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Abstract 

Background COVID‑19 can cause cardiac complications and the latter are associated with poor prognosis 
and increased mortality. SARS‑CoV‑2 variants differ in their infectivity and pathogenicity, but how they affect cardio‑
myocytes (CMs) is unclear.

Methods The effects of SARS‑CoV‑2 variants were investigated using human induced pluripotent stem cell‑derived 
(hiPSC‑) CMs in vitro and Golden Syrian hamsters in vivo.

Results Different variants exhibited distinct tropism, mechanism of viral entry and pathology in the heart. Omi‑
cron BA.2 most efficiently infected and injured CMs in vitro and in vivo, and induced expression changes consist‑
ent with increased cardiac dysfunction, compared to other variants tested. Bioinformatics and upstream regulator 
analyses identified transcription factors and network predicted to control the unique transcriptome of Omicron BA.2 
infected CMs. Increased infectivity of Omicron BA.2 is attributed to its ability to infect via endocytosis, independently 
of TMPRSS2, which is absent in CMs.

Conclusions In this study, we reveal previously unknown differences in how different SARS‑CoV‑2 variants affect 
CMs. Omicron BA.2, which is generally thought to cause mild disease, can damage CMs in vitro and in vivo. Our study 
highlights the need for further investigations to define the pathogenesis of cardiac complications arising from differ‑
ent SARS‑CoV‑2 variants.
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Background
Since severe acute respiratory syndrome coronavirus 
2 (SARS-CoV-2) was first detected in Wuhan in 2019, 
multiple variants of this virus have emerged, some of 
which have been declared as variants of concern by the 
World Health Organisation due to their distinct infec-
tivity, pathogenicity and immune evasion [1]. The Delta 
and Omicron variants have caused significant waves 
of transmission in humans across the world. The Omi-
cron variant was first reported in Botswana and South 
Africa. The original Omicron BA.1 and BA.2 variants, 
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and subsequent more transmissible Omicron sub-line-
ages, have since become the predominant strains in many 
countries [2, 3]. The remarkable transmissibility of the 
Omicron variants is commonly attributed to extensive 
amino acid substitutions in the spike protein responsi-
ble for viral entry, leading to altered tropism for infection 
and immune evasion [4–7]. While earlier variants such 
as Delta require the transmembrane serine protease 2 
(TMPRSS2) for activation, Omicron infection can occur 
independently of this protein, allowing Omicron to infect 
cells that lack TMPRSS2 [4–6, 8, 9]. Thus it is speculated 
that Omicron has acquired different tissue tropism and 
altered pathogenesis compared to other variants. Much 
of the research has focused on cells in the respiratory 
system [4–6]. The infectivity and damage of different 
variants in non-respiratory cells such as cardiomyocytes 
(CMs) are not clearly understood.

Although Coronavirus disease 2019 (COVID-19) is 
primarily considered a respiratory disease, cardiovas-
cular complications are frequently detected in patients 
with COVID-19 and are associated with poor prognosis 
[10, 11]. Survivors of COVID-19 are associated with a 
substantial risk of adverse cardiovascular disorders such 
as dysrhythmias, inflammatory heart disease, ischemic 
heart disease, and heart failure long after acute infection 
[12]. While risks of cardiovascular outcomes increase 
according to the severity of acute infection, elevated risks 
were evident even among non-hospitalised patients with 
mild disease [12]. How COVID-19 damages the heart is 
not clear [13], but multiple mechanisms have been pro-
posed including hypoxia-induced cardiac damage [14], 
acute inflammation and myocarditis [15] and direct viral 
infection of CMs [16–20]. Various groups have demon-
strated that SARS-CoV-2 can infect CMs and induce 
cytopathic effects [16–23], but most utilised earlier 
strains of SARS-CoV-2 [16, 20, 21]. The effect of different 
variants on CMs remains elusive.

We hypothesise that CMs, which do not express 
TMPRSS2, are more susceptible to Omicron variants, 
which do not require this protein for infection, than the 
earlier Delta variant. Using human induced pluripo-
tent stem cells-derived cardiomyocytes (hiPSC-CMs) 
and the Golden Syrian Hamster as models, we exam-
ined the effect of SARS-CoV-2 variants in CMs. Our 
results showed that SARS-CoV-2 variants divergently 
infect and damage CMs in  vitro and in  vivo. Omicron 
BA.1 and BA.2 could efficiently infect hiPSC-CMs via 
endocytosis in a TMPRSS2-independent manner, while 
Delta minimally infected these cells. CM infection was 
associated with significant cytopathic damage and tran-
scriptomic alterations, and these were most severe in 
hiPSC-CMs infected by Omicron BA.2. Our results show 
that although Omicron BA.2 induces a mild phenotype in 

the respiratory system, it can directly injure CMs in vitro 
and in vivo.

Materials and methods
Human iPSC culture and cardiac differentiation
Human iPSC line AICS-0060-027 (Allen Cell Collection) 
was used in our experiments. The maintenance of hiPSC 
culture and cardiac differentiation were performed as 
previously described [24]. Human iPSC-CMs were main-
tained for at least 40  days before use in experiments, 
> 90% cells were positive for cardiac troponin T as con-
firmed by flow cytometry [25, 26].

Viral culture
The SARS-CoV-2 variants, Delta (GISAID: EPI_
ISL_3221329), Omicron BA.1 (GenBank: OM212472) 
and Omicron BA.2 (GISAID: EPI_ISL_9845731) were 
isolated from specimens obtained from three labora-
tory-confirmed COVID-19 patients [8]. All experiments 
involving SARS-CoV-2 viruses were conducted in a 
Biosafety Level-3 laboratory.

