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Structure of noncoding RNA is a determinant of
function of RNA binding proteins in

transcriptional regulation

Takanori Oyoshi' and Riki Kurokawa®

Abstract

NcRNAS.

The majority of the noncoding regions of mammalian genomes have been found to be transcribed to generate
noncoding RNAs (ncRNASs), resulting in intense interest in their biological roles. During the past decade, numerous
ncRNAs and aptamers have been identified as regulators of transcription. 6S RNA, first described as a ncRNA in £
coli, mimics an open promoter structure, which has a large bulge with two hairpin/stalk structures that regulate
transcription through interactions with RNA polymerase. B2 RNA, which has stem-loops and unstructured single-
stranded regions, represses transcription of mRNA in response to various stresses, including heat shock in mouse
cells. The interaction of TLS (translocated in liposarcoma) with CBP/p300 was induced by ncRNAs that bind to TLS,
and this in turn results in inhibition of CBP/p300 histone acetyltransferase (HAT) activity in human cells.
Transcription regulator EWS (Ewing’s sarcoma), which is highly related to TLS, and TLS specifically bind to G-
quadruplex structures in vitro. The carboxy terminus containing the Arg-Gly-Gly (RGG) repeat domains in these
proteins are necessary for cis-repression of transcription activation and HAT activity by the N-terminal glutamine-
rich domain. Especially, the RGG domain in the carboxy terminus of EWS is important for the G-quadruplex specific
binding. Together, these data suggest that functions of EWS and TLS are modulated by specific structures of
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Introduction

Gene silencing has emerged as one of the major func-
tions of short double stranded noncoding RNAs
(ncRNAs) that are generated by specific processing
machinery. The mechanisms by which small ncRNAs,
siRNAs and miRNAs, participate in RNAi pathway
involved in gene silencing, mRNA stability and transla-
tion arrest have been extensively studied [1,2]. In con-
trast, regulatory functions of other classes of ncRNAs
are much less well understood. Transcription is also
regulated by other classes of ncRNAs, including long,
single-stranded, polyadenylated RNA molecules.
Recently, ncRNAs and synthetic RNA oligonucleotides
(RNA aptamers) have been found to exert inhibitory
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effects on transcription through inhibition of histone
acetyltransferase (HAT). The inhibitory effect was
achieved through blocking function of transcription
machinery with conformational changes. In this review,
we describe inhibitory mechanisms used by divergent
ncRNAs and discuss common structures of these
ncRNAs involved in regulation of transcription.
Recently, a guanine-rich structure has been found to
exert regulatory roles in eukaryotic transcription. There-
fore, we also focus on regulatory functions of the gua-
nine-rich structure in transcription.

6S RNA inhibits RNA polymerase Il in E. coli

6S RNA was first describe as a ncRNA in E. coli [3]. 6S
RNA mimics an open promoter structure and regulates
transcription through interaction with RNA polymerase
in bacterial cells [4]. The structure of 6S RNA shows a
large bulge of two single strands between the stalk and
the hairpin structures. Bacterial RNA polymerase is a
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multi-subunit enzyme consisting of a core enzyme and a
specific subunit, forming the holoenzyme [5]. The 6S
RNA sequence surrounding the bubble has contacts
directly with both the ¢’ and B/B’ polymerase subunits
in the holoenzyme [6-8]. 6S RNA accumulates as cells
reach the stationary phase of growth and mediates
phase-specific change of RNA polymerase [4,9]. 6S RNA
represses expression from a 6’°-dependent promoter
during the stationary phase [4]. The binding of 6S RNA
with RNA polymerase modulates the 6”°-holoenzyme
activity. The binding of the 6S RNA competes with
binding of the RNA polymerase to the promoter
regions. The bacterial RNA polymerase utilizes the 6S
RNA as a template and generates short (14- to 20-nt)
RNA products that are initiated within the bubble
[6,10]. The RNA products form a triplex-helix hybrid
with the 6S RNA hairpin. This hybrid might destabilize
the RNA polymerase-6S RNA complex, and rescue poly-
merase activity from the repressed status.

