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Abstract 

Background  Amyloid toxicity and glucose metabolic disorders are key pathological features during the progres-
sion of Alzheimer’s disease (AD). While the hypothalamus plays a crucial role in regulating systemic energy balance, 
the distribution of amyloid plaques in the preoptic, anterior, tuberal, and mammillary regions of the hypothalamus 
in AD mice, particularly across both sexes, remains largely unclear. Our ongoing research aims to explore hypotha-
lamic neuropathology and glucose metabolic disturbances in a well-described APP/PS1 mouse model of AD.

Results  Immunocytochemical staining revealed that Old-AD-Female mice exhibited a greater hypothalamic Amyloid 
β (Aβ) burden than their Old-AD-Male counterparts, with the mammillary bodies showing the most severe accumula-
tion. Analysis of ionized calcium binding adaptor molecule 1 (IBA1) immunoreactivity and Iba1 mRNA indicated differ-
ential microgliosis based on sex, while tanycytic territory and ZO-1 tight junction protein expression remained stable 
in AD mice. Moreover, sex-specific peripheral glucose metabolic parameters (random and fasting blood glucose) 
seemed to be exacerbated by age. Old AD mice of both sexes exhibited limited hypothalamic activation (c-Fos + cells) 
in response to blood glucose fluctuations. Hypothalamic Glut 1 expression decreased in young but increased in old 
female AD mice compared with age-matched male AD mice. Pearson correlation analysis further supported a nega-
tive correlation between hypothalamic Aβ load and random blood glucose in old AD groups of both genders, shed-
ding light on the mechanisms underlying this amyloidosis mouse model.

Conclusion  Aged APP/PS1 mice exhibit sex-specific hypothalamic neuropathology and differential glucose metabo-
lism, highlighting distinct pathological mechanisms within each gender.
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Introduction
Alzheimer’s disease (AD), an aging-related neurodegen-
erative disorder, is clinically characterized by memory 
loss and cognitive impairment [1, 2]. Its major hallmarks 
include amyloid β (Aβ) deposits and neurofibrillary tan-
gles, leading to neuronal dysfunction and reactive gliosis 
[3–5]. Aβ plaques typically originate from pyramid neu-
rons in the cortex and spread to other brain regions [6]. 
The hypothalamus, situated at the crossroads of periph-
eral, environmental, and neural inputs, integrates sensory 
information to regulate various physiological functions 
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and behaviors [7]. Despite its complex structure com-
prising numerous neuron categories and nuclei, how 
each of the hypothalamic regions—preoptic, anterior, 
tuberal, and mammillary—experiences Aβ deposition 
remains largely unknown. Epidemiologically, approxi-
mately two-thirds of AD patients are women, indicating 
potential sex-specific differences in disease risk factors 
[8]. However, investigations into the sex-specific neuro-
pathological variations in both human AD patients and 
amyloidosis transgenic mouse models remain limited.

Accumulating evidence suggests the role of hypotha-
lamic glial populations in the AD brain [9, 10]. Microglia, 
expressing ionized calcium binding adaptor molecule 
(IBA1), drive the accumulation of Aβ plaques and cogni-
tive deficits through a glycolysis/H4K12la/PKM2 (pyru-
vate kinase M2) positive feedback loop in AD mice [11]. 
Astrocytes undergo functional transformation into reac-
tive astrogliosis, with the astrocytic α7 nicotinic acetyl-
choline receptor (α7nAChR) emerging as a potential 
biomarker candidate [12]. To date, the morphological 
and functional changes these cells undergo in the AD 
hypothalamus remain unclear. Indeed, tanycytes are 
radial glial-like ependymal cells located in the ventral 
part of the third ventricle (3 V), exhibiting intrinsic het-
erogeneity with α1, α2, β1, and β2 subpopulations [13]. 
Physiologically, tanycytes lining the ventral 3 V are con-
nected at their apices by functional tight junctions [14] 
and participate in the remodeling of blood–hypothala-
mus barrier by expressing vascular endothelial growth 
factor-A [15]. These cells contribute to maintain energy 
balance and fat metabolism by sensing signals such as 
leptin and insulin, as well as circulating nutrients like glu-
cose [16–18]. Recent lineage tracing studies suggest that 
tanycytes contribute to tissue repair under neural injury 
and may possess tumorigenic potential [19], indicating 
their response to pathological stimulation.

Another distinct feature of AD is disturbances in glu-
cose and energy metabolism [20, 21]. It has been pro-
posed that metabolic changes specific to certain brain 
regions precede the development of amyloid pathology 
and cognitive decline, with the hypothalamus under-
going significant metabolic alterations [22]. However, 
the relationship between systemic glucose levels and 
amyloid accumulation in aged AD mice of both sexes 
remains poorly understood. Robinson LS et al. provided 
evidence for sex-dependent effects of AD pathology on 
energy and glucose regulation [23], potentially linked to 
inflammation in the hypothalamus. Other studies have 
also reported sex differences in hypothalamic responses 
to metabolic challenges [24]. High-fat diets resulted in 
the greatest weight gain, adiposity, and glucose intoler-
ance in 3xTg-AD females, accompanied by a significant 
increase in hypothalamic expression of glial fibrillary 

acidic protein (GFAP) and interleukin-1β (IL-1β) [25]. 
Interestingly, this effect was not observed in AD males 
[25], indicating a sexual dimorphic response to metabolic 
challenges.

Genetically, Rasse, R and colleagues established a trans-
genic AD mouse model known as APP/PS1 mice, which 
develop cerebral amyloidosis starting at 6–8 weeks of age 
[26]. While we previously traced reactive astrogliosis in 
the cortex of this AD mouse model and identified tran-
scriptional alterations [27], the presence of amyloidosis 
in the hypothalamus has not been explored, nor has the 
metabolic profile of this AD mouse model been exam-
ined in a sex-specific manner.