Infection of hiPSC‑CMs
Human iPSC-CMs were infected at a multiplicity of 
infection (MOI) of 1 unless otherwise stated. Human 
iPSC-CMs were fixed with 4% paraformaldehyde or lysed 
with Trizol reagent (ThermoFisher Scientific, Waltham, 
MA) at 24and 48  h post-infection (hpi). Infection of 
human iPSC-CMs at an MOI of 0.1 was performed for 
determination of viral replication kinetics, and an MOI 
of 1 for drug treatment assays with camostat mesylate 
(Abcam), bafilomycin A1 (MedChemExpress) and E64d 
(MedChemExpress). The culture supernatants were col-
lected at 24, 48, and 72 hpi for viral replication kinetics, 
and 48 hpi for drug treatment assays.

Hamster study
Golden Syrian hamsters (8–10 weeks, male) were anaes-
thetised with ketamine (150 mg/kg) and xylazine (10 mg/
mg) via intraperitoneal injection and then intranasally 
challenged with  104 PFU (50  µl) of viruses or with PBS 
mock control, and were sacrificed by intraperitoneal 
injection of pentobarbital at 200 mg/kg 2 or 7 days post-
infection (dpi) for expression and histopathological anal-
yses as previously described [27].

Ethics
The animal study was approved by the Committee on 
the Use of Live Animals in Teaching and Research of the 
University of Hong Kong (CULATR 5512-20).
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Statistics
GraphPad PRISM 8 (GraphPad Software, San Diego CA, 
USA) was used for statistical analysis. Data sets were ana-
lysed with Student’s T-test, one-way ANOVA or two-way 
ANOVA followed by Tukey’s multiple comparison test, 
presented as mean ± SEM (standard error of the mean). 
Differences with p-value less than 0.05 were considered 
statistically significant.

Please see Additional file  1, supplementary methods 
for detailed methodology. List of primers and antibodies 
used are shown in Additional file 2, Table S1 and Addi-
tional file 3, Table S2 respectively.

Results
Omicron BA.1 and BA.2 more readily infect hiPSC‑CMs 
than Delta
We investigated the infection and pathogenesis of 
SARS-CoV-2 using our in  vitro hiPSC-CM model [24]. 
We focused on 3 (sub)-variants, Delta, Omicron BA.1 
and BA.2, which have caused major global epidemics. 
To determine if different variants differentially infect 

hiPSC-CMs, these cells were infected with Delta, Omi-
cron BA.1 or BA.2 at an MOI of 1, and assayed for the 
presence of virally-encoded nucleocapsid  protein (NP).   
Immunofluorescence staining revealed intense NP stain-
ing in the cytoplasm in hiPSC-CMs at 24 h post infection 
(hpi) (Fig. 1A and B). At 24 hpi, Omicron BA.2 infected 
cultures contained the highest proportion of  NP+ cells 
(55.7 ± 7.3%), and this is significantly higher than those 
of Omicron BA.1 (30.4 ± 5.7%) and Delta (8.3 ± 1.6%) cul-
tures (Fig. 1A and B). Similar trends were seen at 48 hpi 
and at a different MOI of 0.1 (Additional file 4, Fig. S1).

We next evaluated viral replication by measuring infec-
tious particles in the supernatant of infected cultures. 
Omicron BA.1 and BA.2, but not Delta showed a sig-
nificant increase in viral titre over time, indicating viral 
replication (Fig.  1B). Highest viral titre was detected in 
hiPSC-CMs infected with Omicron BA.2, followed by 
BA.1 and Delta (Fig. 1B). Of note, signs of degeneration 
were evident starting from 24 to 48 hpi and were particu-
larly severe in Omicron BA.2 cultures, which may nega-
tively impact upon viral replication.
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Fig. 1 Delta, Omicron BA.1, and BA.2 differentially infect hiPSC‑CMs. Human iPSC‑CMs were infected with Delta (D), Omicron BA.1 (O‑BA.1) or BA.2 
(O‑BA.2). A The cells were infected at a multiplicity of infection (MOI) of 1 and were immunostained for virally‑encoded nucleocapsid protein (NP) 
at 24 h post infection (hpi). Graph shows the percentage of  NP+ hiPSC‑CM, n = 4. B Fluorescence images of infected hiPSC‑CMs with MOI of 1 at 24 
hpi, NP in Red, DAPI in blue. C Replication of SARS‑CoV‑2 was determined by infecting iPSC‑CMs at an MOI of 0.1. The viral titres of supernatant 
collected at 24, 48, and 72 hpi were determined by plaque assay, n = 3. Data are presented as mean ± SEM, and n refer to biological replicates. 
Statistical significance was calculated using A one‑way ANOVA or C two‑way ANOVA with Tukey’s multiple comparisons test. *p < 0.05, **p < 0.01, 
***p < 0.001, ****p < 0.0001. Scale bar = 500 μm
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Delta and Omicron infection produce mitochondrial 
and structural alterations but Omicron BA.2 induce 
the most severe phenotype
We next explored the consequences of infection using 
our hiPSC-CM model. Previous work has shown that 
SARS-CoV-2 can damage the mitochondria [28]. To 
test if the variants differentially affect mitochondrial 

