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Introduction
Cellular signal transduction and physiological function 
regulation in living organisms require special messen-
ger networks in which steroid materials, including sex 
hormones, thyroid hormones, glucocorticoids, etc., are 
critical intermediates [1]. Steroids serve as messengers 
in gene transcriptional regulation, which requires the 
cooperation of their nuclear receptors (NRs) and coacti-
vators; NRs, such as estrogen receptor (ERα/β), gluco-
corticoid (GR), androgen receptor (AR), and thyroid 
receptor (TR), are ligand-inducible transcription factors, 
and their transcriptional activity requires the collabora-
tion of corresponding coactivators [1, 2]. Upon activa-
tion, NRs undergo dimerization, subsequently recruiting 
corresponding coactivators via their activation function 
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Abstract
Steroid receptor coactivator-1 (SRC-1, also known as NCOA1) frequently functions as a transcriptional coactivator by 
directly binding to transcription factors and recruiting to the target gene promoters to promote gene transcription 
by increasing chromatin accessibility and promoting the formation of transcriptional complexes. In recent 
decades, various biological and pathological functions of SRC-1 have been reported, especially in the context of 
tumorigenesis. SRC-1 is a facilitator of the progression of multiple cancers, including breast cancer, prostate cancer, 
gastrointestinal cancer, neurological cancer, and female genital system cancer. The emerging multiorgan oncogenic 
role of SRC-1 is still being studied and may not be limited to only steroid hormone-producing tissues. Growing 
evidence suggests that SRC-1 promotes target gene expression by directly binding to transcription factors, 
which may constitute a novel coactivation pattern independent of AR or ER. In addition, the antitumour effect of 
pharmacological inhibition of SRC-1 with agents including various small molecules or naturally active compounds 
has been reported, but their practical application in clinical cancer therapy is very limited. For this review, we 
gathered typical evidence on the oncogenic role of SRC-1, highlighted its major collaborators and regulatory 
genes, and mapped the potential mechanisms by which SRC-1 promotes primary tumour progression.
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2 (AF2) domains, and the AF2 domain links the LXXLL 
motifs in the nuclear receptor interaction domain (NRID) 
of coactivators [3].

Steroid receptor coactivators (SRCs; also known as 
nuclear receptor coactivators, NCOAs), a member of the 
p160 family, are crucial for increasing the transcriptional 
activity of the steroid-NR axis. The SRC gene family con-
tains three homologues, namely, SRC-1 (NCOA1), SRC-2 
(NCOA2/TIF2), and SRC-3 (NCOA3/AIB1), which 
encode proteins that are similar in molecular weight 
(approximately 160  kDa). Their amino acid sequences 
and protein domains are also similar. Structurally, the 
SRC members share three functional domains with high 
degrees of similarity, including an N-terminal basic 
helix-loop-helix/Per/ARNT/Sim domain (bHLH-PAS), 

an NRID and two C-terminal activation domains (AD1 
and AD2) (Fig.  1A) [4, 5]. The bHLH-PAS domains of 
the three SRC members are slightly different but highly 
conserved and contain a bipartite nuclear localization 
sequence (NLS). The NRID contains 2 or 3 LXXLL motifs 
(X represents any amino acid) that are responsible for 
direct interactions with NRs, and the overall distribution 
of these particular motifs is distinct. The AD is primar-
ily responsible for promoting the formation of transcrip-
tional complexes by recruiting secondary coregulatory 
factors, including histone acetyltransferase p300, coin-
tegrators such as CREB-binding protein (CBP), protein 
arginine N-methyltransferase 1 (PRMT1), and coactiva-
tor-associated arginine methyltransferase 1 (CARM1) 
(Fig.  1B) [5]. The CBP/p300 complex recruited by AD1 

