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Abstract 

Small cell lung cancer (SCLC) is a highly malignant and poor-prognosis cancer, with most cases diagnosed 
at the extensive stage (ES). Amidst a landscape marked by limited progress in treatment modalities for ES-SCLC 
over the past few decades, the integration of immune checkpoint inhibitors (ICIs) with platinum-based chemotherapy 
has provided a milestone approach for improving prognosis, emerging as the new standard for initial therapy in ES-
SCLC. However, only a minority of SCLC patients can benefit from ICIs, which frequently come with varying degrees 
of immune-related adverse events (irAEs). Therefore, it is crucial to investigate predictive biomarkers to screen poten-
tial beneficiaries of ICIs, mitigate the risk of side effects, and improve treatment precision. This review summarized 
potential biomarkers for predicting ICI response in ES-SCLC, with a primary focus on markers sourced from tumor 
tissue or peripheral blood samples. The former mainly included PD-L1 expression, tumor mutational burden (TMB), 
along with cellular or molecular components related to the tumor microenvironment (TME) and antigen presentation 
machinery (APM), molecular subtypes of SCLC, and inflammatory gene expression profiles. Circulating biomarkers 
predominantly comprised circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), cytokines, plasma autoanti-
bodies, inflammation-related parameters, and blood TMB. We synthesized and analyzed the research progress of these 
potential markers. Notably, investigations into PD-L1 expression and TMB have been the most extensive, exhibiting 
preliminary predictive efficacy in salvage immunotherapy; however, consistent conclusions have yet to be reached 
across studies. Additionally, novel predictive markers developed based on TME composition, APM, transcriptomic 
and genomic features provide promising tools for precision immunotherapy. Circulating biomarkers offer the advan-
tages of convenience, non-invasiveness, and a comprehensive reflection of tumor molecular characteristics. They may 
serve as alternative options for predicting immunotherapy efficacy in SCLC. However, there is a scarcity of studies, 
and the significant heterogeneity in research findings warrants attention.

Keywords Small cell lung cancer, Extensive stage, Immune checkpoint inhibitors, Immunotherapy, Efficacy, 
Predictive biomarkers

Background
Lung cancer is among the most prevalent malignant 
tumors globally and stands as the primary cause of 
cancer-related death. Lung cancer is histologically cat-
egorized into two major subtypes: non-small cell lung 
cancer (NSCLC) and small cell lung cancer (SCLC) [1]. 
SCLC is identified as a poorly differentiated neuroendo-
crine tumor, accounting for approximately 13–15% of all 
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lung cancers [2]. SCLC is closely associated with tobacco 
exposure and is characterized by high malignancy, rapid 
growth, early distant metastasis, elevated recurrence rate, 
and acquired drug resistance [3], with a 5-year survival 
rate of less than 7% [4]. The Veterans Administration 
Lung Cancer Study Group (VALCSG) proposed divid-
ing SCLC into limited-stage (LS) and extensive-stage 
(ES) disease, based on whether the lesions are contained 
to one hemithorax and can be covered by a radiation 
field [5]. Approximately 70% of newly diagnosed SCLC 
patients have already progressed to ES-SCLC. The 
standard first-line treatment for ES-SCLC using a plati-
num-etoposide (EP) combination has remained mostly 
unchanged for decades. ES-SCLC initially shows high 
sensitivity to chemotherapy, with a response rate of up 
to 60–65%, but the response is of short duration [6]. The 
median progression-free survival (PFS) spans only about 
5–6  months, with the median overall survival (OS) of 
approximately 9–10 months [7, 8].

The clinical development of immunotherapy, espe-
cially anti-programmed cell death protein 1/programmed 
cell death 1 ligand 1 (PD-1/PD-L1) therapy, has been a 
revolutionary milestone in the treatment landscape of 
ES-SCLC in recent years. Landmark research such as 
IMpower133 and CASPIAN has supported the approval 
of atezolizumab/durvalumab plus chemotherapy for ini-
tial therapy of ES-SCLC globally. The IMpower133 study 
demonstrated that at a median follow-up of 13.9 months, 
the median OS for the atezolizumab group and the pla-
cebo group were 12.3 months and 10.3 months, respec-
tively, with a hazard ratio (HR) of 0.70 (95% confidence 
interval [CI] 0.54–0.91; p = 0.007). Atezolizumab group 
had a median PFS of 5.2 months compared to 4.3 months 
for the placebo group, with a HR of 0.77 (95% CI 0.62–
0.96; p =  0.02) [6]. The results of the CASPIAN study 
indicated that adding durvalumab to chemotherapy con-
ferred a significant OS benefit compared to EP regimen 
(median OS: 12.9 months vs. 10.5 months; HR, 0.71; 95% 
CI 0.60–0.86; p = 0.0003) [9, 10]. Despite these advance-
ments, the improvement in PFS and OS with the addi-
tion of immune checkpoint inhibitors (ICIs) is modest, 
and the divergence of long-term survival curves after six 
months suggested that a limited subset of SCLC patients 
benefited from ICIs. Additionally, while immunotherapy 
offers benefits, it also comes with immune-related tox-
icities [11–13]. Therefore, it is urgent to find reliable bio-
markers to effectively predict the efficacy of PD-1/PD-L1 
inhibitors.

Novel immunomodulatory agents beyond PD-1/
PD-L1 inhibitors have also been intensively evaluated 
preclinically and clinically in SCLC, among which delta-
like ligand 3 (DLL3)-targeted bispecific T-cell engagers 
(BiTEs) have garnered the most extensive research and 

demonstrated promising clinical efficacy [14–17]. Tar-
latamab has received accelerated approval from the US 
Food and Drug Administration (FDA) for treating ES-
SCLC following progression. Additionally, several other 
novel treatment strategies with promising preclinical 
results are undergoing corresponding clinical investiga-
tions, such as chimeric antigen receptor (CAR) based 
therapies [18–20], cancer vaccines [21, 22], and novel 
ICIs (anti-T cell immunoglobulin and mucin domain-
containing protein 3 (TIM3), anti-T cell immunorecep-
tor with immunoglobulin and ITIM domain (TIGIT), 
anti-lymphocyte activation gene 3 (LAG3), anti‐CTLA4-
LAG‐3 antibodies, etc.) [23–29]. However, the develop-
ment of novel immunotherapies in SCLC largely remains 
in early-stage clinical trials, with limited exploration of 
biomarkers. The information of these trials was listed in 
Supplementary Table 1.

In this review, we aimed to summarize the latest 
advances in the predictive biomarkers for immuno-
therapy in ES-SCLC, with a primary focus on ICIs. Our 
primary emphasis, according to the types of markers 
that have been reported, lied on markers obtained from 
tumor tissue or peripheral blood (Fig. 1).