The aim of this study is to investigate Aβ deposits in 
different regions of the hypothalamus in thoroughly 
characterized AD mice, focusing on both early and late 
pathological stages. We conducted immunocytochemical 
staining, mRNA measurements, and metabolic analyses 
on both young and old male and female AD mice. Addi-
tionally, we explored the relationship between hypotha-
lamic Aβ pathology and systemic glucose metabolism, 
offering further insights into this amyloidosis mouse 
model.

Materials and methods
Animal care
Wild-type (WT) C57BL/6  J mice were purchased from 
the Shanghai SLAC Laboratory (Shanghai, China). AD 
mice (Thy1–APPKM670/671Nl, Thy1–PS1 L166P) har-
bor both the amyloid precursor protein (APP) with the 
KM670/671NL (Swedish) mutation and presenilin 1 
(PS1) with the L166P mutation on a C57BL/6  J genetic 
background [26]. The mice were housed in groups of 
4–6 per cage, provided with ad  libitum access to food 
and water, and maintained under a 12-h light/dark cycle. 
Both young (3–4  months old) and old (14–15  months 
old) male and female mice were included in this study. All 
animal procedures were conducted in compliance with 
the guidelines and ethical regulations established by the 
Animal Care and Use Committee of Shanghai Medical 
College of Fudan University.

Brain tissue preparation
Mice were anesthetized with pentobarbital sodium and 
xylazine, then subjected to transcardial perfusion with 
1X ice-cold phosphate-buffered saline (PBS), followed 
by perfusion with 4% paraformaldehyde solution in PBS. 
Subsequently, the brains were carefully dissected and 
postfixed in 4% paraformaldehyde for 24–48  h at 4 ℃. 
The fixed brains were then transferred to 30% sucrose 
solution in PBS until they sank. After sinking, the 
brains were coronally sectioned to a thickness of 40 μm 
using a cryostat (Leica Microsystems) and stored in an 
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anti-freeze solution at − 20 ℃ until immunohistochemi-
cal analysis. To perform c-Fos analysis, mice received an 
intraperitoneal injection (i.p.) of glucose solution (2 g/kg 
body weight) 2 h before scarification following the meth-
ods above.

Immunocytochemistry
Brain sections were washed with 1X PBS and permea-
bilized with 0.3% Triton X-100 for 30 min at room tem-
perature. Subsequently, the brain sections were blocked 
with 5% bovine serum albumin for 1  h at 4 ℃. Follow-
ing overnight incubation with primary antibodies at 4 ℃, 
sections were washed and then incubated for 2  h with 
corresponding Alexa Fluor-conjugated secondary anti-
bodies. Finally, the nuclei in each section were counter-
stained with Hoechst 33,258 (1 μg/ml). Antibodies used 
were as follows: 6E10 (1:500, AB_2564765, BioLegend), 
Aβ1-42 (1:500, ab224275, Abcam), GFAP (1:800, G3893, 
Thermo Scientific), IBA1 (1:1000, 019-19741, Waco), 
HuCD (1:1000, A-21271, Thermo Scientific); Vimentin 
(1:1500, AB_11212377, Merck & Millipore), ZO-1 (1:500, 
AB_2533147, Invitrogen), c-Fos (1:250, AB_2632380, 
PhosphoSolutions). Alexa Fluor 488-, 555-, or 647-con-
jugated corresponding secondary antibodies were pur-
chased from Jackson ImmunoResearch (West Grove, 
PA).

Image acquisition and analysis
All brain sections (at least 3 slices per animal) were 
imaged directly using a fluorescent microscope (EVOS 
M700 Color Imaging Systems). Additionally, a Leica 
SP8 microscope (Leica F1300439) was employed to fur-
ther validate the results. Laser and scanning settings for 
images within each experiment were kept consistent 
for comparison between groups. Semi-quantification 
analysis was conducted by a blinded researcher using 
ImageJ software (NIH, Bethesda, MD). For amyloid load 
and IBA1% area, the color threshold tool in ImageJ was 
adjusted to label immunoreactive signaling while exclud-
ing background staining within the region of interest 
(ROI). The big warp plugin in ImageJ was utilized to 
merge brain atlas and acquired images for the counting 
of HuCD+cells. Following precise division, automatic 
cell counting was performed in various brain regions, 
including the anterior commissure (AC), medial preoptic 
nucleus (MPO), lateral preoptic nucleus (LPO), paraven-
tricular nucleus (PVN), anterior hypothalamic nucleus 
(AHC), suprachiasmatic nucleus (SCN), supraoptic 
nucleus (SON), lateral hypothalamus (LH), dorsal medial 
nucleus (DMH), ventral medial nucleus (VMH), arcuate 
nucleus (ARH), tuberal nucleus (TuN), posterior hypo-
thalamic nucleus (PH), supramammillary nucleus (SuM), 
and mammillary bodies (MM). Quantification of c-Fos 

immunoreactive cells was performed in feed-regulating 
nuclei, including DMH, VMN, ARH, TuN, and LH. For 
Sholl analysis, z-stack confocal images were captured 
at a resolution of 1024 × 1024 pixels. Photomontages 
were created with a step of 1  μm using × 40 magnifica-
tion (between 6 and 10 frames per image). The number 
of intersections was calculated, starting with a radius of 
10 pixels and subsequent shells set at 5 pixels per step. 
For the ratio of tanycytic layer to the third ventricular 
surface, the length of the tanycytic layer was reported to 
the total length of the ventricle. The tanycytic layer was 
defined as the distance from the bottom of the 3 V to the 
last tanycyte detected in the dorsal 3 V. The third ventric-
ular surface was defined as the distance from the bottom 
of the 3 V to the top, measured using Hoechst staining.