Reducing the size of the single-stranded region of 6S
RNA with deletion mutation destroys activity. The
alteration of sequences to induce base-paring through-
out the region of 6S RNA also results in producing an
inactive RNA, suggesting that the structure is crucial
[8]. However, the enlargement of the overall size of the
single-stranded DNA at the bulge region of 6S RNA had
no effect on binding to RNA polymerase, indicating that
there are not precise size requirements for the bulge
region [8].

B2 RNA represses transcription by RNA polymerase Il in
mouse cells
B2 RNA is likely to be a eukaryotic counterpart of the
bacterial 6S RNA and a small ncRNA of 178 nt tran-
scribed by RNA polymerase III from short interspersed
elements (SINEs). Expression of B2 RNA was increased
in response to transformation by simian virus 40 and
various stresses, including UV exposure, gamma radia-
tion, and heat shock in mouse cell [11-20]. B2 RNA pro-
posed to contribute to the repression of the
transcription of house-keeping genes like actin and hex-
okinase II after treatment with heat-shock stress [14].
B2 RNA binds RNA polymerase and inhibits tran-
scription [21]. Through this binding to RNA polymerase
II, B2 RNA is incorporated into preinitiation complexes
at promoters and inhibits transcription. The 70 nucleo-
tides (nts) at the 5’ end of B2 RNAs are evolutionarily
conserved with tRNAs, and the 3’ ends of B2 RNAs con-
tain an A-rich sequence also conserved among all short
interspersed elements, which are retrotransposons dis-
persed throughout the mouse genome with ~350,000
copies per cell [22]. Biochemical assay shows that the 5’
region from 3 to 74 nts neither binds to polymerase nor
represses transcription, whereas the region from 75 to
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149 binds to RNA polymerase II and represses tran-
scription [23]. Further deletion experiments revealed
that the region from 81 to 131, which contains a stem-
loop (81-97) and the unstructured single-stranded
region (98-115), can be assembled into the preinitiation
complexes and also represses transcription.

ncRNAs and G-rich RNA binding to TLS

It has been published that ncRNAs transcribed from the
promoter regions of cyclin D1 gene (promoter-asso-
ciated ncRNAs) have regulatory roles in transcription
[24]. Evidence that the promoter-associated ncRNAs
execute transcriptional regulation, has been recently
provided by analysis of TLS (translocated in liposar-
coma) [24]. TLS was initially identified as TLS-CHOP,
the fusion protein arising from a chromosomal translo-
cation [25,26]. TLS also has been found to be involved
in numerous activities, including transcription control,
mRNA processing and DNA repair [27-29].

Biochemical studies demonstrated that TLS could bind
to CBP/p300, which serve as essential coactivator for
divergent species of transcription factors, for example,
CREB, nuclear receptors, NFxB and STAT transcription
factors [30,31]. Their function of coactivator is mainly
generated by their intrinsic histone acetyltransferase
(HAT) activity [32,33]. Furthermore, TLS could strongly
inhibit the CBP/p300 HAT activity on the core histones
and other substrates [24].

It has been reported that synthetic RNA oligonucleo-
tides bind to TLS through a consensus sequence GGUG
[34]. Upon binding of GGUG RNA oligonucleotides
(GGUG RNA), inhibitory activity of TLS against the
HAT activity of CBP/p300 was enhanced [24]. Biochem-
ical experiments showed that the carboxy terminus of
TLS bound to GGUG RNA, whereas the N terminus
was interacted with CBP. The N terminus of TLS alone
has stronger inhibitory activity against the HAT than
did the full-length TLS. Furthermore, the N terminus of
TLS turned out to interact with the C terminus of TLS
(Figure 1A). The lower inhibitory activity of the full-
length TLS might be the outcome of blocking the bind-
ing of the N-terminal domain of TLS with the HAT
domain of CBP/p300 through binding of the TLS C-ter-
minus. TLS bound with GGUG RNAs induced its higher
binding to CBP/p300. These data suggest that the stron-
ger inhibition of the HAT activity by TLS bound GGUG
RNA results from bound of the C-terminus of TLS with
GGUG RNA (Figure 1A) [34].