function, we measured the redox potential of infected 
hiPSC-CM cultures at 48 hpi. Redox potential is pri-
marily driven by the proton gradient in the mito-
chondria and maybe used as a surrogate measure 
of mitochondrial metabolism (Fig.  2A). Omicron 
BA.2 significantly suppressed redox potential by 
63.5 ± 5.2%, while Omicron BA.1 only induced modest 
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Fig. 2 Omicron BA2 induces more severe damage in hiPSC‑CMs. Human iPSC‑CMs were infected with Delta (D), Omicron BA.1 (O‑BA.1) or BA.2 
(O‑BA.2) for 48 h at MOI of 1. A Mitochondrial redox activity was measured using the PrestoBlue assay, n = 4. B The percentage of hiPSC‑CMs 
with mitochondrial fragmentation was measured, n = 3. C Fluorescence images of hiPSC‑CMs showing MLC2V‑eGFP in green, NP in red, DAPI 
nuclear staining in blue. Representative images of 3 batches of cells are shown. D The percentage of hiPSC‑CMs with more than one nuclei, n = 4. 
E The percentage of hiPSC‑CMs with condensed nuclei, n = 3. F Cell number was normalised to that of mock infection control, n = 4. Data are 
presented as mean ± SEM, and n refer to biological replicates. Statistical significance was calculated using the one‑way ANOVA with Tukey’s multiple 
comparisons test. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. Scale bar = 25 μm
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and non-significant reduction. Delta unexpectedly 
increased redox potential.

SARS-CoV-2 has been shown to perturb mitochondrial 
quality control [29], thus we evaluated the mitochondrial 
integrity of hiPSC-CMs infected with the variants. The 
mitochondria were visualised by immunofluorescence 
staining using anti-TOM20 antibody, a commonly used 
marker of this organelle (Fig.  2B and Additional file  5, 
Fig. S2A and B). Control, mock-infected hiPSC-CMs had 
predominantly healthy, elongated mitochondria. Con-
versely, a significantly increased proportion of Omicron 
BA.1 and 2 infected cultures exhibited unhealthy, frag-
mented mitochondria (43.1 ± 3.5, 46.5 ± 3.9%) vs control 
(8.8 ± 2.8%) at 48 hpi, while Delta did not induce signifi-
cant changes.

Another prominent feature of SARS-CoV-2 infec-
tion is sarcomere breakdown, which can potentially dis-
rupt cardiac contraction [21]. Our hiPSC line express 
the sarcomeric protein MLC2V endogenously tagged to 
the enhanced green fluorescent protein (eGFP) reporter 
[24], which enables us to examine sarcomere integrity 
by monitoring MLC2V-eGFP signal (Fig.  2C). Control, 
mock infected cells had well organised sarcomeres, with 
striated MLC2V-eGFP signal localised to the A-band of 
CMs. Conversely, MLC2V-eGFP signal was disorganised 
and weaker among infected cultures irrespective of the 
variants.

SARS-CoV-2 has been shown to damage respiratory 
cells by inducing syncytia formation [5, 30]. The higher 
pathogenicity of Delta relative to Omicron is partly 
attributed to increased fusogenicity of the former [5]. To 
test if the variants can similarly induce syncytia forma-
tion in CMs, we quantified the number of multi-nucle-
ated cells after infection (Fig.  2D). Control hiPSC-CMs 
contained a small proportion of multi-nucleated cells, 
which is a normal feature of human CMs. Infection by 
Delta and Omicron BA.1 led to a significant increase in 
the proportion of multi-nucleated cells at 48 hpi, but the 
proportion of fused cells remained small (< 17%). Impor-
tantly, Omicron BA.2 did not significantly promote cell 
fusion, thus the latter could not account for the more 
severe phenotype we observed.

We next asked if the variants induced apoptosis and 
cell death differentially. Nuclear condensation was evalu-
ated as a surrogate for apoptosis and appeared as bright 
and ‘condensed’ nuclei (Fig. 2E and Additional file 5, Fig. 
S2C). Omicron BA.2, but not the other variants, sig-
nificantly increased the proportion of hiPSC-CMs with 
nuclear condensation compared to control, indicating 
an increased level of apoptosis at 48 hpi. A similar trend 
was observed with cleaved caspase 3 staining (Addi-
tional file 5, Fig. S2D). We also quantified the number of 
cells remaining after infection. Cell number was similar 

among all cultures at 24 hpi. However, BA.2 infection sig-
nificantly reduced cell number by 37.5 ± 10.9% at 48 hpi, 
again suggesting pronounced cell death and detachment 
while the cell number was not noticeably altered by the 
other variants (Fig. 2F).

Overall, our results showed that all variants could 
induce cytopathic effects in hiPSC-CMs, with Omicron 
BA.2 inducing the most severe phenotype.

Omicron BA.2 induces more severe myocardial damage 
than Delta in vivo
Having demonstrated that different variants could dif-
ferentially infect and damage CMs in vitro, we compared 
the effects of Delta, Omicron BA.1 and BA.2 infection 
on the heart in vivo. We utilised golden Syrian hamsters, 
which are susceptible to SARS-CoV-2 infection and are 
widely used as a non-lethal model to study the pathogen-
esis of COVID-19 [31–34]. Following intranasal inocu-
lation, the presence of the viral  NP could be observed 
in CMs (Fig.  3A), interstitial cells and endothelial cells 
(Additional file  6, Fig. S3A–E) in the hearts of infected 
hamsters by immunostaining at 2 dpi. To confirm cardiac 
infection, we co-stained our heart sections with antibod-
ies against NP and MLC2V, a well-established cardiac 
ventricular marker (Fig. 3A). Small clusters of  NP+ CMs 
could be detected in Omicron BA.2 infected heart. While 
the viral NP could be detected in the hearts of Delta- and 
Omicron BA.1 infected hamsters, cardiac infection was 
rare, and NP was mostly observed in non-CMs (Addi-
tional file 6, Fig. S3A–E).