Metabolic study and food intake measurement
Blood samples were collected from the tail vein. Random 
blood glucose (RBG) was measured repeatedly in all WT 
and AD mice across both young and old groups. Fast-
ing blood glucose (FBG) measurement was performed 
after overnight fasting. RBG and FBG levels of each ani-
mal were the average result of at least three independ-
ent measurements. In intraperitoneal glucose tolerance 
test (IPGTT), each mouse received an i.p. injection of 
glucose (2  g/kg body weight) after overnight fasting, 
and blood glucose levels were measured 0, 15, 30, 60, 90, 
and 120  min after i.p. injection. Subcutaneous fat mass 
was measured to indicate the wet weight of abdominal 
fat pad. Before actual food intake and rebound feeding 
measurements, mice were acclimatized to food hop-
pers in the cage at least 14 days. Actual food intake was 
measured continuously for 6  h: the difference between 
the pre-weighed and the remaining food was reported 
to 6 h. Fasting for 16 h minimizes the effects of systemic 
compensation including liver glycogenolysis. After a 16-h 
overnight fasting, ad  libitum food intake was measured 
1 h and 2 h after the light cycle started at 7:00–7:30.

RNA isolation and RT‑qPCR
As previously reported [28], total RNA was extracted 
from isolated hypothalamus tissues using TRIzol reagent. 
Subsequently, total RNA, along with random primers, 
was utilized to synthesize cDNA using the SuperScript III 
kit (Takara). We employed the TB Green system (Takara) 
for real-time quantitative PCR (RT-qPCR) analysis, per-
formed with a 96-well ABI thermocycler (Applied Bio-
systems). Melting curves of each well were examined to 
confirm the amplification of a single product. Relative 
gene expression levels were quantified using the cycle 
threshold (Ct) method. The following primers were used: 
Tnf-a (forward: GGT​GCC​TAT​GTC​TCA​GCC​TCTT; 
reverse: GCC​ATA​GAA​CTG​ATG​AGA​GGGAG); Ikbkg 
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(forward: TCT​TCG​GAG​TCA​GAG​GGA​ACAG; reverse: 
TCC​TGG​AGT​TCT​CCG​AGC​AATG); Iba1 (forward: 
TCT​GCC​GTC​CAA​ACT​TGA​AGCC; reverse: CTC​TTC​
AGC​TCT​AGG​TGG​GTCT); Gfap (forward: CAC​CTA​
CAG​GAA​ATT​GCT​GGAGG; reverse: CCA​CGA​TGT​
TCC​TCT​TGA​GGTG); Glut1 (forward: GCT​TCT​CCA​
ACT​GGA​CCT​CAAAC; reverse: ACG​AGG​AGC​ACC​
GTG​AAG​ATGA); Glut3 (forward: CCG​CTT​CTC​ATC​
TCC​ATT​GTCC; reverse: CCT​GCT​CCA​ATC​GTG​GCA​
TAGA); Gapdh (forward: CCT​ACC​CCC​AAT​GTA​TCC​
GTT; reverse: TAG​CCC​AGG​ATG​CCC​TTT​AGT).

Statistics
All statistical analyses were conducted using Graph-
Pad Prism software (version 8.2, GraphPad Software, La 
Jolla, CA, USA). Prior to further comparison, normality 
and lognormality tests were performed to ensure data 
normality. Data are expressed as mean ± standard error 
of the mean (SEM). Data from two groups were ana-
lyzed with a two-tailed unpaired Student’s t-test. Data of 
multiple groups were analyzed with one-way analysis of 
variance (ANOVA) followed by Turkey’s multiple com-
parison post hoc test. Two-way ANOVA followed by 
Bonferroni’s multiple comparison post hoc test was used 
to compare genotypes and genders over different gen-
der groups. Pearson correlation analysis was performed 
using RStudio software (version: 2023.12.0 + 369) and 
visualized using the corrplot package. Significance levels 
were denoted on the graphs as follows: *, 0.01 ≤ P < 0.05; 
**, 0.001 ≤ P < 0.01; ***, 0.0001 ≤ P < 0.001.

Results
Sex‑specific amyloid deposition with subregional 
heterogeneity in the hypothalamus of AD mice
To identify the Aβ burden in the hypothalamus, we ini-
tially segmented it into preoptic, anterior, tuberal, and 
mammillary regions, each comprising various nuclei 
(Fig.  1A). Subsequently, we performed co-staining of 
brain sections from Old-WT-Male, Old-WT-Female, 
Old-AD-Male, and Old-AD-Female mice using 6E10 and 
Aβ1–42 antibodies. Across all four regions, Aβ load was 
significantly higher in Old-AD-Female mice compared to 

Old-WT-Female mice (preoptic region: 6E10 p = 0.0008, 
Aβ1–42 p < 0.0007; anterior region: 6E10 p = 0.0086, Aβ1–

42 p = 0.0070; tuberal region: 6E10 p < 0.0001, Aβ1–42 
p = 0.0014; mammillary region: 6E10 p = 0.0004, Aβ1–42 
p < 0.0001) (Fig.  1B, C). In contrast, we did not observe 
obvious amyloid plaques in the hypothalamus of Old-
AD-Male mice, except in the mammillary region (6E10 
load: p = 0.3292, Aβ1–42 load: p = 0.2328). Interestingly, 
Old-AD-Female mice exhibited significantly higher 
6E10 +and Aβ1–42 +load compared to Old-AD-Male mice 
(preoptic region: 6E10 p = 0.0048, Aβ1–42 p = 0.0035; ante-
rior region: 6E10 p = 0.0667, Aβ1–42 p = 0.0952; tuberal 
region: 6E10 p = 0.0001, Aβ1–42 p = 0.0100; mammillary 
region: 6E10 p = 0.0882, Aβ1–42 p = 0.0069) (Fig.  1B, C). 
To further confirm sex-specific amyloidosis, we applied 
confocal microscopy and detected more plaques in for-
nix and mammillary bodies of Old-AD-Female than 
Old-AD-Male mice (Fig. S1 A, B). However, no amyloid 
deposits were observed in the suprachiasmatic nucleus of 
the old groups (Fig. S1C).

Next, we examined whether the young group exhib-
ited Aβ deposits in hypothalamic subdivisions. Images 
revealed that a few Aβ plaques were present in the mam-
millary region of both Young-AD-Male and Young-AD-
Female mice (Fig. S2). Taken together, in this AD mouse 
line, the rostral-to-caudal hypothalamic microenviron-
ment was differentially disrupted by senile plaques, with 
the mammillary region suffering from the most severe 
and earliest amyloid depositions. Old-AD-Female mice 
exhibited a heavier Aβ burden than their male counter-
parts, indicating sex-dependent amyloid pathology.