Tumor tissue‑based biomarkers
PD‑L1 expression
PD-L1 expression detected by immunohistochemistry 
(IHC) is considered a critical predictive factor for the 
immunotherapy response in NSCLC [30, 31]. Nonethe-
less, variations in PD-L1 expression levels in NSCLC 
arise from diverse clinical and genotypic characteristics 
among distinct study populations. Additionally, dispari-
ties in ICIs and corresponding detection platforms con-
tribute to varying PD-L1 expression thresholds, resulting 
in inconsistent findings across studies [32]. In compari-
son to NSCLC patients, those with SCLC exhibit lower 
frequencies of PD-L1 expression, compounded by the 
scarcity of specimen cells which limits PD-L1 detec-
tion and research [33]. Reportedly, PD-L1 expression on 
tumor cells (TCs) in SCLC is quite low, with a range of 
1.8% to 17%, whereas PD-L1 expression is more frequent 
on immune cells (ICs) compared to TCs, ranging from 
25.8 to 40% [34–47]. Currently, the predictive role of 
PD-L1 expression in SCLC is still controversial (Table 1).

In the first-line treatment of ES-SCLC, the efficacy of 
ICIs combined with EP appears to be less dependent on 
PD-L1 expression. In the IMpower133 trial, OS ben-
efits were observed with atezolizumab plus etoposide 
and carboplatin (EC) versus placebo plus EC in both the 
PD-L1 expression < 1% TC and IC subgroup (median 
OS: 10.2 months vs. 8.3 months; HR, 0.51; 95% CI 0.30–
0.89) and the PD-L1 expression ≥ 5% TC or IC subgroup 
(median OS: 21.6 months vs. 9.2 months; HR, 0.60; 95% 
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CI 0.25–1.46). Patients with PD-L1 expression levels ≥ 1% 
TC or IC, however, did not show a comparable outcome 
(median OS: 9.7 months vs. 10.6 months; HR, 0.87; 95% 
CI 0.51–1.49) [34, 35]. The KEYNOTE-604 study evalu-
ated the efficacy of pembrolizumab plus EP in previ-
ously untreated ES-SCLC, revealing comparable HRs 
for PFS and OS between the PD-L1 combined positive 
score (CPS) ≥ 1 and PD-L1 negative subgroups [36]. The 
treatment regimens in the ASTRUM-005 trial [37] and 
CAPSTONE-1 trial [38] were respectively Serplulimab 
plus EC and Adebrelimab plus EC, and exploration of the 
predictive potential of PD-L1 expression yielded negative 
results consistent with previous studies. Interestingly, in 
exploratory analyses of the CASPIAN trial, OS benefit 
of durvalumab in combination with EP compared to EP 
alone appeared independent of PD-L1 expression, with 
HRs of 0.64 (95% CI 0.47–0.85) in the IC < 1% subgroup 
and 0.59 (95% CI 0.34–1.02) in the IC ≥ 1% subgroup. 
However, in the PD-L1 ≥ 1% subgroups, the OS benefit 

seemed greater with durvalumab plus tremelimumab 
plus EP versus EP alone, with HRs of 0.88 (95% CI 0.66–
1.19) in the IC < 1% subgroup and 0.53 (95% CI 0.31–
0.90) in the IC ≥ 1% subgroup, indicating that PD-L1 
expression could potentially function as a promising 
biomarker for assessing the effectiveness of combination 
therapy involving PD-1/PD-L1 and cytotoxic T lympho-
cyte antigen 4 (CTLA-4) inhibition [39]. Whereas, fur-
ther data from additional studies are required to bolster 
this proposition.

The available evidence on the predictive value of 
PD-L1 expression in first-line maintenance therapy 
for ES-SCLC remains insufficient. Exploratory analy-
ses of the CheckMate451 study in the CPS-evaluable 
population demonstrated that PD-L1 expression levels 
(CPS ≥ 1 or < 1) were not associated with the benefits 
of nivolumab with or without ipilimumab compared 
to placebo as first-line maintenance therapy for ES-
SCLC. However, across all treatment arms, including 

Fig. 1 Predictive biomarkers of ICI response in ES-SCLC. SCLC: small cell lung cancer; ES: extensive stage; PD-L1: programmed cell death 1 ligand 1; 
ICI: immune checkpoint inhibitor; TMB: tumor mutational burden; tTMB: tissue tumor mutational burden; bTMB: blood tumor mutational burden; 
TME: tumor microenvironment; APM: antigen presentation machinery; TCR: T cell receptor; MHC: major histocompatibility complex; ASCL1: 
achaete-scute homologue 1; NEUROD1: neurogenic differentiation factor 1; POU2F3: POU class 2 homeobox 3; ctDNA: circulating tumor DNA; CTCs: 
circulating tumor cells; NAAs: neuronal autoantibodies
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the placebo arm, patients with CPS ≥ 1 showed longer 
OS compared to patients with CPS < 1, indicating that 
PD-L1 expression might serve as a prognostic bio-
marker for ES-SCLC [40]. A phase II clinical trial 
assessed the effectiveness of maintenance pembroli-
zumab in ES-SCLC patients following chemotherapy. 
The findings indicated that the 8 patients with tumors 
positive for stromal PD-L1 expression achieved a 
higher median PFS (6.5  months vs. 1.3  months) and a 
higher median OS (12.8  months vs. 7.6  months) than 
the 12 patients with PD-L1-negative tumors, suggesting 
a potential benefit trend for pembrolizumab mainte-
nance therapy in PD-L1 positive patients. However, the 
sample size of this study was limited (N = 20), and the 
results did not reach statistical significance [41].

In second- or later-line treatment for SCLC, the rela-
tionship between PD-L1 expression and the efficacy of 
ICIs has not reached a consensus. The KEYNOTE-158 
trial, a phase II basket study of 11 cancer types, observed 
that pembrolizumab exhibited superior antitumor effects 
and sustained responses in ES-SCLC patients with PD-L1 
CPS ≥ 1 compared to those who were PD-L1 negative, 
indicating that PD-L1 CPS could predict outcomes in 
ES-SCLC patients [42]. In the phase I, multicohort KEY-
NOTE-028 study, patients with PD-L1-positive recur-
rent or metastatic SCLC who received pembrolizumab 
monotherapy achieved an objective response rate (ORR) 
of up to 33.3%, with a median OS of 9.7 months (95% CI 
4.1-not reached), indicating promising antitumor activity 
of pembrolizumab in PD-L1 positive SCLC patients [43]. 
Nonetheless, the pooled analysis of KEYNOTE-158 and 
KEYNOTE-028 explored the efficacy of pembrolizumab 
in recurrent SCLC patients who had undergone two or 
more lines of treatment. The results showed that pem-
brolizumab exhibited antitumor activity regardless of 
PD-L1 expression [48]. Likewise, in the CheckMate 331 
study, the PD-L1 CPS status with a threshold of 1 did 
not impact the OS or PFS outcomes of nivolumab com-
pared to chemotherapy [44]. Comparable findings were 
reported in the IFCT-1603 trial, which assessed the effi-
cacy of atezolizumab as a second-line therapy for SCLC 
[45]. The PASSION study is a phase II trial of camreli-
zumab and apatinib in refractory ES-SCLC after plati-
num-based chemotherapy. The ORR (45.5% vs. 33.3%) 
was higher in the PD-L1-positive subgroup compared 
to the PD-L1-negative subgroup, but the median OS 
(6.6 months vs. 9.3 months) was shorter in patients with 
positive PD-L1, suggesting that the prognostic value of 
PD-L1 remained unvalidated [46]. The Phase I/II clinical 
trial CheckMate 032 evaluated the effectiveness of later-
line nivolumab monotherapy or nivolumab plus ipili-
mumab, indicating that PD-L1 expression might not be a 
reliable indicator for the response to nivolumab [47].

