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Abstract

The epithelial to mesenchymal transition (EMT) plays crucial roles in the formation of the body plan and also in the
tumor invasion process. In addition, EMT also causes disruption of cell-cell adherence, loss of apico-basal polarity,
matrix remodeling, increased motility and invasiveness in promoting tumor metastasis. The tumor
microenvironment plays an important role in facilitating cancer metastasis and may induce the occurrence of EMT
in tumor cells. A large number of inflammatory cells infiltrating the tumor site, as well as hypoxia existing in a large
area of tumor, in addition many stem cells present in tumor microenvironment, such as cancer stem cells (CSCs),
mesenchymal stem cells (MSCs), all of these may be the inducers of EMT in tumor cells. The signaling pathways
involved in EMT are various, including TGF-b, NF-�B, Wnt, Notch, and others. In this review, we discuss the current
knowledge about the role of the tumor microenvironment in EMT and the related signaling pathways as well as
the interaction between them.
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Introduction
The main cause of death in patients is tumor progression
with metastasis. Tumor metastasis arises from precursor
lesions to the fully invasive, metastatic disease, which
progress through histopathologically distinct stages, and
epithelial-mesenchymal transition (EMT) is of potential
importance for this process [1]. EMT plays crucial roles
in the formation of the body plan and also contributes to
tissue repair. EMT is also a key event in the tumor inva-
sion process whereby epithelial cell layers lose polarity
together with cell-cell contacts and then undergo a dra-
matic remodeling of the cytoskeleton [2]. In addition,
EMT also causes disruption of cell-cell adherence, loss of
apico-basal polarity, matrix remodeling, increased moti-
lity and invasiveness [3-5] in promoting tumor metasta-
sis. Once migrating to the suitable site, tumor cells
re-express E-cadherin and other epithelial markers via a
process that is sometimes referred to as “mesenchymal-
to-epithelial transition” (MET) (Figure 1) [6].
The tumor microenvironment is composed of inflam-

matory and immune cells, hypoxia, stromal, extracellular
components including extracellular matrix (ECM), as

well as soluble factors, and plays an important role in
facilitating cancer progression and metastasis. Brabletz
et al. [7] compared the central areas of primary colorec-
tal cancer and corresponding metastases, and found that
nuclear b-catenin was in dedifferentiated mesenchyme-
like tumor cells at the invasive front and it was localized
to the membrane and cytoplasm. This study suggested
that the tumor microenvironment may induce the
occurrence of EMT in tumor cells. A large number of
inflammatory cells infiltrating the tumor, as well as
hypoxia existing in a large area of tumor, in addition
many stem cells present in tumor microenvironment,
such as cancer stem cells (CSCs), mesenchymal stem
cells (MSCs), all of these may be the inducers of EMT
in tumor cells. Most recently, several intriguing studies
have described the inducers of EMT and the underlying
mechanisms. In this study, we summarize the main
incentives for EMT in tumor microenvironment as well
as the interaction between them.

Inflammation as an Inducer of tumor EMT
The inflammatory component is an essential part of the
malignant microenvironment [8]. Cordon-Cardo &
Prives have established strong associations between
chronic inflammatory conditions and tumourigenesis for
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decades [9]. Colon, gastric, liver and pancreatic carcino-
mas are all closely associated with ulcerative colitis,
chronic gastritis, hepatitis and chronic pancreatitis
respectively, which exemplify the close connection
between inflammation and tumor appearance. Leukocyte
infiltration, cytokines, and chemokines are crucial ele-
ments which contribute to cancer-related inflammation
[10]. In addition to promoting carcinogenesis, tumor
associated macrophages (TAMs) and their released fac-
tors (e.g. IL-1, TNF-a) have long been known to sup-
port all steps of invasion and metastasis [11,12]. An
imaging study in vivo has shown that carcinoma cells
migrate from mouse primary tumors through a process
of EMT and that this process is dependent on an
inflammatory microenvironment provided by the TAMs
and other stromal cells such as the CAFs [13]. Recently,
the new finding that TNF-a induces Snail promoter
activity and EMT in MCF-7 breast cancer cells rein-
forced the connection between inflammation and EMT
[14].
In addition to induce cancer EMT directly, TNF-a can

up-regulate transforming-growth factor-beta (TGF-b)
expression at the transcriptional level [15] and accelerate
TGF-b-induced EMT dramatically [16]. Miettinen et al.