Intact hypothalamic neuronal populations and NF‑kb 
signaling pathways in AD mice
Sexual dimorphism of neuronal loss has been reported 
in the subiculum [29]. However, global neocortical neu-
ron loss was not apparent until 8  months of age in the 
AD mouse model we used [26]. Given the presence of 
Aβ deposits along the rostral-to-caudal axis of the hypo-
thalamus, it is intriguing to identify nucleus-specific 
neuronal populations. Therefore, we evaluated diverse 
hypothalamic nuclei (MPO, PVN, AHC, SCN, DMH, 

(See figure on next page.)
Fig. 1  Comparative analysis of amyloid plaques in hypothalamic subdivisions. A Nucleus staining (Hoechst, blue) reveals four regions 
of hypothalamus in mice, including preoptic, anterior, tuberal, and mammillary regions. Nuclei indicated by dashed circles are labeled on the other 
side of the same slice. AC anterior commissure, MPO medial preoptic nucleus, LPO lateral preoptic nucleus, PVN paraventricular nucleus, AHC 
anterior hypothalamic nucleus, SCN suprachiasmatic nucleus, SON supraoptic nucleus, LH lateral hypothalamus, DMH dorsalmedial nucleus, 
VMH ventralmedial nucleus, ARH arcuate nucleus, TuN tuberal nucleus PH posterior hypothalamic nucleus, SuM supramammillary nucleus, MM 
mammillary bodies. Scale bar: 1 mm. B Representative images of 6E10 and Aβ1–42 co-staining in hypothalamic preoptic and anterior regions 
of Old-AD-Male and Old-AD-Female subsets. Corresponding quantification of 6E10 +and Aβ1–42 +load (n = 5–10). C Representative images of 6E10 
and Aβ1–42 co-staining in hypothalamic tuberal and mammillary regions of Old-AD-Male and Old-AD-Female subsets. Corresponding quantification 
of 6E10 +and Aβ1–42 +load (n = 5–10). *p < 0.05; **p < 0.01; ***p < 0.001, two-way ANOVA followed by Bonferroni’s multiple comparison
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VMH, ARH, TuN, LH, PH, SuM, MM) in this AD mouse 
model using HuCD staining. However, no significant dif-
ferences were observed in neuronal density among the 8 
subsets, regardless of genotypes and genders (Fig. S3A, 
D). Functionally, we measured Tnf-a (a classic inflam-
matory factor) mRNA expression and found consistent 
levels of overall hypothalamic neuroinflammation (Old-
AD-Male vs Old-WT-Male: p = 0.7009; Old-AD-Female 
vs Old-WT-Female: p = 0.1284) (Fig. S3B, E). Addition-
ally, an inhibitor of nuclear factor kappa-B kinase subu-
nit beta (Ikbkβ), was comparable among all subsets of the 
young and old group. Thus, neurons in various hypotha-
lamic nuclei tend to remain intact, and the level of overall 
hypothalamic neuroinflammation is largely unaffected in 
both the early and late stages of this AD mouse line.

Differential microgliosis based on sex in the MM of AD 
mice
Microglia, generally considered as a sensitive inflam-
matory predictor, have recently been supposed as AD 
culprits [30]. In the old AD groups, we observed sig-
nificantly lager IBA1% area in the MPO (Old-AD-
Male vs Old-WT-Male: p = 0.0133; Old-AD-Female vs 
Old-WT-Female: p = 0.0319), LH, (Old-AD-Male vs 
Old-WT-Male: p = 0.0491; Old-AD-Female vs Old-WT-
Female: p = 0.0480) and MM (Old-AD-Male vs Old-WT-
Male: p = 0.0450; Old-AD-Female vs Old-WT-Female: 
p < 0.0001) (Fig. 2A, B). In the MM, where Aβ plaques are 
produced robustly within the hypothalamus, microglio-
sis was more pronounced in Old-AD-Female mice than 
in Old-AD-Male subsets (p = 0.0023). Additionally, Sholl 
analysis revealed more interactions in both Old-AD-Male 
and Old-AD-Female mice compared to WT counterparts 
(Fig. 2C). Similarly, Iba1 mRNA levels in the entire hypo-
thalamus were consistent with protein expressions (Old-
AD-Male vs Old-WT-Male: p = 0.6798; Old-AD-Female 
vs Old-WT-Female: p = 0.0482) (Fig.  2D). These results 
suggest differential microgliosis based on sex in aged AD 
mice.

In the young groups, a larger IBA1% area was only 
found in the MM (where Aβ plaques are produced ear-
liest) of Young-AD-Female compared with Young-WT-
Female (p = 0.0479) (Fig. S4A, B). No differences were 
observed in Iba1 mRNA expression (Fig. S4C). Further-
more, we investigated astrocytic reaction in the MM 
to confirm gliosis. In the young group, GFAP antibody 
immunostaining were undetectable, and Gfap mRNA 
expression was similar among the 4 subsets (Fig. S4D, 
E). In contrast, both Old-AD-Male and Old-AD-Female 
mice displayed GFAP immunoreactivity in the MM (Fig. 
S4F). Additionally, Gfap mRNA was increased in Old-
AD-Female compared to Old-AD-Male mice (p = 0.0167) 
(Fig. S4G).