Infected hamsters were then examined for signs 
of myocardial damage. Formalin-fixed and paraffin-
embedded heart tissue sections were stained with Hae-
matoxylin and Eosin (H&E) and examined under light 
microscope (Fig.  3B–E, Additional file  6, Fig. S3F). At 
2  days after Omicron BA.2 or Delta infection, myo-
cardium blood vessel congestion, interstitial edema 
and immune cell infiltrates as clusters of 3–5 cells were 
observed (Fig.  3B and C). Pericardium immune infil-
trates mixed with fluid exudates were occasionally found 
in Omicron BA.2 infected hamsters. Immunostain-
ing further confirmed the presence of  CD45+ immune 
cells in Delta and Omicron BA.2 infected hearts (Addi-
tional file 6, Fig. S3G). Various degree of CM degenera-
tive changes after Omicron BA.2 or Delta virus infection 
were found. The degenerated CMs were shown as loss of 
the cross-striation pattern and occasionally sarcoplas-
mic vacuolation which was more frequently found after 
Omicron BA. 2 infection (Fig. 3D). Necrotic changes of 
myocardium were observed in all 6 hamsters infected by 
Omicron BA.2, but it was less frequent after Delta infec-
tion at 2 dpi (2/6 hamsters) (Fig.  3E). Omicron BA.1 
infected hamster showed histopathological changes of 
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intermediate severity between Delta and Omicron BA.2 
(Additional file  6, Fig. S3F). Since Omicron BA.2 and 
Delta represents the most extreme phenotypes in  vitro 
(Fig. 2) and in vivo (Fig. 3B-E and Additional file 6, Fig. 
S3A–F), we focused our comparison on the two variants. 
The histopathological changes were scored based on how 
localised or widespread they were (score 0–3, high score 
indicates more widespread). Hamsters infected with 
Omicron BA.2 received a significantly higher score in 

CM necrosis, interstitial immune cell infiltration, blood 
vessel congestion and interstitial edema (Fig. 3F), as well 
as in the overall pathology compared to Delta (Additional 
file  6, Fig. S3H), indicating that Omicron BA.2 induced 
more widespread and severe myocardial damage than 
Delta in hamsters.

To elucidate the pathogenesis of Omicron BA.2 and 
Delta in the heart, we next evaluated the expression 
of selected genes in Omicron BA.2 and Delta infected 
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hearts at 2 dpi and 7 dpi by qRT-PCR (Fig.  4). Genes 
important for contraction (Myl2 and Myh6) and respi-
ration (Cox6a2 and Sdha) were significantly repressed 
by both Omicron BA.2 and Delta, and these changes 
persisted till 7 dpi, when virus was no longer detectable. 
We also evaluated genes important for calcium (Ata2a2), 
potassium (Kcnj2) and sodium (Scn5a) transport. While 
they were similarly reduced by Omicron BA.2 and 
Delta at 2 dpi, these changes persisted in Omicron BA.2 
infected hearts at 7 dpi, while there was a return to con-
trol levels in Delta samples.

Together, our histopathological evaluation and expres-
sion analysis indicates increased severity of Omicron 
BA.2 infection compared to Delta, which, particularly 
in the case of Omicron BA.2, persisted after viral clear-
ance. Omicron BA.2 could infect CMs in vivo and might 
directly damage the heart. Conversely, cardiac infection 
by Delta was rare, thus the cardiac pathology observed, 
albeit weaker than that of Omicron BA.2, might arise via 
indirect damage.

Omicron BA.2 does not induce more severe lung damage 
in vivo
We next evaluated the infectivity and pathology of 
Omicron BA.2 and Delta in the lung to test if the severe 
damage induced by Omicron BA.2 in the heart arise 

from more severe pulmonary injury. The plague assay 
revealed significantly lower viral titre in Omicron BA.2 
infected lung than Delta (Additional file  7, Fig. S4A), 
consistent with previous reports in the respiratory sys-
tem but contrary to our results in the heart. The lung 
sections of infected hamsters at 2 dpi showed peribron-
chiolar and perivascular infiltration, bronchiolar epi-
thelium destruction with dead cell debris mixed with 
immune cells filled the lumine (Additional file  7, Fig. 
S4B). Alveolar wall capillary congestion and immune 
cell infiltration was moderate with patches areas of 
alveolar space infiltration. The histological damage 
mostly affected larger bronchi and surrounding tissue, 
alveoli in distal lung were less involved at 2 dpi. Signs 
of bronchiolitis, alveolitis and vasculitis were scored 
based on how localised or widespread they were (score 
0–3, high score indicates more widespread) (Additional 
file 7, Fig. S4C). Hamsters infected with Omicron BA.2 
received a similar score in bronchiolitis and alveolitis, 
and significantly lower score in vasculitis compared 
with Delta (Additional file  7, Fig. S4C). In summary, 
Omicron BA.2 induced a similar or slightly milder phe-
notype than Delta in the lungs, analogous to results 
reported in patients. Therefore, the more severe dam-
age induced by Omicron BA.2 was not secondary to 
more severe infection or phenotype in the lungs.