In summary, the reliability of PD-L1 expression as a 
marker for immunotherapy response in ES-SCLC has 
not yet been supported by large-scale, high-quality rand-
omized controlled trials (RCTs). The temporal and spatial 
heterogeneity of PD-L1 expression, variations in sensi-
tivity among PD-L1 IHC detection antibodies, and the 
absence of standardized cutoff value for PD-L1 expres-
sion assessment may all impact its predictive value.

Tissue tumor mutational burden (tTMB)
Tumor mutational burden (TMB) typically refers to the 
total count of somatic mutations per coding region of a 
tumor genome, as detected by whole exome sequencing 
(WES) or next generation sequencing (NGS) [49]. Based 
on the source of samples, it can be categorized into tissue 
TMB (tTMB) and blood TMB (bTMB). TMB serves as an 
indirect indicator of a tumor’s capacity to produce neo-
antigens and has been shown to predict immunotherapy 
response across various cancer types, such as NSCLC, 
melanoma, and urothelial carcinoma, etc. [50–55] SCLC 
is marked by high TMB, possibly due to its strong asso-
ciation with smoking [56]. Nevertheless, the application 
of TMB in predicting ICIs response in SCLC remains 
contentious, given the heterogeneous outcomes observed 
across different studies (Table  2). Herein, our primary 
focus was on the findings related to tTMB, while analyses 
of bTMB were deliberated separately in the "Circulating 
biomarkers" section.

The prospective biomarker analysis of the phase II 
KEYNOTE-158 study revealed that high tTMB was cor-
related with clinical benefit (ORR and OS) with pem-
brolizumab as later-line treatment in various tumor 
types, including SCLC [57]. The CheckMate 032 study 
[51] and CheckMate 451 study [40] evaluated the impact 
of TMB on the effectiveness of nivolumab alone or in 
combination with ipilimumab in the later-line treatment 
and maintenance therapy following first-line platinum-
based chemotherapy for SCLC, respectively. The results 
of both studies suggested that TMB status could predict 
the response to these two treatment modalities. In the 
CheckMate 032 study, patients were stratified into low, 
medium, and high TMB tertiles on the basis of thresh-
olds of 143 mutations and 247 mutations. It was reported 
that in both the monotherapy and combination therapy 
arms, patients with high TMB exhibited superior ORR, 
PFS, and OS than those with medium and low TMB [51]. 
In the CheckMate 451 study, OS was enhanced with both 
combination therapy (HR, 0.61; 95% CI 0.39–0.94) and 
monotherapy (HR, 0.67; 95% CI 0.45–1.01) compared 
to placebo in patients with TMB ≥ 13 mutations per 
megabase (mut/Mb) but not in the other patients [40]. 
However, the CheckMate 331 study assessed the cor-
relation between high/low TMB and the effectiveness of 
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later-line nivolumab using multiple cutoff values (10, 11, 
13, 14, 15 mut/Mb), with results showing that TMB did 
not emerge as a predictor of clinical outcomes (p-value 
for interaction of TMB by treatment > 0.20 for all cutoffs) 
[44]. In conclusion, TMB holds promise as a predictive 
marker in ICI monotherapy or dual immunotherapy for 
previously treated advanced SCLC, and further valida-
tion is needed.

In other clinical settings, results may differ. Chemo-
therapy has the potential to elevate TMB, thereby com-
plicating the assessment of the relationship between 
TMB and immunotherapy efficacy when combined with 
chemotherapy [58, 59]. Current clinical studies have 
yet to affirm the predictive capacity of TMB in first-line 
chemotherapy plus immunotherapy. The tTMB sub-
groups in the CASPIAN study were defined according 
to various tTMB thresholds ranging from 6 to 14 mut/
Mb. Durvalumab in combination with EP or durvalumab 
plus tremelimumab plus EP showed consistent advan-
tages over EP across these subgroups [39]. The phase III 
KEYNOTE-604 study in untreated ES-SCLC unveiled a 
positive correlation between high TMB and favorable OS 
in the placebo group (p = 0.005) but not in the pembroli-
zumab plus EP group (p = 0.450). Additionally, pembroli-
zumab plus EP demonstrated clinical benefit compared 
to placebo plus EP for TMB < 175mut/exome, but not for 
TMB ≥ 175 mut/exome [60]. Both studies have indicated 
that tTMB was not an ideal predictive biomarker.

According to current research, tTMB holds potential as 
a predictive marker for the efficacy of ICI monotherapy 
in later-line setting, but its role in first-line immunother-
apy plus chemotherapy lacks supportive evidence. Fur-
thermore, research on tTMB as a predictive biomarker 
is constrained by some limitations. The majority of exist-
ing studies are retrospective exploratory analyses with 
restricted sample sizes, along with a lack of standardized 
detection methods, platforms, and cutoff values. There-
fore, further prospective studies with expanded sample 
sizes are warranted to clarify the prognostic role of tTMB 
in immunotherapies.

Tumor microenvironment (TME)
The tumor microenvironment (TME) is a complex and 
dynamic network primarily comprised of tumor cells, 
immune cells (such as T lymphocytes, B lymphocytes, 
dendritic cells, and macrophages), stromal cells (includ-
ing fibroblasts, endothelial cells, and pericytes), as well 
as various metabolites and cytokines [61]. The immune 
landscape within the TME exerts a pivotal influence 
on tumor initiation, progression, invasion, and resist-
ance, thereby impacting patient prognosis [62, 63]. It has 
been reported that the TME of SCLC exhibited features 
of immune suppression, largely attributed to limited 

immune cell infiltration, low PD-L1 expression levels, 
and deficient antigen presentation [64–66]. Recent stud-
ies have explored TME-related predictive biomarkers to 
identify patients who may benefit from immunotherapy 
(Table 3). However, owing to the scarcity of both resected 
tumor samples and biopsy samples, such studies remain 
limited in number and are mostly retrospective in design.