The interaction of TLS with CBP/p300 was stimulated
by RNA oligonucleotides that binds to TLS, and this in
turn resulted in inhibition of CBP/p300 HAT activity
(Figure 1B) [24]. Cell-based studies demonstrated that
TLS could be recruited to and repress a subset of CREB
target genes, including cyclin D1 and cyclin E1, by
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Figure 1 Mechanism of RNA-dependent histone acetyltransferase (HAT) activities regulated by TLS. (A) HAT regulation by TLS and GGUG.
(B) Transcriptional regulation by TLS and ncRNAs. AD: activation domain, RBD: RNA binding domain, p/CAF: p300/CBP-associated factor.

reducing local histone acetylation. Intriguingly, recruit-
ment of TLS appeared to be dependent on its binding
to ncRNAs transcribed from promoter regions of the
cyclin D1 gene. Furthermore, transcription of these pro-
moter-associated ncRNAs was induced by ionizing
radiation, enhancing TLS recruitment and reducing
cyclin D1 expression. Taken together, these findings
provide the basis for a model in which the promoter-

associated ncRNAs recruit TLS to the cyclin D1 promo-
ter [24]. The interaction of these ncRNAs with TLS
induces recruitment of TLS to the promoter region of
cyclin D1, and also a conformational change of TLS.
This conformational change of TLS enables it to interact
with CBP/p300 and to inhibit their HAT activities.

RNA bearing Guanine-rich sequences is able to fold
into a G-quadruplex structure with cyclic Hoogsteen
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Figure 2 Structural features of human telomeric repeat containing RNA (TERRA) formed into G-quadruplex. (A) Structure of G-tetrad
consisting of G-quadruplex. (B) G-quadruplex structure and sequences of TERRA.

TERRA

base pairs of four guanine bases (G-tetrads; Figure 2A)
[35,36]. The formation of the G-quadruplex is stabilized
by the presence of monovalent cations (e.g., Na*, K"),
which are positioned in the center of the structure and
coordinated by the electron-rich carbonyl oxygens. The
NMR structure of human telomeric repeat containing
RNA (TERRA) r(UUAGGG), with K* has been solved
as the G-quadruplex structure in vitro and the structure
of TERRA in living cells has been confirmed as G-quad-
ruplex by a lights-switching pyrene probe (Figure 2B)
[37].

TERRA is a large non-coding RNA in fungi and ani-
mals and works as a direct inhibitor of human telomer-
ase, forming an integrated component of telomeric
heterochromatin in cellular nuclei [38-41]. TLS strongly
binds to TERRA via G-quadruplex structure in vitro
[42]. Purification of the human telomeric chromatin
using proteomics technology indicated that TLS is one
component of telomere binding protein goups [43]. TLS
forms a complex with the heterogeneous nuclear ribo-
nucleoprotein A1 (hnRNP A1) which contains the four
RNA recognition motifs and the RGG domain in the C-
terminal domain and binds to TERRA and human telo-
meric DNA [44-46]. hnRNP A1l modulates telomere

length and displaces the replication protein A (RPA) for
protection of binding of telomeres 1 (POT 1) to telo-
meric DNA.

TERRA, G-quadruplex RNA, binds to transcriptional factor
EWS
EWS is homologous to TLS and TAF15. These three
proteins form the TET family (Figure 3). The current
knowledge of EWS (Ewing’s sarcoma) has been provided
mainly from analysis of dominant oncogenes that arise
due to chromosomal translocations in which EWS is
fused to a variety of cellular transcription factors
[28,47,48]. The EWS fusion proteins are potent tran-
scription activators that require the EWS N-terminal
domain and the C-terminal DNA-binding domain con-
tributed by fusion partners [49-54]. For instance, a
fusion gene EWS-ATF1 is a potent constitutive activator
of ATF-dependent promoters [55]. The N-terminus of
EWS binds directly to a subunit (hsRPB7) of RNA poly-
merase II and the interaction is thought to be important
for transactivation [56].

The N-terminal regions of the TET proteins contain
the glutamine-rich domain that is a common structure
of transcription activation domain, while the C-terminal
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Figure 3 Transcriptional features and the G-quadruplex binding model of EWS. (A) Structural features of EWS. EAD: EWS activation domain,

RGG: Arg-Gly-Gly domain, RRM: RNA recognition motif, Znf: zinc finger. (B) Mechanism of RNA binding domain-dependent transcriptional
regulation of EWS. DBD: GAL4 DNA binding domain. (C) The G-quadruplex binding model by EWS RBD containing RGG domain.

