values or calculating q values [32,33].
Many methods have been proposed to calculate adjusted p-
values, including Bonferroni’s single-step adjusted p-
values, Holm’s step-down adjusted p values [34],
Hochberg’s step-up adjusted p-values [35], and many more.
The R function mt.raw2adjp() in the R/Bioconductor pack-
age multtest computes adjusted p values, with nine dif-
ferent computing procedures. Q values can be obtained
by the R function qvalue() in the R/Bioconductor pack-
age qvalue. All of these functions take the vector of raw
p values as the input argument.

Likelihood ratio test

Marioni et al. assumed that the gene count 2 follows a
Poisson distribution, Poi(/h(-k) :L,(»k)vgk)),where ngf represents
the proportion of gene transcript copies of the ith gene in
all samples under the kth phenotype (k=1, 2, for pair-wise
comparison), and then used the likelihood ratio test to
identify the differentially expressed genes [21]. The purpose
of incorporating the sequencing depth (L,(k)) parameter into
the Poisson mean is to reduce the variation in sequencing
depth. If we look into the significance of differential expres-
sions of genes on a gene-by-gene basis, the likelihood func-
tion and maximum likelihood estimations are easy to
obtain. For the two-sided alternative hypothesis, by apply-
ing simple algebraic operations we have the likelihood ratio
test statistic,
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And the p value for an individual gene can be calcu-
lated as the right tailed probability of a Chi-squared dis-
tribution with 1 degree of freedom. For the one-sided
alternative hypothesis, v\ >v? the p value is half
of the above right-tailed probability of the Chi-squared
distribution if the unconstrained maximum likelihood

(A<1> :) >y

Vi 70
i

estimates of vV, v? satisfy: >

1

2 ()
(=

j i
or q values to control the false positive rate can be
obtained by the methods described in the previous
subsection.

Poisson modeling is an appropriate fit not only for se-
quencing data with technical replicates [21], but also for
those with biological replicates, as long as the sample
mean is close to the sample variance. However, the
requirement that the variance is the same as the mean
excludes the application of the Poisson model to RNA-
Seq data, should over-dispersion (defined below) occur.
The likelihood ratio test may give misleading results
if the assumptions about the sampling distribution
are violated.

); or 0.5 otherwise [36]. Adjusted p values

Models for over-dispersed count data

Given a sampling distribution, over-dispersion occurs if
the observed variance is greater than the assumed vari-
ance. In the Poisson model, over-dispersion occurs if the
sample variance is greater than the sample mean. There
could be several sources that cause over-dispersion in
RNA-Seq data, including the variability in biological
replicates due to heterogeneity within a population of
cells, possible correlation between gene expressions due
to regulation, and other uncontrolled variations. The
existence of over-dispersion in real data was observed
in several previous studies [26,30]. Popular models to
safeguard against over-dispersion include the negative
binomial distribution, beta-binomial distribution or two-
stage Poisson distribution, as discussed below.

Negative binomial model

As mentioned above, when over-dispersion is observed
across the samples, the gene counts cannot be estimated
accurately by a simple Poisson model. One way to handle
this problem is to apply a Bayesian method — allowing the
Poisson mean to be a random variable and then model the
gene counts by the marginal distribution of mf/k) Specific-
ally, assume that the Poisson mean follows a Gamma distri-
bution with the scale parameter u¥¢ and the shape
parameter (! / ¢), then the marginal distribution of the gene
count has a Negative Binomial distribution with mean y{°
and the variance ﬂgk)(l + ME%) [37]. The Negative Binomial
distribution can model the over-dispersed Poisson gene
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count where ¢>0 and reduces to the Poisson distribution
as ¢p— 0. The R/Bioconductor package “edgeR” applies this
model to detect the differentially expressed genes in RNA-
Seq data [28], where the mean of the Negative Binomial is
rewritten as (ugk) :L/('k)vgk)) to adjust for the difference in se-
quencing depths across the samples. The ith gene is differ-
entially expressed if the parameters v are significantly
different across phenotypes. For simple, pair-wise compari-
sons between phenotypes, the Negative Binomial para-
meters are estimated by conditional maximum likelihood
and quantile-adjusted conditional maximum likelihood
[26,37], and then an exact test (similar to Fisher’s exact
test) is carried out to generate p values for individual
genes. These can be completed by using the R function
“exactTest()” with options for different estimates of the
dispersion. For complex, mutligroup comparisons among
phenotypes, edgeR applies the Cox-Reid profile-adjusted
likelihood method to estimate the Negative Binomial
parameters [38], and then uses the generalized linear
model likelihood ratio test (R functions glmFit() and
glmLRT()) to discover differentially expressed genes.