It is widely believed that tumor infiltrating lymphocytes 
(TILs) within the TME serve multiple functions. TILs 
produce soluble cytokines that regulate tumor cell pro-
liferation and metastasis, and directly participate in the 
immune-mediated anti-tumor mechanisms. Research 
has confirmed the correlations between TILs with supe-
rior prognosis in a variety of tumors, such as melanoma, 
colorectal cancer, and breast cancer [67]. Some stud-
ies have demonstrated that the degree of lymphocytes 
infiltration could predict ICIs response in ES-SCLC. For 
instance, the post hoc analysis of the CheckMate 032 
study indicated that CD8 + T cell infiltration ≥ 1% was 
correlated with better survival in relapsed SCLC patients 
receiving nivolumab monotherapy (HR, 0.51; 95% CI 
0.27–0.95), with a similar trend seen in patients receiving 
nivolumab plus ipilimumab (HR, 0.7; 95% CI 0.32–1.49) 
[68]. A retrospective study conducted by Shirasawa et al. 
validated the predictive value of TILs density in patients 
with treatment-naive ES-SCLC receiving atezolizumab 
plus EC [69]. Classification of immune phenotypes based 
on the presence and infiltration patterns of CD3 + and 
CD8 + lymphocytes has also been shown to predict their 
response to ICIs. An exploratory analysis of a single-
arm phase II study revealed that tumors exhibiting an 
inflamed phenotype all experienced tumor remission fol-
lowing treatment with durvalumab combined with olapa-
rib, while non-responding tumors displayed either an 
immune-desert or immune-excluded pattern [70]. Inter-
estingly, Pasello et al. proposed a connection of immune 
cell distribution and their spatial indicators with the effi-
cacy of first-line immunochemotherapy. Lower density 
of CD163 + M2 polarized macrophages and its ratio on 
CD8 + cells in both the overall and tumor regions were 
found to be favorably linked to PFS and OS (p < 0.05). 
Moreover, a high ratio of CD4 + to CD8 + cells adjacent in 
the entire region (p = 0.025) and stroma (p = 0.002), along 
with interaction between CD8 + cells and tumor cells 
(p = 0.012), were associated with longer OS. These find-
ings highlighted the importance of the TME and cellular 
interactions in tumor response and survival prognosis 
[71]. Additionally, Kanemura et al. conducted a prelimi-
nary investigation into the potential of combining PD-L1 
expression and TILs density as a prognostic indicator 
for ES-SCLC patients. They defined tumors with PD-L1 
positivity (CPS ≥ 1%) and high CD8 + TILs (> 85/mm2) 
as “inflamed tumors,” while others were categorized as 
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“non-inflamed tumors.” In the ICI plus chemotherapy 
cohort, median PFS for patients with inflamed tumors 
and non-inflamed tumors were 10.8 months (95% CI 3.5-
not reached) and 5.1  months (95% CI 4.3–5.6), respec-
tively (p = 0.002, HR, 0.26; 95% CI 0.09–0.74), indicating 
the predictive value of this combined biomarker [72].

Regulatory T cells (Tregs) expressing transcription fac-
tor forkhead box P3 (FOXP3) are crucial for maintain-
ing dominant self-tolerance and immune homeostasis, 
typically inhibiting anti-tumor immune reactions and 
supporting tumor progression. However, FOXP3-TILs 
represent a heterogeneous population, comprising not 
only suppressive subsets but also non-suppressive sub-
sets with anti-tumor activity [73, 74]. Two retrospective 
studies, involving 102 cases and 66 cases, respectively, 
have reported that FOXP3 + cells infiltration had an inde-
pendently positive prognostic impact on patients with 
stages I to III SCLC [75, 76]. Unfortunately, immuno-
therapy was not included in the treatment modalities for 
these patients. Further research is needed to investigate 
the predictive value of FOXP3 + cells for immunotherapy 
response.

Tumor-associated macrophages (TAMs), a crucial 
component of the TME, can be generally categorized into 
anti-tumor M1 phenotype and pro-tumor M2 phenotype. 
The activity and phenotypes of TAMs can be dynamically 
regulated by integrating signals within the TME [77, 78]. 
Most clinical studies have observed that TAM infiltra-
tion was associated with the M2-phenotype-related gene 
expressions in solid tumors, where M2-like TAMs pro-
moted angiogenesis and induced immune suppression 
[79–81]. However, there were also studies suggesting that 
macrophage infiltration might confer benefits to patients 
with solid tumors like NSCLC [82], colorectal cancer 
[83], and prostate cancer [84]. Eerola et al. evaluated sam-
ples from surgically treated SCLC patients, reporting that 
a higher concentration of macrophages was linked to bet-
ter survival (p = 0.05) [85]. Another case–control study 
compared surgically resected tumor specimens from 
long-term SCLC survivors (survival > 4 years) and SCLC 
patients with expected survival time (survival < 2  years), 
revealing higher numbers of CD14 + monocytes, 
FOXP3 + lymphocytes, and CD68 + macrophages in 
long-term survivors (LTS). However, the relative counts 
of these cells in relation to CD3 + T lymphocytes were 
typically lower [86]. Both studies utilized surgical speci-
mens and did not explore the correlation between mac-
rophage infiltration and immunotherapy effect.

Chemokines exert a vital role in the migration of 
immune cells towards tumors, thereby modulating 
the immune landscape of the TME, usually favoring a 
pro-tumorigenic state [87]. Additionally, chemokines 
are involved in various cancer progression processes 

including cancer cell proliferation, tumor metastasis, 
angiogenesis, among others, thereby emerging as pivotal 
mediators of disease advancement with substantial impli-
cations for patient prognosis and treatment response [88, 
89]. Chemokine (C–C motif ) ligand 5 (CCL5), a member 
of the CC motif chemokine family, has been the subject 
of conflicting conclusions regarding its role in tumors. 
Some studies suggested that CCL5 served as an adverse 
prognostic indicator in cancer [90], while others pro-
posed its protective role [91]. Tang et  al. conducted a 
study using two published cohorts comprising 159 SCLC 
patients. Through the analysis of differentially expressed 
genes (DEGs) between high and low immune score, they 
observed a positive association between CCL5 expres-
sion with both survival and immunotherapy response in 
SCLC patients [92].

The exploration of TME-related biomarkers continues 
to encounter several challenges. Currently, most of the 
research remains exploratory and relies on retrospective 
data, lacking validation from RCTs. There is an urgent 
need to investigate standardized detection platforms. 
Furthermore, the constraints of single biomarkers under-
score the necessity for developing composite predictive 
models that comprehensively reflect the immune status. 
Such an approach may act as an effective strategy for 
enhancing biomarker development.