Mo
ck D

O-
BA

.2 D

O-
BA

.2
0

1000

2000

3000

4000

5000

%
B2

m

✱✱

✱

✱

✱✱

2 DPI 7 DPI

Mo
ck D

O-
BA

.2 D

O-
BA

.2
0

10

20

30

40

%
B2

m

✱✱

✱✱

✱✱

✱✱

2 DPI 7 DPI

Mo
ck D

O-
BA

.2 D

O-
BA

.2
0

1000

2000

3000

4000

5000

%
B2

m

✱✱

✱

✱

✱✱

2 DPI 7 DPI

Mo
ck D

O-
BA

.2 D

O-
BA

.2
0

100

200

300

400

500

%
B2

m

✱

2 DPI 7 DPI

Mo
ck D

O-
BA

.2 D

O-
BA

.2
0

500

1000

1500

2000

2500

%
B2

m

✱

✱

2 DPI 7 DPI

Mo
ck D

O-
BA

.2 D

O-
BA

.2
0

1

2

3

%
B2

m

✱✱

✱

✱

2 DPI 7 DPI

Mo
ck D

O-
BA

.2 D

O-
BA

.2
0

2

4

6

%
B2

m

2 DPI 7 DPI

Myl2 Myh6 Cox6a2 Sdha

Atp2a2 Kcnj2 Scn5a

Fig. 4 Gene expression analysis of hamster heart. RNA was extracted from hearts of hamsters infected with Delta or Omicron BA.2 at 2 or 7 dpi. The 
expression of genes important for cardiac function were measured by RT‑qPCR, normalised to B2m expression. Data are presented as mean ± SEM, 
n = 3 biological replicates. Statistical analysis was performed using one‑way ANOVA followed by Dunnett’s multiple comparisons test, relative 
to mock; *p < 0.05, **p < 0.01



Page 8 of 16Mok et al. Cell & Bioscience          (2024) 14:101 

Omicron BA.2 induces expression changes indicative 
of compromised cardiac function
We have shown that the variants produce divergent 
cardiac effects in  vitro and in  vivo. To understand the 
molecular differences underlying these effects, we exam-
ined the global transcriptome of infected hiPSC-CMs by 
RNA-sequencing at 48 hpi (Figs.  5 and 6), and by RT-
qPCR of selected genes at 24 and 48 hpi (Fig. 6A and B). 

RT-qPCR analysis revealed significantly higher levels of 
virally-encoded RdRp in hiPSC-CMs infected with Omi-
cron BA.2 at 24 hpi, compared to other variants (Fig. 6A), 
in line with higher proportion of  NP+ cells detected after 
Omicron BA.2 infection (Fig. 3A).

Comparison between infected and control hiPSC-CMs 
revealed (4687, Delta), (3521, Omicron BA.1), (5829, 
Omicron BA.2) differentially expressed genes (DEGs) 
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mapped to the human transcriptome (> twofold). To 
identify molecular changes that are common or unique 
to the variants, we examined the intersection among the 
genes identified above. Venn diagram showed that 1324 
and 724 transcripts were significantly up- and down-reg-
ulated by all three variants compared to control (Fig. 5A 
and B, Additional file  8, Table  S3). Gene ontology and 
KEGG analyses showed that commonly upregulated 
genes were involved in signalling pathways important 

for inflammation and apoptosis. The most significantly 
upregulated genes involve those in the MAPK pathway 
[35]. Up-regulated genes also include components of the 
p53, TNF and NFκB pathways, which are all established 
regulators of the antiviral response. Down-regulated 
genes comprise components of cell cycle and DNA repair.

We next focused on Omicron BA.2 to understand 
why it induced a more severe phenotype in hiPSC-CMs. 
We examined genes that were uniquely and significantly 

A

24 48
100
101
102
103

104

105

106

RdRp

Hours post-infection

%
B
2M

✱ ✱

✱ ✱ ✱ ✱

B

C

24 48
0

100

200

300

TNNI3

Hours post-infection

%
B
2M

✱

✱✱

24 48
0

100

200

300

400

MYL2

Hours post-infection

%
B
2M

✱
✱

✱

24 48
0

500

1000

1500

MYH7

Hours post-infection

%
B
2M

✱✱

✱✱

24 48
0

10
20
30
40
50
60
70
80
90

SDHA

Hours post-infection
%
B
2M

✱

✱

✱

24 48
0

20

40

60

80

100

CACNA1C

Hours post-infection

%
B
2M

✱

✱✱

✱

24 48
0

5

10

15

KCNJ2

Hours post-infection

%
B
2M

✱

✱

24 48
0

500

1000

1500

ATP2A2

Hours post-infection

%
B
2M

✱✱

✱

Mock
D
O-BA.1
O-BA.2

24 48
0

20

40

60

80

SCN5A

Hours post-infection

%
B
2M

✱✱
✱

✱

✱

D

E

Expr Log Ratio

Genes in SIX1
network

-2.032

-2.158

-2.159

-2.167

-2.304

-2.316

-2.522

-2.758

-2.538

-2.715

-2.235

-3.505

-2.162

CAMK2B
SGCA
MYL4

TNNT2
MYOM2

HRC
MYMK
LDB3
CTF1

MYOM3
CAV3

MYOD1
MYBPH

Genes in MEF2C
network

-2.006

-2.030

-2.159

-2.167

-2.180

-2.304

-2.337

-2.810

-2.698

-3.505

-3.806

-5.193

MYH6
ITGB1BP2

MYL4
TNNT2
MYL7

MYOM2
GPR17
MYH7
MYL2

MYOD1
BCAS1
GJA5

Genes in
TBX5 network

-2.006

-2.030

-2.159

-2.167

-2.180

-2.698

-5.193

MYH6
ITGB1BP2

MYL4
TNNT2
MYL7
MYL2
GJA5

Regulator p-val Activation
Z-Score

Expression
(FC)