Stable tanycytic territory and honeycombed tight junction 
protein ZO‑1 in AD mice
There is growing evidence indicating that tanycytes play 
a role in maintaining brain glucose sensing [31]. Due to 
their peculiar distribution, tanycytes are conventionally 
divided into four subpopulations based on their dorsal–
ventral position [32]. In our study, we initially divided the 
tuberal region of the hypothalamus (from bregma – 1.3 
to – 2.5 mm) into four zones: zone 1 (from bregma – 1.3 
to – 1.6 mm), zone 2 (from bregma – 1.6 to – 1.8 mm), 
zone 3 (from bregma –  1.8 to –  2.1  mm), and zone 4 
(from bregma – 2.1 to – 2.5 mm) along the antero-pos-
terior axis (Fig. 3A, B). Tanycytic territory was assessed 
by the ratio of the tanycytic layer to the surface of the 
3  V vimentin-positive (vimentin+) tanycytes (Fig.  3C). 
Across zones 1 to 4, tanycytic territory remained consist-
ent among the four subsets of the old group (Fig. 3D, E). 
We then examined tight junction proteins, particularly 
ZO-1, which are crucial for the structure of blood–cer-
ebrospinal fluid barriers and prevent the diffusion of 
blood-borne molecules into the cerebrospinal fluid [33]. 
In zone 3 of Old-AD-Male and Old-AD-Female mice, 
tanycytes exhibited a continuous ZO-1 +honeycomb pat-
tern at the apex and predominantly lined the 3  V wall 
adjacent to ME (Fig. 3D). Similarly, stable tanycytic terri-
tory and ZO-1 +honeycomb patterns were also observed 
in the young group (Fig. S5). These results suggest that 
tanycytic territory and ZO-1 tight junction proteins are 
not susceptible to AD pathology in this mouse model.

Sex differences of systemic glucose metabolism in young 
and old AD mice
To explore the toxicity induced by cerebral Aβ plaques 
and its association with various peripheral and central 
abnormalities [34], we assessed multiple parameters of 
glucose metabolism in both young and old groups follow-
ing the outlined workflow (Fig. 4A). In the young group, 
the value of FBG (a challenged glucose metabolic param-
eter) was significantly reduced in Young-AD-Female 
compared to Young-AD-Male mice (p = 0.0036), and 
showed a decreasing trend in Young-WT-Female com-
pared to Young-WT-Male mice (p = 0.0774) (Fig.  4C). 
Intriguingly, the FBG of Young-AD-Female mice was 
similar to that of Young-WT-Female mice (p = 0.8721). 
Additionally, no significant differences were observed 
among the four young subsets in the values of RBG, GTT, 
subcutaneous fat mass, actual food intake, or rebound 
feeding (Fig. 4B, D, E, F, G). To sum up, the glucose met-
abolic profile of young AD mice differed significantly 
between the two genders.

In the old group, RBG (p < 0.0001) and FBG (p < 0.0001) 
were significantly lower in Old-AD-Female mice com-
pared to Old-AD-Male mice (Fig.  4H, I). Unexpectedly, 
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RBG (p = 0.0011) and FBG (p = 0.0020) were also signifi-
cantly lower in Old-WT-Female compared to Old-WT-
Male mice, while these statistical differences did not exist 
between Young-WT-Female and Young-WT-Male mice 
(Fig.  4B). In either Old-AD-Male or Old-AD-Female 
mice groups, both RBG and FBG are similar to WT con-
trol groups (Fig. 4G, H). Glucose tolerance and all feed-
ing behavioral parameters of Old-AD-Female mice were 
comparable to those of Old-AD-Male mice (Fig.  4J, K, 
L, M). These findings suggest that the level of systemic 
blood glucose differs in a sex-specific manner, indicating 
that age-related glucose metabolism seems to be inde-
pendent of AD genotype.

Low activation of feed‑regulating hypothalamic nucleus 
in aged AD mice
We next traced the central response to acute glycemia 
upregulation by measuring cellular c-Fos expression in 
hypothalamic nuclei involved in regulating feeding and 
glucose metabolism. Two hours after intraperitoneal 
injection of a glucose solution (2  g/kg), we found that 
the numbers of c-Fos+cells in the DMH, VMH, ARH, 
TuN, and LH were identical among the young groups 
(Young-WT-Male, Young-WT-Female, Young-AD-Male, 
Young-AD-Female mice) (Fig.  5A). Exceptionally, the 
number of c-Fos+cells in the DMH (p = 0.0130) and ARH 
(p = 0.0363) were slightly higher in Young-WT-Female 
mice compared to Young-WT-Male mice (Fig. 5A).

In the old group, we found significantly fewer 
c-Fos+cells in the DMH (p = 0.0035), VMH (p = 0.0490), 
TuN (p = 0.0390), and LH (p = 0.0058) of Old-AD-Male 
mice compared to Old-WT-Male mice (Fig.  5B). Simi-
larly, a small number of c-Fos+cells were observed in 
Old-AD-Female mice, although they did not reach a 
significant level compared with WT controls (Fig.  5B). 
Additionally, c-Fos+cells in the DMH of Old-WT-Female 
mice were slightly decreased compared to Old-WT-
Male mice (p = 0.0150) (Fig.  5B). Overall, both Old-
AD-Male and Old-AD-Female mice exhibited limited 
hypothalamic activation in response to blood glucose 
fluctuations.

Systemic glucose metabolism was negatively correlated 
with hypothalamic amyloid pathology in aged AD mice 
of both sexes
The glucose transporter transporter 1 (GLUT1) at the 
blood–brain barrier (BBB) mediates glucose transport 
into the brain, and GLUT1 deficiency exacerbates AD-
related cerebrovascular degeneration in the cortex and 
hippocampus [35]. Neurons primarily obtain extracellu-
lar glucose as fuel, mainly relying on glucose transporter 
3 (GLUT3) [36]. We observed slightly increased hypotha-
lamic Glut1 mRNA levels in Young-AD-Male compared 
to either Young-WT-Male (p = 0.0397) or Young-AD-
Female mice (p = 0.0470) (Fig. 6A). Glut3 mRNA expres-
sion was similar among the four subsets of the young 
group (Fig. 6B). Surprisingly, in the old group, hypotha-
lamic Glut1 mRNA levels were significantly higher in 
Old-AD-Female compared to either Old-WT-Female 
(p = 0.0089) or Old-AD-Male mice (p = 0.0269). There 
was no statistical difference in Glut3 mRNA expression 
between Old-AD-Male and Old-AD-Female (p = 0.5357).