Antigen presentation machinery (APM)
The antigen presentation machinery (APM) is a crucial 
process for the correct identification, processing, and 
presentation of tumor antigens to CD8 + T cells, thereby 
triggering T cell immune-mediated cytotoxic kill-
ing [93]. Various factors that modify antigen display on 
tumor cells, such as genetic variations in genes encoding 
major histocompatibility complex (MHC) or other APM 
components, transcriptional and translational modu-
lation, as well as epigenetic regulation, can impact the 
effectiveness of immune responses [94]. Thus, identify-
ing the regulatory mechanisms of APM in tumors holds 
significant potential for the precise administration of 
immunotherapy.

MHC, also known as human leukocyte antigen (HLA), 
is a critical component of the APM, can be primarily 
divided into MHC class I and MHC class II molecules. 
The presentation of antigens by MHC class I molecules 
to CD8 + T cells is a key mechanism of immune surveil-
lance [93]. Downregulation of MHC class I expression 
and subsequent decrease in antigen presentation con-
tribute to immune escape by intracellular pathogens and 
malignant cells. SCLC exhibits poor immunogenicity, 
with most cases showing low expression or loss of MHC 
class I [95, 96]. A study has identified a specific sub-
set of SCLC that exhibited high MHC I expression and 
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displayed non-neuroendocrine features. Utilizing multi-
plexed immunofluorescence (mIF), spatial characteriza-
tion in this subset revealed increased immune infiltration 
by CD3 + /CD8 + T cells and CD45 + /PD-L1 + immune 
cells, suggesting that the TME of such tumors might be 
poised for an anti-tumor response. Mahadevan et al. fur-
ther corroborated a significant correlation between high 
MHC I expression and sustained clinical benefits from 
ICIs, indicating that MHC I could function as a marker 
for ICI response in SCLC [97]. Conversely, epigenetic 
silencing of MHC-I in SCLC leads to poor response to 
ICIs. A preclinical study conducted by Nguyen et  al. 
illustrated that inhibition of lysine-specific demethylase 
1 (LSD1) could restore cell surface expression of MHC-
I, activate antigen presentation pathways, and enhance 
anti-tumor response to ICIs in SCLC [98].

MHC class II molecules are primarily expressed on pro-
fessional antigen-presenting cells (APCs) and participate 
in the presentation of exogenous antigens to CD4 + T 
cells [99, 100]. Evidence suggested that HLA class II mol-
ecules on tumor cells influence tumor immunogenic-
ity, tumor invasion, and immune responses [101, 102], 
while those on TILs are associated with antigen presen-
tation, interactions with immune cells, and cancer prog-
nosis [103]. In LS-SCLC patients, a retrospective study 
observed low expression of HLA class II on tumor cells 
while relatively high expression on TILs (positivity rates 
of 8.8% and 44.1% respectively). HLA class II on TILs was 
negatively correlated with lymph node metastasis and 
associated with longer recurrence-free survival (RFS), 
underscoring the prognostic and clinical significance of 
HLA class II in SCLC patients [104]. A post-hoc analysis 
of the phase III open-label CASPIAN study reported an 
association between the MHC class II allele DQB1*03:01 
and longer OS in the durvalumab plus tremelimumab 
plus EP arm (HR, 0.59; 95%CI 0.39–0.88), but not in the 
durvalumab plus EP (HR, 0.93; 95%CI 0.63–1.37) or EP 
(HR, 0.94; 95%CI 0.61–1.40) arms [105].

The post-hoc analysis of the CheckMate 032 study 
preset a gene expression signature consisting of genes 
encoding the APM, such as HLA-A, HLA-B, HLA-C, 
B2M, TAP1, and TAP2. Rudin et  al. assessed patient 
clinical outcomes by classifying cohorts of SCLC patients 
receiving nivolumab alone or with ipilimumab into ter-
tiles based on APM gene signature. The results revealed 
a significant positive correlation (p = 3.2 ×  10−4) between 
APM-related genes expression and OS for patients who 
received nivolumab. Furthermore, APM in SCLC is often 
subjected to epigenetic repression, with EZH2 and LSD1 
identified as two critical negative epigenetic regulators. 
The study showed that elevated LSD1 expression was 
strongly linked to poorer OS in both the nivolumab and 
nivolumab plus ipilimumab arms (p = 0.035 and p = 0.02 

respectively), with similar trends observed for EZH2 
(p = 0.076 and p = 0.27 respectively) [68].

Research on the correlation of APM with benefit from 
ICIs in SCLC is still in its early stages (Table 3), necessi-
tating further investigation and exploration.

Molecular subtypes and gene expression profiling
As high-throughput sequencing technologies advance, 
whole-genome analysis of SCLC has revealed the com-
plexity of its genomic landscape [106]. Research on the 
epigenetic and gene expression of preclinical models 
and human SCLC samples has identified distinct SCLC 
subtypes, uncovering significant heterogeneity within 
tumors, which correlated with tumor evolution, metas-
tasis, and treatment resistance [107]. In 2019, Rudin 
et  al. introduced a novel model of SCLC subtypes—A, 
N, P, and Y—defined by differential expression of four 
key transcription regulators: achaete-scute homologue 
1 (ASCL1), neurogenic differentiation factor 1 (NEU-
ROD1), POU class 2 homeobox  3 (POU2F3), and yes 
associated protein 1 (YAP1) [107, 108]. The first two are 
neuroendocrine subtypes, while the latter two are non-
neuroendocrine subtypes. Diverse immune profiles exist 
among different SCLC subtypes, thus leading to varied 
benefits from immunotherapy. The exploratory analysis 
in the CheckMate 032 study investigated the relation-
ship between these four subtypes and the survival ben-
efits of ICIs. Unfortunately, statistical significance was 
not observed across all subtypes, but the APM gene 
signature was enriched in SCLC-Y (p <  10–5) [68]. Inter-
estingly, Shirasawa proposed a pathological classifica-
tion of SCLC on the basis of IHC evaluation of ASCL1, 
NEUROD1, POU2F3, and YAP1 expression: pathological 
SCLC-A (pSCLC-A), pSCLC-N, pSCLC-P, and pSCLC-
Y. However, this retrospective study did not discover a 
connection between pathological subtypes and immuno-
chemotherapy [69].