SIX1 1.96E-05 3.57 2.69
SRF 5.49E-04 -2.06 -0.01
HEY2 6.81E-04 2.44 -1.43
MEF2C 1.85E-03 -3.38 -0.51
TBX5 5.24E-03 -2.59 -1.88
HAND2 8.50E-03 -2.38 -1.33
TSC2 3.61E-02 2.94 -1.01

Fig. 6 Delta, Omicron BA.1, and BA.2 induce distinct expression changes in hiPSC‑CMs. Human iPSC‑CMs were infected with Delta (D), Omicron 
BA.1 (O‑BA.1) or BA.2 (O‑BA.2) at MOI of 1. The expression of A RdRp, B genes important for cardiac function was measured by RT‑qPCR, normalised 
to B2M expression. Data are mean ± SEM, n = 4 biological replicates. Statistical analysis was performed using one‑way ANOVA followed by Tukey’s 
multiple comparisons test; *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. Differentially expressed genes in BA.2 group were examined 
by Ingenuity pathway analysis to predict upstream regulators. C Activation z‑score indicates the activation (+) and inhibition (−) of the regulator, 
significance is indicated by the p‑value of overlap. Expression is shown as log of fold change (FC). Regulators with consistent direction of activation 
score and expression change are shown in bold; D predicted downstream genes of selected regulators and E diagram of regulatory network, Fx: 
cardiac‑related diseases and functions, Lines: direct (solid) and indirect (dotted) interactions



Page 10 of 16Mok et al. Cell & Bioscience          (2024) 14:101 

altered by Omicron BA.2 and revealed downregulation 
of genes involved in mitochondrial function and energy 
production. In particular, a subset of genes involved 
in the mitochondrial electron transport chain, oxida-
tive phosphorylation and tricarboxylic acid cycle were 
specifically suppressed by Omicron BA.2 (Fig.  5B and 
C) and this is consistent with the more severe mito-
chondrial phenotype induced by this variant (Fig.  2A 
and B). Heat map comparison further revealed greater 
suppression of contractile genes by Omicron BA.2 
(Fig. 5C). We next evaluated genes known to be impor-
tant for cardiac function by qPCR. We detected down-
regulation of SDHA, which plays a key role in oxidative 
phosphorylation in the mitochondria. (Fig.  6B). The 
levels of sarcomeric genes were more strongly reduced 
by Omicron BA.2 at 24 hpi (MYL2 and MYH7) and at 
48 hpi (MYL2, MYH7 and TNNI3). The suppression 
of contractile genes by SARS-CoV-2 have been previ-
ously reported [16]. Our results showed that this is a 
common feature among variants while effects are most 
marked in Omicron BA.2. Lastly, we evaluated genes 
important for ion transport (sodium: SCN5A; potas-
sium: KCNJ2; calcium: CACNA1C, ATP2A2). The 
expression of all four genes were significantly and most 
prominently altered by Omicron BA.2 at 24 hpi, sug-
gestive of perturbed electrophysiology.

We used Ingenuity Pathway Analysis to identify 
upstream regulators based on prior knowledge of 
expected effects between transcriptional regulators and 
their target genes, to better understand why Omicron 
BA.2 more strongly downregulated genes important for 
cardiac function. Our analysis predicted that the tran-
scription factors SIX1, TSC2 and HEY2 were uniquely 
activated in Omicron BA.2 infected cells, while SRF, 
MEF2C, TBX5, and HAND2 were uniquely suppressed 
(Fig. 6C). Specifically, they were predicted to significantly 
regulate gene expression in hiPSC-CMs infected by Omi-
cron BA.2, but not other variants. Of these regulators, 
the expression of SIX1, MEF2C, TBX5, HAND2 and 
SRF were themselves altered in a manner consistent with 
its predicted activation/suppression in Omicron BA.2 
infected hiPSC-CMs (Fig.  6C). The downstream targets 
of these regulators include genes important for contrac-
tion (TNNT2, MYL2) and  Ca2+ handling (HRC). We 
then built an integrated network to illustrate co-operative 
regulation by these factors on downstream targets and 
how they are predicted to affect cardiac function and 
cause disease (Fig. 6D and E).

In summary, Omicron BA.2 induced expression 
changes associated with compromised contractile, mito-
chondrial and electrophysiological function, compared 
with other variants, and this may be related to dysregula-
tion of a specific set of transcription factors.

Omicron infects hiPSC‑CMs via endocytosis
To elucidate the mechanism underlying differential infec-
tivity of different variants in CMs, we investigated their 
viral entry pathways. SARS-CoV-2 has been shown to 
infect via cell membrane fusion and/or endocytosis. 
While host angiotensin-converting enzyme 2 (ACE2) is 
required for viral entry, cell membrane fusion depends 
on the cleavage of the viral spike protein by serine pro-
teases such as TMPRSS2 to infect while the endocy-
tosis does not require TMPRSS2. Thus, the expression 
of ACE2 and TMPRSS2 are important determinants of 
the tropism of SARS-CoV-2 variants. We examined the 
expression of ACE2 and TMPRSS2 in hiPSC-CMs to bet-
ter understand the divergent abilities of the variants to 
infect these cells. RT-qPCR analysis revealed high levels 
of ACE2 in hiPSC-CMs. ACE2 is known to play a protec-
tive role in the cardiovascular system but its expression 
was significantly suppressed by Omicron BA.2 at 24 hpi 
and by both Omicron BA.1 and BA.2 at 48 hpi (Fig. 7A). 
TMPRSS2 mRNA and protein expression was abundant 
in Calu-3 human lung epithelial cells known to express 
this gene, but was below detection limit in hiPSC-CMs 
(Fig. 7B and C), consistent with previous reports showing 
the low/non-detectable expression of this gene in hPSC-
CMs and adult CMs [36, 37].