Finally, we investigated whether hypothalamic amyloid 
pathology was associated with systemic glucose meta-
bolic parameters in Old-AD-Male and Old-AD-Female 
mice. Pearson analysis showed that in the hypothalamus 
of Old-AD-Male mice, Aβ1–42 load was negatively cor-
related with RBG (r = −  0.93, p < 0.01). Both 6E10 load 
(r = − 0.86, p < 0.01) and Aβ1–42 load (r = − 0.66, p < 0.05) 
in Old-AD-Female mice were strongly and negatively 
correlated with RBG. Additionally, the percentage of 
IBA1-covered areas in the total hypothalamus of Old-
AD-Male and Old-AD-Female mice was not statistically 
associated with Aβ deposition (Aβ1–42 load or 6E10 load).

Discussion
This study reveals an uneven distribution of senile 
plaques in the rostral-to-caudal hypothalamus of 
AD mice, with the earliest and densest accumula-
tion observed in the MM region. Old-AD-Female mice 
exhibited a higher Aβ burden and gliosis compared to 
Old-AD-Male mice. In contrast, tanycytic territories 
remained stable, and the honeycombed patterns of ZO-1 
were retained in the old AD mice group. Sex-specific 

(See figure on next page.)
Fig. 3  Tanycytes lining the lateral and ventral wall of the third ventricle (3 V). A Classical distribution of tanycytes in the tuberal region 
of the hypothalamus (adapted with the permission of Prof. Fanny Langlet). B The sagittal schematic showing zone 1 (from bregma – 1.3 
to – 1.6 mm), zone2 (from bregma – 1.6 to – 1.8 mm), zone 3 (from bregma – 1.8 to – 2.1 mm) and zone 4 (from bregma – 2.1 to – 2.5 mm) 
along the anteroposterior axis. C Immunohistochemistry for the intermediate filament vimentin (white) showing all subtypes of tanycytes 
and ependymocytes populating the 3 V wall of mice. The tanycytic layer (distance from the 3 V bottom to the top tanycytes) and the 3 V surface 
(distance from the bottom to the top of 3 V) are delineated. Scale bar, 300 μm. D Vimentin-positive tanycytes distribute from zone 1 to zone 4 
in the old group. Pattern of tight junction protein ZO-1 (red) is honeycombed in bottom 3 V of the old group. E The ratio of 3 V surface occupied 
by tanycytic layer revealed no differences in tanycyte territory between old groups of WT and AD mice (n = 5). Two-way ANOVA with Bonferroni’s 
post hoc test
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peripheral glucose metabolic parameters (RBG and FBG) 
tend to be exacerbated by age, and hypothalamic cellular 
activation in old AD mice is limited in response to blood 
glucose fluctuations. Additionally, hypothalamic Aβ load 
was negatively associated with RBG in both Old-AD-
Male and Old-AD-Female mice.

Extracellular deposition of Aβ is a primary neuropatho-
logic hallmark in AD [37]. While Aβ plaques in the cor-
tex and hippocampus researchers have been extensively 
investigated in AD mouse models, evaluation of hypotha-
lamic amyloidosis is comparatively limited. In a study by 
Carrero et al. [38], no Aβ immunostaining was detected 
in the hypothalamus of 12-month-old male APP/PS1 
mice; however, confocal imaging revealed intracellular 
Aβ immunostaining within hypothalamic neurons. Simi-
larly, Tsui KC and colleagues provided a panoramic view 
of Aβ distribution in 9-month-old female 5xFAD mice, 
claiming no amyloidosis in specific hypothalamic regions 
such as the PVN, SCN, LH, and TuN. In their study, how-
ever, Fig. 6h showed mild Aβ deposition in the lateral and 
medial mammillary nucleus, despite the lack of detailed 
results description [39]. In line with this, our observa-
tions revealed abundant 6E10 +and Aβ1–42 plaques in 
the MM of 15-month-old APP/PS1 mice. Addition-
ally, Aβ deposition in the preoptic, anterior, and tuberal 
region of the hypothalamus was mild in Old-AD-Female 
mice and minimal in Old-AD-Male mice. Among these 
regions, we observed that the fornix, a component of the 
limbic system, was particularly affected by Aβ deposition. 
Clinically, the fornix has been identified as a potential 
therapeutic target of AD to enhance inter-regional con-
nectivity and improve memory function, impairment of 
which may stem from Aβ deposition [40, 41].

Studies exploring the effect of sex on AD appear to 
be contradictory due to variations in the ages and con-
struction methods of AD mice utilized. For instance, a 
study based on non-transgenic amyloidosis mice model 
(involving intracerebroventricular injection of Aβ1–42) 
found similar alterations in long-term potentiation (LTP) 
and long-term depression (LTD) in both male and female 
groups [42]. One possible explanation is that mice used 
were 3–6  months old, and any sexual differences may 
have been too subtle to detect. Sexual dimorphism may 

manifest in later stages of AD [43]. In contrast, another 
study described more prominent amyloid plaques in 
the hippocampus of female 3xTg mice compared to 
male 3xTg mice, with estrogen deficiency-induced 
PKA-CREB-MAPK (protein kinase A-cAMP response 
element-binding protein and p38–mitogen-activated 
protein kinases) signaling disorder involved [44]. Simi-
larly, we observed higher Aβ loads of 6E10 +and Aβ1-
42 +in the hypothalamus of old AD mice, with female 
developing more plaques than male subsets. Sex-depend-
ent hypothalamic neuropathology might reflect distinct 
compensatory mechanisms during the late stages of AD 
pathogenesis. In contrast, during the early stages of AD, 
genotype rather than sex appears to be the dominant fac-
tor in hypothalamic Aβ deposition, as evidenced by the 
presence of a few Aβ plaques in the mammillary region 
of both young male and female AD mice. However, our 
study does not specifically investigate the key molecular 
players or signaling pathways underlying sex differences 
in hypothalamic neuropathology.