While the relationship between the Negative Binomial
mean and variance simplifies the estimation of these
parameters, it may result in some variation unexplained
by the model and thus potentially introduce selection
biases in the differentially expressed genes. Anders
and Huber extended the method in edgeR by hierarch-
ically modeling this mean-variance relationship [15].
Their method is implemented in a R/Bioconductor
package, called DESeq. The R function nbinomTest() or
nbinomTestForMatrics() can return unadjusted p values
for individual genes. The adjusted p values from the
“BH” method [39] are also given by the first function.
To our knowledge, DESeq is currently limited to pair-
wise comparisons.

Another modification to edgeR is given by Hardcastle
and Kelly [17]. Their method is based on an empirically
Bayesian approach and can be used for multi-group com-
parisons as well as for pair-wise comparisons. The gene
count is also modeled by the Negative Binomial distribu-
tion. For each gene, instead of calculating a p value, a pos-
terior probability is obtained for each comparison
(alternative) among phenotypes. The probability of differen-
tial expression of a gene is defined as the sum of the poster-
ior probabilities for all possible comparisons. Then, the
genes are ranked based upon the probability of differential
expression This method is implemented in the R/Biocon-
ductor package, baySeq. The R function getPosteriors()
returns the posterior likelihoods of comparisons. One of
the disadvantages of this method is that it is more compu-
tationally expensive since all types of comparisons (alterna-
tives) are considered and the number of comparisons
increases dramatically when the number of phenotypes
increases.
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Beta-binomial model

Zhou, Xia and Wright model the gene count in a sample
with a Beta-Binomial distribution [29]. Assuming that
whether or not a short sequence is mapped to a particular
transcript follows a Bernoulli law with a mapping prob-
ability 6, then 0 has a prior of the Beta distribution. The
introduction of randomness to the mapping probability is
to account for the over-dispersion in the gene count data,
with the over-dispersion being explained by a Beta distri-
bution parameter ¢. The maximum likelihood estimates of
parameters (E(6), ¢) are obtained either by a free model in
which both parameters are unrelated or by a constrained
model in which a mean-overdispersion relationship is
assumed. A logistic model is fitted to model the relation-
ship between the mean E(0) and the design matrix of
covariates including the indicator variables for pheno-
types. Then the significance of an indicator variable is
determined by a Wald statistic (the ratio of the corre-
sponding coefficient in the fitted logistic model and its
standard error) and indicates whether or not the gene is
differentially expressed. This method is implemented
in the R package, BBSeq, which is available on this web-
site (last accessed on 03/07/2012): http://www.bios.unc.
edu/research/genomic_software/BBSeq/. Two R functions,
free.estimate() and constrained.estimate(), can generate the
raw p values for genes in pair-wise comparisons. However,
no function in the package directly gives the p values for
multi-group comparisons.

The Beta-Binomial model has been widely used to
model the over-dispersed, discrete count data. For
example, it was applied to analyze tag count data derived
from the Serial Analysis of Gene Expression (SAGE)
[40]; tag count data obtained from Digital Gene Expres-
sion profiling [41]; and spectral count data generated
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proteomic experiments [42]. To model RNA-Seq data
with a Beta-Binomial distribution, the probability that a
short sequence is mapped to a specific transcript is im-
plicitly assumed to be constant for all short sequences in
a sample. We have not seen any verification or justifica-
tion of this assumption in the literature.