Fig. 1 Structures and functional regions of steroid receptor coactivators. (A) The domain structure diagram of steroid receptor coactivators. (B) The func-
tional regions of steroid receptor coactivators. Three homologous SRC proteins (i.e., SRC-1, SRC-2, and SRC-3) have similar molecular weights and protein 
domains, including bHLH-PAS, NRID AD1, and AD2 domains. The LXXLL motifs located on the NRID are responsible for direct interaction with NRs, and 
the ADs are primarily responsible for promoting the formation of transcriptional complexes by recruiting secondary coregulatory factors, including p300, 
CBP, PRMT1, and CARM1
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is crucial for SRC-mediated transcriptional activation, 
and the corresponding SRC domain is called the CBP 
interacting domain (CID). PRMT1 and CARM1 his-
tone methyltransferases can be recruited by AD2, which 
is located at the C-terminus of SRCs. Previous studies 
revealed that an intrinsic histone acetyltransferase (HAT) 
core is also present in this region [6, 7], but the evidence 
related to the HAT activity of SRCs is still insufficient.

The coactivator role of SRC members is essential for 
the full transcriptional activation of the steroid recep-
tor superfamily. In 1995, Oñate and colleagues first dis-
covered that SRC-1 could interact with progesterone 
receptor (PR) and promote its transcriptional activation 
[8]; subsequently, SRC-2 [9] and SRC-3 [7, 10–13] were 
identified. In the past 30 years, more than 300 transcrip-
tional coactivators have been reported [14], and as an 
early identified coactivator, SRC-1 has been widely shown 
to play roles in various biological and pathological pro-
cesses, including lipid metabolism and transport, neu-
ronal synaptic plasticity, energy homeostasis, vascular 
endothelial injury, inflammation, diabetes progression, 
and tumorigenesis. Nonetheless, new information on 
the oncogenic role of SRC-1 has emerged in recent years. 
Here, we mainly review the notable role of SRC-1 in pro-
moting tumour progression, particularly, its coactivation 
partners in several tissues and pathological states.

SRC-1 serves as a transcriptional coactivator to 
promote gene transcription
The prevailing view is that steroid hormones require 
corresponding receptors and coactivators to transmit 
activation signals to regulate physiological functions, 
and SRC-1 is a crucial regulator. The classical view is 
that SRC-1 serves as a coactivator in a nuclear receptor-
dependent non-DNA binding pattern in which SRC-1 
induces structural changes in steroid receptors (or 
nuclear receptors) that are critical for transcriptional 
activation (Fig.  2, upper part). The bHLH/PAS domain 
located at the N-terminus contains signalling peptides 
that guide the nuclear transport of SRC-1, and this region 
also contains a binding site for the SWI/SNF complex, 
which is crucial for an open chromatin structure [15]. 
The NRID is responsible for identifying and binding NR 
and transmitting transcriptional activation signals, while 
AD1 or AD2 located at the C-terminus can recruit his-
tone acetyltransferases (e.g., CBP/P300) or methylases 
(e.g., PRMT1 and CARM1) to form a transcriptional 
complex. As previously mentioned, histone acetylation 
by CBP/P300 or histone arginine methylation by PRMT1 
and CARM1 both increase transcriptional activity [5], 
which may be the core mechanism of SRC-1 coactivation. 
Moreover, an emerging pattern in which SRC-1 syner-
gistically promotes target gene transcription by directly 

binding to transcription factors has been proposed and 
supported by increasing evidence (Fig. 2, lower part) [16].

SRC-1 has diverse biological functions
The role of SRC-1 in promoting various biological and 
pathological processes, including metabolic homeostasis, 
food intake, learning/memory, and parturition, has been 
reported, so its nontumorigenic roles were reviewed 
(Fig. 3).