Post-mortem examination of elderly AD patients has 
revealed neuronal loss in the SCN [45], LH [46] and 
MM [47], as well as the presence of dystrophic axons 
and abnormal spines in the SON and PVN [48]. Some 
AD transgenic mouse models replicated the neuronal 
loss observed in human patients. Poon CH [29] reported 
a significant decrease in the number of NeuN+cells in 
the subiculum of 6-month-old male and female 5xFAD 
mouse model. Trujillo-Estrada [49] reported reduced 
somatostatin+neurons in the subiculum of 4-month-
old male AβPP751SwedLondon/PS1M146L mice. In 
our study, to objectively assess neuronal populations, 
we evaluated neuronal density per unit area rather than 
total neuronal numbers in various hypothalamic nuclei. 
Consequently, the density of HuCD+neurons was mini-
mally affected by Aβ cytotoxicity in this AD mouse line. 
Consistent with normal density, stable Glut 3 mRNA in 
the AD hypothalamus indicated that the neural capacity 
for transporting glucose was probably retained. How-
ever, a limitation of our study is that we did not quantify 
functional neuronal subgroups in the hypothalamus of 
AD mice via fluorescence-activated cell sorting (FACS). 
In addition, faulty autolysosome acidification in neurons 

Fig. 4  Systemic glucose metabolism and food intake of the young and old group. A The workflow displaying experimental timelines in this study. 
Metabolic measurements are 1 week apart from adjacent ones, allowing for animal recovery. Groups of both ages, genotypes and genders, totally 8 
subsets (Young-WT-Male, Young-WT-Female, Young-AD-male, Young-AD-female, Old-WT-Male, Old-WT-Female, Old-AD-Male, Old-AD-Female), are 
sacrificed after 4 weeks. The schematic pictures also present processes before c-Fos analysis and RT-qPCR. Young groups: B Random blood glucose 
levels (n = 13–14). C 16-h Fasting blood glucose levels (n = 13–14). D IPGTT (n = 6). E Subcutaneous fat mass (n = 9). F Food intake during the day 
(n = 13–17). G Rebound food intake after 16-h fasting (n = 8–15). Old groups: H Random blood glucose levels (n = 13–14). I 16-h Fasting blood 
glucose levels (n = 13–14). J IPGTT (n = 6). K Subcutaneous fat mass (n = 9). L Food intake during the day (n = 13–14). M Rebound food intake 
after 16-h fasting (n = 10–13). **p < 0.01; ***p < 0.001, two-way ANOVA followed by Bonferroni’s multiple comparison

(See figure on next page.)
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of AD mouse models leads to intracellular autophagic 
accumulation of Aβ peptides [50]. Therefore, it would be 
interesting to explore early functional changes in neu-
ronal lysosomes in the hypothalamus of APP/PS1 mice.

Glial activation is a complex neuropathology in AD 
[51]. As a recognized cellular marker of neuroinflam-
mation, microgliosis is predominantly localized to the 
core of Aβ deposits [52]. Although Tnf-a and Ikbkβ 
mRNA levels in our study indicate no significantly ele-
vated neuroinflammation in the overall AD hypothala-
mus, we consider it to be an integrated consequence of 
hypothalamus-residing cells (including neurons, micro-
glia, astrocytes, and others). The percentage of IBA1-
positive area in the MM was greater in Old-AD-Female 
mice than in Old-AD-Male mice, corresponding to the 
6E10 +and Aβ1–42 +amyloid load. Since severe micro-
gliosis was detected in the LH and MM but not in other 

hypothalamic nuclei, such localized inflammation might 
be too subtle to detect. In Pearson correlation analyses 
of aged APP/PS1 mice, we found no significant correla-
tions between hypothalamic IBA1% areas and Aβ depo-
sition. One potential reason is that, to remain consistent 
with the measurement standard of Aβ load, we analyzed 
IBA1-covered areas of the total hypothalamus (beyond 
MM). Another reason could be the presence of com-
plicated microglial subgroups in various hypothalamic 
nuclei, which may exhibit different IBA1 immunoreactiv-
ity. Tools targeting proinflammatory and anti-inflamma-
tory microglial subtypes with high specificity may help 
interpret our findings. GLUT1 predominantly facilitates 
glucose uptake in microglia [53] and mediates micro-
glial proinflammatory activation [54]. In our study, 
Glut 1 mRNA expression was decreased in Young-AD-
Female mice and increased in Old-AD-Female mice, 
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implying variable microglial glucose metabolism in the 
AD hypothalamus.

Tanycytes have been speculated to be the missing link 
between type 2 diabetes and AD and are therefore con-
sidered for targeted gene-editing and stem cell–based 
patient-specific therapies for AD [55, 56]. To the best 
of our knowledge, our study is the first to dissect tany-
cytes in a mouse model of AD. We observed no atrophic 
tanycytic territory and honeycombed ZO-1 pattern in 
AD mice, implying a normal blood–cerebrospinal fluid 
barrier (BCSFB) constituted by the tanycyte population. 
Due to technical limitations, we did not reveal ultras-
tructural connections with organelles in tanycytes, such 
as mitochondria and lysosomes [57]. Functionally, hypo-
thalamus-controlled downstream metabolic effects are 
partially mediated by tanycytes [58, 59]. Activation of 
tanycytes through the arcuate neuronal network leads 
to acute hyperphagia [60], and they are proven essential 
for rodents to initiate a meal after fasting [61]. With high 
functional heterogeneous [62], a subpopulation of tany-
cytes expresses key taste transduction genes and regulate 
glucose homeostasis [63]. Thus, it is highly possible that 
tanycytes in AD mice retain the ability to sustain normal 
food intake, unaffected by age and sex.