first revealed that TGF-b induced EMT in normal mam-
mary epithelial cells [17]. In fact, TGF-b is an important
inducer of EMT in cancer progression. In tumor tissues,
the interstitial fibroblasts and infiltrating macrophages
often produce active TGF-b [18,19]. TGF-b has a dual
role in carcinogenesis. In early lesions, TGF-b is consid-
ered a major anti-inflammatory cytokine and prevents
uncontrolled cell proliferation [20]. However, many
advanced tumors are resistant to the growth-inhibitory
actions of TGF-b, and TGF-b can instead activate pro-
metastatic pathways [21]. While it can act as a tumor
suppressor at early tumor stages, TGF-b later contribute
to the malignant progression by promoting invasion and
metastasis [22]. One mechanism by which TGF-b contri-
butes to cancer progression is the induction of an onco-
genic EMT [23]. For instance, TGF-b can directly induce
oral squamous cancer cells to a myofibroblastic pheno-
type, and the TGF-b signaling by stromal myofibroblast
can induce secretion of hepatocyte growth factor (HGF)
which promotes cancer cell proliferation and invasion
[24]. In SMMC-7721 human hepatocellular carcinoma
(HCC) cell line, TGF-b could regulate the expression of
several integrins, and promoted-EMT and cell adhesion
might be both responsible for TGF-b-enhanced cell

Figure 1 Various factors that induce cancer cell Epithelial-Mesenchymal Transitions (EMT) in tumor microenvironment. Inflammatory
cells and cytokines, increase of reactive oxygen species (ROS) in mitochondria induced by hypoxia, mesenchymal stem cells all can effectively
lead the epithelial-to-mesenchymal transition (EMT) of tumor cells. EMT is a key event in the tumor invasion process whereby epithelial cell
layers lose polarity together with cell-cell contacts and then undergo a dramatic remodeling of the cytoskeleton. EMT also causes disruption of
cell-cell adherence, loss of apico-basal polarity, matrix remodeling, increased motility and invasiveness in promoting tumor metastasis. Once
migrating to the suitable site, tumor cells re-express E-cadherin and other epithelial markers via a process that is sometimes referred to as
“mesenchymal-to-epithelial transition (MET)”.
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migration [25]. Among the transcription factors involved
in the induction of EMT in cancer, Snail factors repress
E-cadherin transcription directly and also activate the
transcription of vimentin and a-SMA indirectly [26]. Sig-
nificantly, TGF-b is also the most potent inducer of Snail
transcription. Snail can upregulate the expression of pro-
inflammatory mediators (IL-1, IL-6 and IL-8) as well [27].
Thus the relationship between inflammation and EMT
seems to be an interaction feature in the progression of
cancer (Figure 1).

Role of Hypoxia and Oxidative Stress in EMT
Based on recent reports, hypoxia may be proposed as a
second factor in the initiation of EMT. When tumors
grow to a certain size and cancer cells divide uncontrol-
lably, they form larger tumors. As a consequence, there
is limited availability of nutrients and oxygen in the
microenvironment and cancer cells are exposed to inter-
mittent hypoxic conditions. Higgins et al. have demon-
strated that hypoxia-induced EMT in renal epithelial
cells depend on hypoxia-inducible factors (HIF) signal-
ing partly [28]. Accordingly, Copple has also suggested
that HIF-1a is important for hypoxic to stimulate hepa-
tocyte EMT [29]. Luo et al. used the study with HIF
knockdown with siRNA at 2% oxygen and over-expres-
sion of an oxygen-insensitive HIF mutant at 21% oxygen
to show that HIF regulates Snail activation and subse-
quent cell migration. The reports identify snail as a HIF
target gene and provide novel insights into the regula-
tion of snail and hypoxia-induced EMT [30]. In addition
to HIF signaling, cancer cells activate latent TGF-b1 in
response to hypoxia. Zhou et al. used the inhibitor of
the TGF-b1 type I receptor kinase to prevent the
hypoxia-induced EMT, the results suggested that the
process was TGF-b1 dependent [31].
During hypoxia, mitochondria increase the production

of reactive oxygen species (ROS) and the ROS signaling
mechanisms in the cancer cells determine the fate of
cancer cells [31](Figure 1). It has been reported that
either ROS or nuclear factor kappa B (NF-�B) could
facilitate EMT in certain cell types [32-34] and TNF-a
could cause NF-�B activation and ROS production [35].
Interestingly, R. Dong pointed out that H2O2 alone can
promote EMT in a way different from TNF-a-induced
EMT, in which NF-�B only plays a minor role [14].
Since EMT can be affected by many signal pathways
and kinds of transcription factors [36], another tran-
scription factor or signal pathway may be the leading
factor of EMT induced by ROS.