Nevertheless, subsequent IHC analyses failed to con-
firm a distinct TAP1-driven subtype [109]. Conse-
quently, Gay et  al. proposed a unique SCLC-I subtype, 
characterized by low expression of ASCL1, NEUROD1, 
and POU2F3, but with features of inflammatory genes 
and mesenchymal traits [110]. The research indicated 
that, compared to other subtypes, the SCLC-I subtype 
exhibited higher levels of CD8 + T cells, natural killer 
(NK) cells, macrophages, and B lymphocytes, along with 
increased expression of immune checkpoints and HLAs, 
illustrating superior responses to ICIs. The SCLC-I sub-
type was validated in tumor samples from IMpower-133 
study. Although improvement trends were observed 
in the atezolizumab plus EC arm compared to the pla-
cebo plus EC arm across all four subtypes, the median 
OS and the magnitude of benefit with the addition 
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of atezolizumab was numerically greater in SCLC-I 
(18.2  months vs. 10.4  months, HR, 0.57; 95% CI 0.28–
1.15) compared to the other three subtypes. Addition-
ally, the study noted a remarkable survival advantage of 
SCLC-I in OS over all other tumors in the atezolizumab 
plus EC arm (HR, 0.566; 95% CI 0.321–0.998) but not 
the placebo arm (HR, 0.75; 95%CI 0.46–1.221), suggest-
ing that the SCLC-I subtype might be predictive of ICIs 
benefits [110]. Subsequently, exploratory analysis in 
IMpower-133 classified patients who survived for at least 
18  months after randomization as LTS, evaluating the 
distribution of SCLC transcriptional subtypes in LTS and 
non-LTS groups. The results unveiled a greater percent-
age of LTS, especially in the atezolizumab group, with the 
SCLC-I subtype [111].

The 18-gene T cell–inflamed gene expression profile 
(TcellinfGEP) contains interferon (IFN)-γ-responsive 
genes linked to antigen presentation, chemokine expres-
sion, cytotoxic activity, and adaptive immune resist-
ance, all crucial for clinical benefit [112]. TcellinfGEP 
has been developed into a clinical-grade assay and has 
been validated in some studies. For instance, the KEY-
NOTE-028 study, which encompassed patients with 20 
distinct solid tumors including SCLC receiving pembroli-
zumab, revealed that patients achieving higher ORR and 
longer PFS had elevated TcellinfGEP scores. This under-
scored the predictive capability of TcellinfGEP for clini-
cal benefits in PD-1 inhibitors [113]. However, this trial 
exclusively enrolled patients with PD-L1-positive solid 
tumors, thereby introducing bias in the distribution of 
biomarkers evaluated in the dataset, which posed limita-
tions to its generalizability. Subsequent exploratory bio-
marker analyses in the KEYNOTE-604 study assessed the 
correlation of TcellinfGEP and SCLC transcriptional sub-
types with survival outcomes. The findings indicated that 
SCLC subtypes were not linked to OS in either treatment 
group (pembrolizumab plus EP, p = 0.960; placebo plus 
EP, p = 0.999). However, a positive correlation between 
TcellinfGEP and OS was observed in both the pembroli-
zumab arm (p = 0.003) and the placebo arm (p < 0.005). 
Notably, there was no additional OS benefit with pem-
brolizumab plus EP [60].

The molecular hallmarks of SCLC encompass the inac-
tivation of retinoblastoma gene (RB1), resulting in the 
absence of Rb protein expression, along with concomi-
tant TP53 alterations [114]. SCLC exhibits near-universal 
biallelic functional inactivation of both RB1 and TP53 
genes. RB1 is primarily involved in cell cycle regulation 
and cellular differentiation. Additionally, studies have 
highlighted the immunological significance of RB1, as 
evidenced by the downregulation of immune-related 
gene expression observed in preclinical models with RB1 
inactivation [115, 116]. To assess the association between 

RB1 mutation or inactivation and the benefit of ICIs in 
SCLC, Dowlati et al. retrospectively collected data from 
42 SCLC patients receiving either single-agent ICI or 
ICI combination therapy. They found that the median 
OS for patients with RB1 wild-type (WT) receiving ICI 
was 23.1 months (95% CI 9–37.5), compared to 5 months 
(95% CI 2.5–26; p = 0.04) for patients with RB1 mutation 
[117]. These results were further confirmed in Check-
Mate 032, where patients with RB1 mutant receiving 
nivolumab showed significantly inferior outcome com-
pared to RB1 WT patients (HR, 1.41; 95% CI 1.02–2.01; 
p = 0.041). Moreover, a significant correlation was noted 
between a high RB1 loss-of-function signature score and 
the neuroendocrine subtype (ASCL1 and NEUROD1) 
[117].

In general, the development of predictive biomark-
ers for immunotherapy based on SCLC transcriptomic 
and genomic features is a promising field (Table 3). Such 
biomarkers hold the potential to guide the selection of 
more effective treatment strategies for SCLC patients. 
However, the role of molecular subtypes or inflammatory 
gene expression requires more RCTs to be substantiated.

Circulating biomarkers
The conventional approach for clinical biomarker detec-
tion is tissue biopsy. However, this method presents 
certain limitations: (1) it is an invasive procedure; (2) 
tumors exhibit complex spatial and temporal hetero-
geneity, and a single biopsy may not encompass the full 
molecular characteristics of the tumor; (3) acquiring a 
sufficient quantity and quality of tumor specimens poses 
challenges [118]. In response to these constraints, liq-
uid biopsy has gained growing prominence in recent 
years. Liquid biopsy primarily involves blood sampling 
but can also analyze cerebrospinal fluid, urine, pleural 
effusions, etc. It mainly detects circulating tumor DNA 
(ctDNA) and circulating tumor cells (CTCs) shed from 
primary or metastatic tumors into body fluids [119]. Liq-
uid biopsy offers advantages such as low invasiveness, 
cost-effectiveness, and short detection time. It allows for 
repeated sampling to reflect tumor heterogeneity, as well 
as dynamic monitoring of treatment efficacy [120]. Liq-
uid biopsy is often considered a rapid, minimally invasive 
alternative to tissue biopsy. In this chapter, we focused on 
the latest advancements in circulating biomarkers related 
to immunotherapy for SCLC (Table 3).

Circulating tumor DNA (ctDNA)
ctDNA refers to specific DNA fragments released into 
the circulation either through active secretion of tumor 
cells or during tumor cell apoptosis or necrosis. ctDNA 
harbors genetic features derived from the tumor, such as 
gene mutations, methylation, copy number alterations 
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(CNAs), etc. [121], serving as an important indica-
tor for tumor screening [122], companion diagnostics 
[123], assessment of treatment efficacy and monitoring 
of recurrence [124–126]. Typically constituting a minor 
portion of cell-free DNA (cfDNA) in plasma, ctDNA can 
be identified using polymerase chain reaction (PCR) or 
NGS assays [127, 128].

Some studies have documented statistically significant 
correlations of quantified ctDNA variant allele fraction 
(VAF) and CNAs with OS, suggesting ctDNA as a prog-
nostic biomarker for SCLC [129–131]. However, these 
studies did not include populations undergoing ICI ther-
apy. Data on the predictive value of ctDNA in ES-SCLC 
patients receiving immunotherapy are limited.

According to an ancillary analysis of the phase II IFCT-
1603 trial, high ctDNA abundance was significantly asso-
ciated with poor OS outcomes  (HRVAF ≥median, 8.11; 95% 
CI 2.20–29.91; p = 0.0017) in SCLC patients with atezoli-
zumab as second-line treatment. Researchers observed 
that patients with high baseline ctDNA levels appeared 
to derive less benefit from atezolizumab than chemother-
apy, while the reverse trend was observed in patients with 
low baseline ctDNA levels. This trial underscored the 
predictive role of ctDNA in second-line immunotherapy 
for SCLC [132].