Hypothalamic-based metabolic disorders are another 
critical pathological feature in AD [64, 65], often pre-
ceding amyloid plaques [66, 67]. Negative energy bal-
ance (decreased body weight, food intake, and energy 
expenditure) and metabolic dysfunctions (insulin, leptin, 
ghrelin) have been reported in 6-month-old male and 
female 5xFAD mice [68]. In our study, however, no sig-
nificant difference was found in feeding behaviors of all 
animal groups, suggesting negligible impact from sex, 
age, and AD pathology. Expression of c-Fos reveals a lim-
ited response of AD hypothalamic feed-related nuclei 
when challenged with raised blood glucose. Notably, 
glucose-induced c-Fos + cells were more dramatically 
reduced in Old-AD-Male compared to Old-AD-Female 
mice, displaying sex-dependent patterns. We infer that 
in Old-AD-Male mice, hypothalamic neurons transition 
from activated states to resting states to adapt to rapidly 
rising glycemia. In contrast, neurons in Old-AD-Female 
mice fail to complete this transition, likely due to higher 
Aβ deposition. In line with our results, other studies have 
reported that alterations in hypothalamic glucose sens-
ing and utilization are mild in 2–3-month-old APP+mice 
[69], and 11-month-old male APP/PS1 mice fed standard 
chow showed normal FBG and glucose tolerance com-
pared with WT mice [70].

Additionally, we showed significantly different RBG 
and FBG in aged AD male and female mice. Unex-
pectedly, such sex-based difference also existed in 

Old-WT-Male and Old-WT-Female mice (but not in 
Young-Female-WT and Young-Male-WT mice). Other 
studies have reported that 14-month-old male C57BL/6 
mice had higher baseline blood glucose than female fol-
lowing glucose administration [71], suggesting sex-spe-
cific impairments in blood glucose regulation [72]. The 
underlying reason might be that age combined with 
sex (or age interacting with sex) has a greater impact 
than sex or AD genotype alone, causing a statistical 
difference in glucose metabolic parameters in old WT 
groups. By contrast, FBG showed a decreasing trend 
in Young-WT-Female compared with Young-WT-
Male mice (and statistically differed between Young-
AD-Female and Young-Male-AD mice), and RGB 
was comparable across all four young subsets, further 
emphasizing the significant influence of age on metabo-
lism. We thus infer that sex differences in systemic gly-
cemia seem to be exacerbated by age but are unlikely 
to be influenced by AD status. Furthermore, Pearson 
correlation analysis revealed that hypothalamic Aβ load 
was negatively correlated with RGB in both old AD 
male and female mice. In young AD male and female 
mice, a few Aβ plaques appeared in the mammillary 
region of the hypothalamus, implying a potential link 
between blood glucose metabolism and hypothalamic 
AD pathology. Notably, more studies are warranted to 
confirm this link in the early pathological stages.

Limitations of this study also include the lack of solu-
ble Aβ examination in the blood sample from both male 
and female AD mice. Soluble Aβ proteins are promising 
early diagnostic biomarkers of AD, as their imbalance 
in production and clearance across the blood–brain 
barrier has been implicated [73]. Moreover, we did not 
directly measure glucose levels in the interstitial fluid 
of the hypothalamic parenchyma and compare them 
with peripheral glucose levels. It would be fascinating 
to clarify whether the AD hypothalamus fails in glucose 
sensation, and transportation, or rather experiences 
a decline in energy demand. We primarily explored 
blood glucose levels in our metabolic study and did 
not investigate other metabolic parameters, such as 
insulin, leptin, ghrelin, which limits our findings from 
being generalized to integrated metabolic disturbances. 
Functionally, resting-state functional connectivity of 
the hypothalamic precuneus/posterior cingulate cortex 
were diminished in AD patients [74]. This suggests that 
in addition to hypothalamic histopathology changes, 
signaling exchanges between the hypothalamus and 
other brain regions may also be impaired in AD. Inves-
tigating key and vulnerable monosynaptic projections 
from other brain regions to the integrative hypothala-
mus, which mediate glucose disorders, would be of 
great interest in the future research.
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Conclusions
In summary (Fig. 7), we have demonstrated more exten-
sive hypothalamic amyloid plaques in females than males 
in the late stage of this AD mouse model. The MM exhib-
its the earliest and heaviest Aβ load within the hypothala-
mus, accompanied by microgliosis. Sex-specific systemic 
glucose metabolism (RBG and FBG) seems to be exac-
erbated by age, and c-Fos expression in hypothalamic 
nuclei regulating feeding is limited in the old AD groups 
of both sexes, indicating impaired glucose metabolic 
adaptation. These findings underscore the importance of 
considering sex-specific hypothalamic amyloidosis and 
age-related sex differences in blood glucose metabolism.
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Additional file 1: Fig. S1 Representative confocal images of amyloid 
plaques in the Old-AD-Male and Old-AD-Female subsets. 6E10+ and 
Aβ1–42+ plaques are observed in the fornix (A), mammillary bodies (B), 
but not in the suprachiasmatic nucleus. Scale bar, 50 μm. Fig. S2 Analysis 
of amyloid plaques in hypothalamic subdivisions of the young group. Rep-
resentative images of 6E10 and Aβ1–42 co-staining in hypothalamic pre-
optic, anterior (A), tuberal, and mammillary (B) regions of Young-AD-Male 
and Young-AD-Female subsets. Fig. S3 Neurons in various hypothalamic 
nuclei and neuroinflammation elements. A Images of HuCD immuno-
fluorescence in the young group. Scale bar, 200 μm. Quantification of the 
number of HuCD+ neurons in various nuclei. B, C Tnf-a and Ikbkβ mRNA 
expression in the young group were evaluated. D Images of HuCD immu-
nofluorescence in the young group. Scale bar, 200 μm. Quantification 
of the number of HuCD+ neurons in various nuclei. E, F Tnf-a and Ikbkβ 
mRNA expression in the young group were evaluated. Fig. S4 Staining of 
IBA1 and GFAP in various hypothalamic nuclei. A Representative image of 
IBA1 staining in mammillary bodies of the young group. B Percentage of 
ROI occupied by IBA1-positive area (n = 3). Representative image of GFAP 
staining in mammillary bodies of the young group (c) and old group(d). 
*p < 0.05, two-way ANOVA followed by Bonferroni’s multiple comparison. 
Fig. S5 Vimentin-positive tanycytes distribute from zone 1 to zone 4 in the 
young group. Pattern of tight junction protein ZO-1 (red) is honeycombed 
in bottom 3V of the young group
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