A

half of the TET proteins contains a series of RNA bind-
ing regions, including an RNA recognition motif (RRM),
a C,C, zinc finger (ZnF) and three Arg-Gly-Gly (RGG)
repeat domains (Figure 3A) [57,58]. The RGG domain
within the carboxy terminus of EWS is necessary for
cis-repression of transcription induced by the N-termi-
nus of the glutamine-rich domain (Figure 3B) [58,59].
The transcription repression might result from the

carboxy-terminal RGG domain that blocks interaction
between the N-terminus of the glutamine-rich domain
and hsRPB7.

Similar to TLS, EWS could bind to TERRA through
the G-quadruplex in a structure-specific manner (Figure
3C) [60,61]. Binding experiments showed that the car-
boxy-terminal RGG domain of EWS specifically bound
to G-quadruplex RNA, whereas the proteins containing



Oyoshi and Kurokawa Cell & Bioscience 2012, 2:1
http://www.cellandbioscience.com/content/2/1/1

the N-terminal of the glutamine-rich domain, RRM, ZnF
and other RGG domains did not [60]. The carboxy-
terminal RGG domain of EWS contributes not only to
the binding to G-quadruplex RNA but also that to G-
quadruplex DNA binding. EWS binds preferentially to
G-quadruplexes with the longer loops. The electrophor-
esis mobility shift assay using EWS with G-quadruplexes
containing abasic sites instead of nucleotides in the
loops indicates that the carboxy-terminal RGG domain
of EWS recognizes the phosphate backbone of the loops
in G-quadruplexes. The findings could contribute to
analyzing the nucleic acids binding protein that selec-
tively target the G-quadruplex structures. Enzymic
methylation of Arg by protein arginine N-methyltrans-
ferase (PRMT) 3 reduced the binding RGG domain of
EWS to G-quadruplexes but increased its binding to
single-strand DNA and RNA. PRMT1 (a homologue of
PRMT3) reduced transcriptional activity of EWS
through nuclear exclusion of EWS by methylation of
arginine residues [62]. It suggests that the regulation of
nucleic acids structure specific binding by EWS might
play an important role in regulating the transcriptional
activity. Substitution of the phenylalanines in the RGG
domain in EWS eliminated almost completely G-quad-
ruplex bindings. These findings indicate that the pheny-
lalanines and guanidinium groups of the arginines in
RGG domain of EWS are important for binding of EWS
to the G-quadruplex. Moreover, not only Arg-Gly-Gly
repeats sequences but also Arg and Pro rich sequence in
RGG domain of C-terminus are important for its speci-
fic binding to G-quadruplex. The RGG domain has been
widely observed at divergent kinds of RNA-binding pro-
teins [63,64]. These data might contribute to under-
standing of the nucleic acids binding specificity of RNA-
binding proteins containing RGG domains.

Conclusions

Folding of RNA into divergent structures is constrained
by specific RNA sequences under physiological condi-
tions. Recent analyses revealed that several ncRNAs
form specific conformations in sequence-and structure-
specific manners, mimicking an open promoter struc-
tures and G-quadruplex structures. In living cells, speci-
fic three-dimensional structures of these ncRNAs could
contribute to regulation of transcription. It remains
however unclear whether a role of EWS in transcription
is fixed by its ability to target a specific RNA structure.
Janknecht et al. reported that overexpression of EWS in
RK13 and AKR cells leads to activation of the c-fos,
Xvent-2, and ErbB2 promoters, while EWS did not bind
to double-stranded DNAs in these promoters [65].
These data suggest that EWS might function as a tran-
scriptional regulator upon its binding with structure-
specific RNAs. On the other hand, Kingston and
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Dejardin purified the human telomeric chromatins using
proteomics technology with isolated chromatin seg-
ments and, found that TLS binds to telomeres [43]. Tel-
omeres are transcribed form the telomeric C-rich
strand, giving rise to TERRA r(UUAGGG), which forms
G-quadruplex in vivo. TLS might bind to TERRA and
regulate transcription of TERRA.
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ncRNAs: noncoding RNAs; TLS: translocated in liposarcoma; EWS:
Transcriptional factor Ewing's sarcoma; HAT: histone acetyltransferase; TERRA:
telomeric repeat containing RNA.
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