The link between EMT and the cancer stem cells (CSCs)
phenotype
The existence of CSCs or tumor initiating cells with the
ability to self-renew and give rise to differentiated tumor

cells were first reported by Dick and coworkers [37].
Subsequently, the researchers have identified CSCs in
several solid tumors originating from the breast, colon
and brain [38-40]. Cells undergoing EMT may resist
toxic injuries and chemoradiation therapy, and a series
of studies demonstrated that CSCs are more resistant to
conventional therapies than differentiated cells. Fillmore
et al. used the CD44+/CD24-/low/ESA+ cell surface phe-
notype to isolate CSCs from human breast cancer cell
lines, and demonstrated preferential resistance of CSCs
to chemotherapy [41]. Similarly, CD44+/CD24-/low cells
isolated from monolayer cultures of MCF-7 or MDA-
MB-231 cell lines and propagated as mammospheres are
also relatively radioresistant, with an increase in the
CD44+/CD24-/low cell population after irradiation [42].
Therefore, CSCs are considered to be undergoing EMT
as well as tumor cells, and EMT may give CSCs the
invasive and metastatic abilities necessary for successful
metastasis. The chemoradiation-resistant pancreatic can-
cer cells are rich in ‘’stem-cell-like’’ tumor cells and
undergo EMT, the migratory and invasive capacities
have been increased in vitro and in vivo [43].
Recent evidence suggests that cells that undergo EMT

acquire stem cell-like properties too (Figure 1). Inducing
EMT in differentiated HMLE cells by either over expres-
sion of Snail or Twist or exposure to TGF-b1 caused the
cells to acquire the CD44high/CD24low stem cell profile.
EMT may also give differentiated tumor cells the ability
to self-renew, thus allowing the successful establishment
of secondary tumors at distant sites [44]. Furthermore,
cancer cells under hypoxic conditions acquire the prop-
erties of CSCs. Louie et al. used an optimized hypoxia
and reoxygenation regimen to identify a novel cycling
hypoxia-selected subpopulation from human breast can-
cer cell lines. The data demonstrated that a stem-like
breast cancer cell subpopulation could be highly tumori-
genic in immune-deficient mice and exhibited both
stem-like and EMT phenotypes [45].
Another stem cell type that resides predominantly in

tumor environment is the mesenchymal stem cells
(MSCs), which is a potential candidate of stem cells for
cellular and genetic therapy, and can differentiate into
multiple lineages such as chondrocytes, osteocytes, adi-
pocytes, myocytes, and astrocytes [46,47]. Recent studies
demonstrate that a variety of MSCs from the bone mar-
row are recruited at injury sites in a number of patholo-
gical conditions such as inflammation, tissue repair and
also neoplasia [48]. Taking advantage of homing capaci-
ties to the primary tumor site, MSCs have been used for
the targeted delivery of immunostimulatory cytokines
and chemokines, suicide genes, growth-factor antago-
nists, and oncolytic viruses after systemic administration
[49]. However, recent evidence suggests that MSCs par-
ticipate in tumor growth and metastasis, and are the
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most prominent cell type within the tumor stroma of
many cancers. Subcutaneously implanted human mam-
mary carcinomas co-injected with MSCs acquire an
increased metastatic potential [3].

Complexity of EMT Signaling Pathways in tumor
microenvironment
EMT is described as a multi-step event that epithelial
cells lose numerous epithelial characteristics to assume
properties of mesenchymal cells, and the inducers of
EMT is complex in tumor microenvironment. There-
fore, EMT-related signaling pathways are various,
including TGF-b, NF-�B, Wnt, Notch, and others [50]
(Figure 2).
TGF-b signaling pathway is a key player in promoting

tumor progression and metastasis [22,51]. TGF-b
induces tumor EMT through a Smad-dependent tran-
scriptional pathway and a Smad-independent transcrip-
tional pathway [1]. In Smad-dependent pathway, the

binding of TGF-b results that TGF-b receptors type I
and II form tight complexes leading to phosphorylation
of Smad2 and Smad3, the receptor-related Smad (R-
Smad) proteins [52]. Phoshorylated Smads then form
heteromeric complexes with Smad4 and translocate into
the nucleus to control transcription of target genes asso-
ciated with EMT through interaction with specific bind-
ing motifs in their gene regulatory regions, such as
Snail, Slug, ZEB and so on [53]. In addition to the Smad
signaling pathways, TGF-b directly activates various
types of non-Smad signaling in certain types of cells.
Among them, it is reported that Ras/Erk, c-Jun N-term-
inal kinase (JNK), phosphatidylinsitol-3 (PI3) kinase,
Par6, and Cdc42 GTPases play important roles in TGF-
b-induced EMT [54,55]. Therefore, targeted treatment
against TGF-b signaling appears to be promising as high
expression of TGF-b is a key mediator of tumor EMT
process. For example, TGF-b receptor 1 kinase inhibitor
(LY2109761) deactivates Smad-2, decreasing the