In the respiratory system, Omicron BA.1 and 
BA.2 have been shown to infect via endocytosis in a 
TMPRSS2-independent manner, while Delta relies on 
TMPRSS2 to facilitate cell membrane fusion [6]. To test 
if this is also true in hiPSC-CMs, we assessed the abilities 
of inhibitors of endocytosis and cell membrane fusion to 
suppress infection (Fig. 7D, Additional file 9, Fig. S5). We 
evaluated viral replication in the presence of bafilomycin 
A1, which inhibits endocytosis. Omicron BA.1 and BA.2 
both exhibited dose-dependent decreases in viral RNA 
level while Delta did not respond except at the high-
est concentration tested. E64d, which inhibits endocy-
tosis by blocking cathepsins [5], induced similar effects: 
Omicron BA.2 experienced the largest decrease in viral 
RNA level. Conversely, camostat, which inhibits serine 
proteases such as TMPRSS2 [6], minimally affected viral 
RNA level except at the maximum dose where it reduced 
the copy number of Delta, consistent with the absence 
of TMPRSS2 in hiPSC-CMs. Our results demonstrate 
that Omicron BA.1 and BA.2, but not Delta, could infect 
hiPSC-CMs via endocytosis independently of TMPRSS2, 
which was absent in these cells.

Discussion
SARS-CoV-2 variants are associated with divergent 
transmissibility and pathogenicity, and their tropism 
and cytopathic effects have been extensively investi-
gated in the respiratory system [4–6, 8, 27]. However, 
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less is known about the effect of variants in extrapul-
monary tissues such as CMs. Using hiPSC-CMs and 
Golden Syrian hamsters as models, we demonstrate 
that different variants differentially infect and dam-
age CMs. Specifically, Omicron BA.1 and BA.2 can 
efficiently infect CMs via the endocytic pathway inde-
pendently of TMPRSS2, while Delta minimally infects 
these cells. Although Omicron BA.2 is commonly con-
sidered mild, Omicron BA.2 can induce a severe phe-
notype in  vitro and in  vivo. This is the first report to 

compare Delta and Omicron variants in CMs in  vitro 
and in vivo, and demonstrate divergent effects.

Cardiac damage is a serious and potentially life-threat-
ening complication of COVID-19. Elevated levels of bio-
markers such as troponin, and myocardial dysfunction 
determined by echocardiography, are frequently detected 
in COVID-19 patients, and are associated with poor 
prognosis [38, 39]. How SARS-CoV-2 infection injures 
the heart remains elusive and direct infection of CMs 
has been proposed as one of the pathogenic mechanisms 
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[16–22]. Many groups have employed hPSC-CM mod-
els to show that SARS-CoV-2 can directly infect CMs 
in  vitro [16–21]. The presence of SARS-CoV-2 viral 
particles, RNA and protein, and signs of viral transcrip-
tion (sense and antisense SARS-CoV-2 spike RNA) have 
been reported in CMs in endomyocardial biopsy and 
autopsy samples from COVID-19 patients, along with 
evidence of cardiac damage such as sarcomere rupture 
and cell death [20, 40–43]. Conversely, others reported 
the absence of CM infection in autopsy samples by sin-
gle-cell RNA-sequencing and by dsRNA/protein analyses 
[21, 44]. Most studies involving clinical specimens use 
autopsy samples from patients long past the acute phase 
of infection. Importantly, most in vitro and clinical stud-
ies use viral isolates from early stages of the pandemic 
(Additional file 10, Table S4). To what extent direct CM 
infection contributes to cardiac damage in COVID-19 
patients remains controversial. Here we show that differ-
ent variants can divergently infect CMs and this may par-
tially underlie the discrepant results reported. Omicron 
BA.1 and BA.2 can all efficiently infect CMs via endocy-
tosis in an TMPRSS2-independent manner, while Delta 
was much less infectious. Our results are consistent with 
studies on the respiratory system, where Omicron can 
infect via endocytosis in the absence of TMPRSS2 while 
Delta relies on TMPRSS2 to infect via cell membrane 
fusion [4–6, 45]. Our in vitro results are supported by our 
hamster experiments, which demonstrate cardiac infec-
tion by Omicron BA.2 in vivo while Delta-infected CMs 
tended to be rare. Moreover, the more severe cardiac 
pathology induced by Omicron BA.2 occurred despite 
similar/milder pathology induced by this variant in the 
lung, showing that the former is not secondary to more 
severe respiratory disease. In summary, SARS-CoV-2 var-
iants can damage the heart in different ways. The Delta 
variant, which causes severe respiratory illness, may pre-
dominantly damage the heart via hypoxemic stress and 
cytokine storm. Conversely or in addition, Omicron, par-
ticularly the BA.2 variant, may directly infect CMs and 
injure the heart.