Sivapalan et al. conducted a comprehensive longitudi-
nal analysis of somatic sequence and plasma aneuploidy 
in ctDNA, identifying three distinct molecular response 
patterns reflecting different clinical outcomes in meta-
static SCLC patients treated with either chemotherapy 
or immunotherapy-based regimens. Patients with sus-
tained ctDNA elimination attained significantly longer 
OS (median OS: not reached) and PFS (median PFS: not 
reached) compared to those with ctDNA elimination 
followed by recrudescence (median OS: 12.35  months, 
median PFS: 6.18  months) or persistent ctDNA burden 
(median OS: 6.48  months, median PFS: 1.74  months) 
(p = 0.0006 and p < 0.0001, respectively). These findings 
suggested that longitudinal ctDNA dynamics assessment 
could provide a basis for early identification of persis-
tent molecular response or resistance, guiding decisions 
to either continue or switch to alternative therapies for 
maximal clinical benefit [133, 134]. Similarly, in a phase 
II clinical trial evaluating the efficacy of durvalumab 
plus olaparib for relapsed SCLC, a case with a deleteri-
ous BRCA1 mutation was described, where the patient 
achieved a complete response (CR) accompanied by a 
sharp decline in cfDNA levels [70].

These studies supported the predictive significance of 
baseline and dynamic monitoring of ctDNA in SCLC 
patients undergoing immunotherapy, albeit with small 
cohorts. Prospective research is warranted to fully assess 
the reliability of ctDNA for clinical decision-making.

Circulating tumor cells (CTCs)
CTCs are tumor cells that are shed from primary or met-
astatic sites into the peripheral blood. These cells carry 
vital information concerning the genetic and molecu-
lar characteristics of the tumor, facilitating real-time, 
dynamic, and non-invasive monitoring of the patient’s 
condition [135]. They have shown prognostic significance 
across various cancer types, including breast cancer 
[136–138], NSCLC [139, 140], prostate cancer [141, 142], 
colorectal cancer [143, 144], and others.

Research confirmed that due to the short cell cycle and 
rapid proliferation of SCLC cells, which easily enter cir-
culation leading to distant metastasis, the detection rate 
of CTCs in SCLC populations is approximately 60–94% 
[129, 145–150], significantly higher than in other tumors. 
Similar to ctDNA, studies on CTCs in SCLC primarily 
focused on their prognostic value, predominantly includ-
ing SCLC cohorts treated with chemotherapy in the pre-
immunotherapy era. Although specific thresholds have 
not been definitively established, these studies have doc-
umented a correlation between elevated levels of CTCs 
and unfavorable prognosis [146–153], with higher levels 
observed in ES-SCLC compared to LS-SCLC [146, 148, 
150]. Furthermore, changes in CTC levels during treat-
ment seem to predict clinical outcomes [149, 153, 154]. 
Additionally, the role of CTC detection in clinical disease 
differentiation [155], chemotherapy sensitivity evaluation 
[156, 157], and analysis of resistance molecular mecha-
nisms [158] is supported by some research. The predic-
tive potential of CTCs in immunotherapy remains to be 
further explored.

Cytokines
Cytokines represent a class of soluble immune signal-
ing proteins, including interleukins (IL), IFN, tumor 
necrosis factor (TNF), chemokines, and growth factors, 
which play pivotal roles in either promoting or inhibiting 
inflammation through various biochemical pathways and 
interactions [159, 160]. Preliminary data suggested that 
soluble factors such as IL-6 [161], IL-8 [162, 163], IL-10 
[164, 165], etc., may serve as predictive or prognostic 
factors for ICI response in solid tumors such as NSCLC. 
However, there is limited research on the biological 
impact of cytokine levels in SCLC.

Hardy-Werbin and the team analyzed Th1, Th2, and 
proinflammatory cytokines in two independent cohorts 
of SCLC patients before and during treatment with 
chemotherapy with or without ipilimumab and correlated 
them with survival. The study noted an overall increase 
in all cytokines following treatment initiation in patients 
receiving ipilimumab. Irrespective of the treatment regi-
men, a high baseline IL-8 level was linked to poorer prog-
nosis. Elevated baseline levels of IL-2 were indicative of 
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sensitivity to ICIs, while high IL-6 and TNF-α predicted 
resistance. Additionally, an increase in IL-4 concentra-
tion during treatment in the immune-chemotherapy 
cohort correlated with improved OS [166]. However, a 
phase II clinical trial assessing the combination of dur-
valumab and olaparib for recurrent SCLC did not yield 
similar correlations [70]. Consequently, there remains no 
consensus regarding the role of cytokines in predicting 
ICI efficacy for SCLC, underscoring the need for further 
investigation.

Serum neuronal autoantibodies (NAAs)
Paraneoplastic neurological syndromes (PNSs) are rec-
ognized as immune-mediated disorders, characterized by 
antibodies induced by tumor antigens that exhibit cross-
reactivity with neural antigens [167]. Among patients 
with PNSs caused by SCLC, the most frequently detected 
onconeural autoantibodies are anti-Hu antibodies, also 
referred to as type 1 antineuronal nuclear antibodies 
(ANNA1) [168]. Additional onconeural autoantibod-
ies implicated in PNSs include those targeting collapsin 
response mediator protein 5 (CRMP5), SOX1, microtu-
bule-associated protein 1B (MAP1B), and amphiphysin 
[169]. PNSs manifest in 5–10% of SCLC patients, often 
accompanied by the detection of multiple autoantibod-
ies. However, about half of patients without PNSs also 
carry at least one autoantibody [170–172].

In cases of PNSs related to SCLC, distinctive neurolog-
ical dysfunction typically precedes respiratory symptoms, 
facilitating early cancer screening. Evidence suggested 
that SCLC patients with PNSs had a better prognosis 
than those without PNSs [173, 174]. Furthermore, sev-
eral studies indicated potential prognostic value of cer-
tain neuronal autoantibodies (NAAs) such as ANNAs 
in SCLC [175, 176]. However, two other studies failed to 
observe prognostic differences between serum autoanti-
body-positive and -negative SCLC patients [170, 177].

Reportedly, SCLC patients with PNSs exhibit a "hot" 
TME marked by increased TILs, elevated PD-L1 expres-
sion, and increased PD-1/PD-L1 interactions, suggest-
ing that such patients may represent an ideal population 
for receiving ICIs [178]. Additionally, immunotherapy 
can induce irAEs, and identifying serum characteristics 
before treatment commencement may help predict the 
risk of immune-mediated complications [179, 180].