Figure 2 Signaling pathways that regulate Epithelial-Mesenchymal Transition (EMT) in tumor microenvironment. EMT is described as a
multi-step event that epithelial cells lose numerous epithelial characteristics to assume properties of mesenchymal cells, and the inducers of EMT
are complex in tumor microenvironment. Therefore, EMT-related signaling pathways are various, including TGF-b, NF-�B, Wnt, Notch, and others.
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migration and invasion of HCC cells and up-regulating
E-cadherin expression in HCC cell membranes, which
mediates cell adhesion [56-58].
In tumor environment, an increase in the expression of

the inflammatory cytokines (TNF-a, IL-6, LPS) and ROS
under oxidative stress is crucial for the induction of NF-
�B pathway, and NF-�B can also directly activate the
expression of potent EMT inducers, including Snail and
ZEB factors [59]. It has been found that NF-�B suppresses
the expression of epithelial specific gene E-cadherin, and
induces the expression of the mesenchymal specific gene
vimentin. Snail is a central transcription factor during loss
of epithelial phenotype to repress E-cadherin expression,
and NF-�B has been found to induce the expression of
Snail, which leads to the down regulation of E-cadherin
[60]. NF-�B also upregulates transcription factor ZEB1
and ZEB2, resulting in the inhibition of E-cadherin expres-
sion during EMT [34]. If cells having already undergone
EMT, blocking of NF-�B activity leads to a partial reversal
of the mesenchymal phenotype [61]. Recent studies identi-
fied NF-�B transcription factor as another key modulator
of TGF-b-induced EMT. NF-�B can promote EMT in
pancreatic carcinoma cells, which are unresponsive to
TGF-b since they lack functional SMAD4. Interestingly,
TNF-a was still able to elicit an EMT-like phenotype in
these TGF-b-unresponsive cells through NF-�B [62].
Therefore, the cooperation of TGF-b and NF-�B is critical
for EMT, and plays an important role in cancer invasion
and metastasis.
Wnt/b-caternin and Notch pathway are also emerging

as important regulators of EMT in carcinoma cell lines,
as well as the maintenance of stemness properties of
stem cells. Translocation of b-caternin to the nuclear
might result in the loss of E-cadherin to induce EMT,
and b-caternin signaling is also essential to maintain the
stemness properties of CSCs in skin cancer [63]. Trans-
forming growth factor (TGF)-b, canonical and noncano-
nical Wnt signaling all collaborated to induce activation
of the EMT program and thereafter function in an auto-
crine fashion to maintain the resulting mesenchymal
state [64]. Inhibition of Wnt signaling can block EMT
transcription factors and promote epithelial differentia-
tion. Recent studies propose Snail2 as a target of Notch
signaling, which is one of EMT transcription factors
[65]. Blocking the Notch pathway by pharmacologic
inhibitors of c-secretase might result in a depletion of
CD133 stem-like cells in embryonal brain tumors [66].
Both the two signaling pathways contribute to EMT and
to cancer stem-like cell characteristics in tumorigenesis.

Conclusions
During the past few decades, an increasing number of
studies have shown that EMT is associated with cancer

progression and metastasis. A variety of factors in
tumor microenvironment can lead to EMT. Inflamma-
tion, hypoxia, and stem cells in tumor microenviron-
ment linked with EMT inextricably through complex
pathways. Current understanding of traditional signal
pathways coupled with new concepts in EMT could
accelerate progress in cancer research. Furthermore,
improved understanding of the tumor microenviron-
ment, which contributes to the maintenance of EMT,
could clarify the processes underlying EMT, so as to be
targeted. However, a large number of unknown factors
and intracellular signaling pathways have been asso-
ciated with EMT, the multimodal nature of these com-
plex pathways presents will forbid researchers
attempting to inhibit the onset of EMT and the clinical
significance of challenging the role of EMT in cancer
progression is still relatively weak. Thus, better under-
standing for EMT in tumor microenvironment is still
needed.
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