Two-stage poisson model
Auer and Doerge [30] proposed a Two-Stage Poisson
Model for RNA-Seq data analysis, based upon the argu-
ment that the over-dispersion is most likely caused by
within group variation in expression if the experiment
includes independent biological replicates without a
significant population structure. The method consists of
two steps. In the first step, genes are classified into two
exclusive classes, genes with or without over-dispersion,
by using an adjusted score test on the hypothesis of
whether or not the over-dispersion is present within the
count data of a gene. Then in the second step, for genes
without significant over-dispersion, differential expres-
sion is tested by a standard likelihood approach with
maximum likelihood estimates being obtained under the
Poisson model. Raw p values are calculated by an
approximated Chi-squared distribution of degree one.
For genes with significant over-dispersion, they use the
quasi-likelihood statistic that is defined as the ratio of the
likelihood statistic and an estimate of over-dispersion.
Raw p values are calculated from an F-distribution. The
built-in R functions "glm()" and "deviance()" can be used
to obtain the likelihood ratio statistics. The detailed R code
for p values can be downloaded from the author’s web-
site (http://www.stat.purdue.edu/~doerge/software/ TSPM.R),
last accessed on 03/07/2012.

Under the model assumptions, the authors demon-

from label-free tandem mass spectrometry-based strated that the Two-Stage Poisson Model is a powerful
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Figure 2 Histograms and wrongly fitted models for 1000 simulated data points.
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tool for detecting differentially expressed genes. How-
ever, if other confounding factors exist such that the
levels of transcription within a phenotype are not stable,
this method may not control the false positive rate well.
Furthermore, as pointed out by the authors, this method
requires a relatively higher degree of freedom (the differ-
ence between the sample size and the number of pheno-
types) in order to be effective.

Conclusion and future perspectives

Next-generation sequencing technologies are revolu-
tionizing genomic/proteomic studies, providing high-
throughput datasets with unprecedented precision and
accuracy. The technology for profiling gene expressions
and composition (RNA-Seq) has been widely applied in
biological/medical research. Appropriate and powerful
statistical analysis using RNA-Seq data is essential to
the research.

Generating an accurate list of differentially expressed
genes is the basis for pathway or gene set enrichment
analysis. A gene set with a large number of false posi-
tives will compromise these analyses. The parametric
approaches discussed here are preferable to nonpara-
metric ones in order to increase the power of detection.
However, the false positive rate may be dramatically
increased if the assumptions of the model distribution
are violated. In Figure 2, we demonstrate the difference
between the histogram of 1000 data points simulated
from an underlying distribution and the probability mass
of an incorrectly fitted model (red curves). The data in
the left panel are generated from a Negative Binomial
distribution with mean 10 and over-dispersion 0.5 using
the R function rnegbin(), but are modeled by a Poisson
distribution with the probability mass:

Ake—/l

where the mean A = 10. Those in the right panel are gen-
erated from a Poisson distribution with mean 10 using
the R function rpois(), but are modeled by a Negative Bi-
nomial distribution with the probability mass:

70 = F(Zl;(f 1+)I(fs(;)l) <1 +1u¢> 5 (u +M¢1>k’
k=0,1,2, 7

where I represents the gamma function and the mean
¢ =10, the over-dispersion parameter ¢=0.5. The values
for the small circles in the fitted models are calculated
as the product of 1000 and p(k). The differences in both
cases are not negligible, indicating the seriousness of
wrong assumptions about the model.
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To our knowledge, there is no paper in the literature
which studies the efficacy of these methods when the
model assumptions do not hold. Given the limitation of
small sample sizes in RNA-Seq experiments, robust test
procedures which safeguard against the departure of
model assumptions are necessary.

Most of the proposed methods produce raw p values
for genes based upon the approximate/asymptotic
null distribution. This approximation performs well for
highly expressed genes but performs poorly for lowly
expressed genes. This may create bias during the selec-
tion of differentially expressed genes. Some authors
simply filter out lowly expressed genes. This is very sub-
jective, and some important genes, which are expressed
in one condition but not in another, may be excluded
from the result. New testing approaches, which are
powerful and effective for both highly and lowly
expressed genes, are still needed.
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