In a biomarker analysis from a phase II clinical trial 
assessing ipilimumab plus EC as first-line treatment for 
ES-SCLC, autoimmune profile positivity at baseline was 
observed to be associated with improved outcomes and 
severe neurotoxicity [181]. Based on this study, Hardy-
Werbin et  al. expanded the research to include a con-
trol cohort receiving standard chemotherapy in order to 
evaluate the predictive and prognostic roles of NAAs. 

In both cohorts, the most prevalent autoantibody was 
anti-SOX1, succeeded by anti-HuD and anti-Yo. In the 
chemotherapy-alone cohort, positive NAAs at baseline 
correlated with better OS (15.1 months vs. 11.7 months, 
p = 0.032), whereas no such difference was observed in 
chemotherapy plus ipilimumab cohort (12.3  months 
vs. 17  months, p = 0.796). Furthermore, patients with 
a decrease in NAAs titer post-treatment experienced 
longer OS (18.5 months; 95%CI 15.8–21.2) compared to 
those with elevated NAAs (12.3 months; 95%CI 8.1–16.5; 
p = 0.049), indicating a correlation between antibody lev-
els and tumor burden [182]. The findings demonstrated 
the function of NAAs as prognostic markers for SCLC 
and reflections of tumor burden, yet there was no con-
clusive evidence supporting their predictive role in ICI 
response. Further research is warranted to determine 
whether neuronal antibodies can serve as reliable predic-
tors of immunotherapy efficacy and toxicity.

Inflammatory hematologic parameters
Hematologic parameters, such as the neutrophil-to-
lymphocyte ratio (NLR) and platelet-to-lymphocyte 
ratio (PLR), are described as general prognostic indica-
tors for immunotherapy in several cancer types, reflect-
ing the balance between pro-tumor inflammation and 
anti-tumor immune response [183–185]. Additionally, 
the lung immune prognostic index (LIPI), an index cal-
culated from the lactate dehydrogenase (LDH) level and 
derived neutrophils/ (leukocytes minus neutrophils) ratio 
(dNLR), is believed to be linked with ICI outcomes in 
patients with melanoma and NSCLC [186–188].

The correlation of inflammation-related biomarkers 
with clinical outcomes in SCLC has been documented. 
NLR has been proposed as a significant prognostic 
marker for ES-SCLC patients across various treatments, 
excluding immunotherapy [189]. Sonehara et  al. dem-
onstrated LIPI as a prognostic factor for SCLC patients 
[190], a conclusion echoed by Qi et  al. [191], although 
both studies involved patients who did not receive ICIs.

A retrospective study including 41 patients with SCLC 
who received anti-PD-1/PD-L1 antibodies as second- or 
later-line treatment evaluated NLR and PLR at base-
line and 6  weeks post-treatment. Patients with NLR < 5 
had significantly prolonged median PFS compared to 
those with NLR ≥ 5 at 6  weeks post treatment (HR, 
0.29; 95%CI 0.09–0.96; p = 0.04), while a similar trend 
was not observed at baseline (HR, 0.75; 95% CI 0.24–
2.26; p = 0.58), suggesting that the NLR at 6 weeks after 
start of treatment may predict early response in SCLC 
patients receiving ICIs [192]. Riemann et  al. conducted 
an exploratory prospective study, identifying a high base-
line NLR (NLR ≥ 6.1) as a risk factor for advanced SCLC 
patients’ response to chemotherapy combined with 
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immunotherapy (median OS: HR, 3.18; 95%CI 1.45–6.99; 
p = 0.004) [193]. Similarly, Stratmann et  al. proposed 
that NLR above the median was strongly correlated 
with inferior OS (3.5  months vs. 12.4  months; HR, 1.9; 
95% CI 1.2–3.2; p = 0.008) in relapsed/refractory SCLC 
patients treated with ICIs [194]. A retrospective study 
explored the prognostic effect of LIPI on advanced SCLC 
patients undergoing first-line ICIs plus chemotherapy. 
The researchers found that the pretreatment LIPI good 
(dNLR < 4.0 and LDH < 283U/L) group had superior PFS 
(median: 8.4  months vs. 4.7  months, p = 0.02) and OS 
(median: 23.8  months vs. 13.3  months, p = 0.0006) than 
the LIPI intermediate/poor group, suggesting LIPI as a 
potential predictive biomarker [195]. Additional prospec-
tive research is required to evaluate the predictive capac-
ity of these inflammatory markers for ICIs.

Blood TMB (bTMB)
tTMB has been discussed in Section “Tumor tissue-
based biomarkers” before. In contrast to tTMB, assessing 
bTMB may offer a more precise depiction of the overall 
disease characteristics, covering both primary and meta-
static sites. Additionally, obtaining bTMB is more con-
venient and less invasive [196]. Retrospective analyses of 
the OAK and POPLAR studies have showcased consist-
ency between bTMB and tTMB [197]. The correlation 
between bTMB and clinical outcomes of immunotherapy 
has been established in NSCLC [197–200]. Nevertheless, 
the predictive potential of bTMB in SCLC appears less 
promising. In the exploratory analysis of the IMpower133 
trial, using 10 and 16 mut/Mb as bTMB thresholds, it was 
observed that atezolizumab plus EC exhibited enhanced 
efficacy over placebo plus EC, independent of bTMB lev-
els [34]. Currently, there is a paucity of research explor-
ing the predictive value of bTMB in SCLC patients with 
ICI monotherapy. Therefore, further investigation is war-
ranted to elucidate the predictive role of bTMB on the 
efficacy of SCLC immunotherapy and its relationship 
with tTMB.

Conclusions
The advent of immunotherapy has shown promise in 
improving outcomes for SCLC patients, although con-
ferring benefits primarily to a small subset. Moreover, 
immunotherapy is accompanied by nearly unavoidable 
immune-related toxicities. Hence, there is a pressing clin-
ical imperative to pinpoint suitable biomarkers to predict 
immunotherapy response so as to facilitate individual-
ized treatment in SCLC. Conventional markers such as 
PD-L1 expression and TMB did not show consistent and 
robust predictive power for immunotherapy response 
in SCLC, though they played significant indicative roles 

in various cancer types. Notably, biomarkers based on 
TME, transcriptional and genetic characteristics may 
offer valuable guidance for immunotherapy. Specifically, 
TILs and RB1 mutation appear to hold  promising pre-
dictive value. Moreover, given the advantages in conveni-
ence and reproducibility, circulating biomarkers, such as 
ctDNA, hold potential as alternative predictors of thera-
peutic efficacy. However, corresponding research data 
remains limited. Ultimately, owing to the pronounced 
heterogeneity of SCLC, the predictive utility of individual 
biomarker is constrained. The exploration of composite 
predictive models, integrating multi-omics information 
encompassing genomics, transcriptomics, proteomics, 
and epigenomics, may indeed represent a future trend.
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