Another key finding of this report is that Omicron 
BA.2 infection can induce severe phenotype. Our in vivo 
experiments demonstrated greater pathology in the heart 
of animals infected with Omicron BA.2 compared with 
Delta. In vitro, Omicron BA.2 was the only variant to sig-
nificantly reduce redox potential (by > 64%) and induce 
cell detachment (by > 37%) at 48 hpi. We also detected 
more rapid and dramatic morphological deterioration in 
hiPSC-CMs following exposure to Omicron BA.2 com-
pared to other variants. A recent manuscript showed 
increased viral replication and fusogenicity of Delta com-
pared to Omicron BA.1 in hPSC-CMs and that Omicron 
BA.2 and BA.5 were more replicative than BA.1 [46]. 

Differences between this report and our data may relate 
to the status and age of hPSC-CMs used, which has been 
shown to affect the expression of entry factors such as 
TMPRSS2 in cells, which was not defined in this previ-
ous report. Our hPSC-CMs were cultured for > 40 days, 
and, similar to adult CMs, did not express TMPRSS2 [36, 
37, 46]. Conversely, younger, and immature hPSC-CMs 
are positive for this transcript [46]. We also extended our 
analysis to hamster in vivo model to confirm the patho-
genicity of Omicron BA2 in CMs.

Delta, Omicron BA.1 and BA.2 differ in their patho-
genicity in respiratory cells and this has been attrib-
uted to the fusogenicity of these variants, mediated by 
TMPRSS2 [5, 30, 45, 47]. Contrary to these results, we 
observed only small increases in cell fusion in hiPSC-
CMs infected by any variants compared to control, con-
sistent with the absence of TMPRSS2 in hiPSC-CMs. 
Thus fusogenicity may not play a prominent role in the 
pathogenesis of SARS-CoV-2 induced CM damage 
and does not correlate with the more severe phenotype 
induced by Omicron BA.2. Instead, we seek to eluci-
date the mechanism by which Omicron BA.2 suppresses 
genes critical to cardiac function using bioinformatics 
analysis. Our analysis predicted SIX1, MEF2C, TBX5, 
HAND2 and SRF to be key regulators of the unique tran-
scriptomic profile of Omicron BA.2 cardiac infection. 
SIX1 is an IFN stimulated transcription factor impli-
cated in SARS-CoV-2 transcription [48] and here we 
predict that it is activated by Omicron BA.2. MEF2C, 
TBX5 and HAND2 are all transcription factors known to 
regulate expression of cardiac genes. For instance, TBX5 
is critical for cardiac function [49] and its expression is 
dysregulated in the ventricular myocardium of heart fail-
ure patients [50]. Loss of TBX5 function in adult mice 
is associated with cardiac dysfunction, arrhythmias and 
sudden cardiac death [50]. Therefore its suppression by 
Omicron BA.2 may similarly damage CMs. Our analysis 
uncovered a previously unknown regulatory network that 
may contribute to altered cardiac gene expression and 
phenotype induced by Omicron BA.2.

Omicron is considered a ‘mild’ variant, with lower 
disease severity compared to previous variants such as 
Delta based on rate of hospitalisation and death [8, 51–
53]. Delta is known to induce severe respiratory illness 
and inflammation, whose effects cannot be modelled 
using our in  vitro CM model. Furthermore, we utilised 
a Golden Syrian Hamster model, which is a non-lethal 
COVID-19 model known to develop less severe disease 
than in humans, thus systemic cardiac damage induced 
by Delta might be underestimated. Due to these limita-
tions, we do not claim that Omicron can induce more 
severe cardiac illness in patients. We do, however, con-
clude that Omicron BA.2 infection can damage CMs via 
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different mechanisms compared with Delta, and pro-
posed contributors to these effects in terms of dysregula-
tion of transcription factors and different entry pathways. 
The Omicron is highly infectious and a sizable number of 
patients, particularly vulnerable patients such the elderly, 
the unvaccinated, and individuals with co-morbidities, 
are at risk of severe disease. A recent echocardiographic 
study showed that right ventricular function is impaired 
to a lower extent among Omicron patients compared 
with those infected with the wild-type variant and that 
this is potentially related to the attenuated pulmonary 
parenchymal and/or vascular disease in the former [54]. 
Yet, another recent study revealed broadly similar excess 
mortality attributed to acute myocardial infarction dur-
ing the Omicron surge compared to early stages of the 
pandemic [55]. Indeed, an examination of heart trans-
plant recipients demonstrated higher disease severity 
among Omicron compared to Delta patients [56]. Larger 
clinical studies are needed to compare the pathogen-
esis and sequelae of cardiac injury induced by different 
variants.

Human iPSC-CMs have been used in numerous pub-
lications to examine SARS-CoV-2 infection and its con-
sequences [16–21, 57]. Human iPSC-CMs have been 
shown to be developmentally immature and resemble 
embryonic/fetal CMs, thus we subjected our cells to 
metabolic selection to promote more adult-like traits [24, 
58–61]. In spite of this, it is possible that our hiPSC-CMs 
may not fully recapitulate the adult cardiac phenotype, 
and is a limitation of our in vitro study.

Conclusions
In summary, we demonstrate that different variants can 
divergently infect and damage CMs. Specifically, we show 
that Omicron BA.2, which has infected large numbers of 
patients in much of the world, can infect CMs to cause 
cytopathic effects in  vitro and in  vivo despite milder 
pathology in the lung. Adult CMs have limited ability 
to regenerate, thus damage caused by viral infection can 
potentially cause irreparable harm to patients. Further 
clinical studies are warranted to study the pathogenic 
mechanisms of cardiac damage induced by different vari-
ants and to better monitor the long-term cardiovascular 
sequelae of COVID-19.
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