SRC-1 modulates metabolic homeostasis
Peroxisome proliferator-activated receptors (PPARs) are 
key participants in lipid metabolic homeostasis. SRC-1 
is recognized as a coactivator of PPARγ that enhances 
ligand-dependent transcription to participate in the 
regulation of genes involved in lipid metabolism and 
adipocyte differentiation [17, 18], and the ligand bind-
ing domain (LBD) of PPARγ is critical for SRC-1 recruit-
ment [19, 20]. However, the relationship between SRC-1 
and PPARα remains controversial. Previous studies have 
indicated that SRC-1 is not essential for PPARα-regulated 
gene expression [21], but evidence from a dynamic fluo-
rescence tracking system suggests that SRC-1 can bind to 
PPARα [22]. The metabolic balance of lipids is dynami-
cally regulated by the SRC-2/SRC-1 ratio, which is highly 
sensitive to high-fat diets [23]. Genetic deletion of SRC-2 
reduced the activity of PPARγ, suppressed white adi-
pose accumulation and accelerated the thermogenesis of 
PGC-1 in brown adipose tissue by promoting the interac-
tion between SRC-1 and PGC-1α, whereas genetic dele-
tion of SRC-1 triggered energy metabolic dysfunction 
and obesity [23]. Another study indicated that knock-
down of SRC-1 in the nucleus solitary tract (NTS) of 
rats suppressed the 17β-estradiol-induced anorectic 
action, which in turn increased the animals’ food intake 
and body weight [24]. Apolipoprotein A-IV (apoA-IV), 
which is crucial for fatty acid transport, can be upregu-
lated by 17β-estradiol-nuclear receptor signalling, in 
which SRC-1 serves as an indispensable coactivator that 
increases transcriptional activity [24]. They also found 
that high-fat feeding could downregulate the expression 
of SRC-1 in ovariectomized rats [24], whereas Yamamuro 
et al. reported that the expression of multiple adipogenic 
genes, including SRC-1 and SRC-2, was attenuated in 
the adipose tissue of fasted mice [25]. SRC-1 promotes 
hepatic steatosis via NR2F6. SRC-1 can be recruited to 
the promoter of the fatty acid translocase CD36 when 
NR2F6 binds this promoter, so these factors jointly pro-
mote its histone acetylation to increase its transcriptional 
activity [26]. Furthermore, SRC-1 is considered to be an 
acetyltransferase and is involved in obesity-related vas-
cular disease progression. The adaptor p66Shc, which is 
part of a complex mitochondrial system, regulates endog-
enous ROS generation to drive vascular injury, and the 
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histone methyltransferase SUV39H1 orchestrates the 
recruitment of JMJD2C and SRC-1 to the promoter of the 
p66Shc adaptor, resulting in decreased H3K9me2/3 levels 
and elevated H3K9ac levels, which promote gene tran-
scription [27]. However, SRC-1 may not have acetyltrans-
ferase activity, and its binding to the CBP/p300 complex 
is key for this activity [5].

SRC-1 is involved in amino acid metabolic homeo-
stasis and gluconeogenesis, and the dysregulation of 
these processes is a risk factor for chronic diseases such 
as diabetes and cancer. SRC-1 can modulate tyrosine 
biosynthesis in the liver by regulating the transcrip-
tional activity of tyrosine aminotransferase (TAT) [28]. 

Moreover, SRC-1-deficient mice exhibit overall impair-
ment of amino acid metabolism due to low TAT levels, as 
well as hyperthyroxinemia and corneal alterations, which 
are two clinical features of human TAT deficiency syn-
drome [28]. SRC-1 is an essential coordinator of hepatic 
glucose production, and SRC-1-deficient mice develop 
hypoglycaemia due to insufficient hepatic glucose pro-
duction; moreover, conditional expression of SRC-1 in 
the liver rescues the blood glucose levels in mice [29]. 
Pyruvate carboxylase is a catalytic enzyme cruvial for the 
initiation of gluconeogenesis, and SRC-1 can transacti-
vate pyruvate carboxylase by increasing the expression of 
C/EBPα [29]. In addition, SRC-1 serves as a regulator of 

Fig. 2 The pattern of SRC-1 coactivation. The classical pattern is that SRC-1 serves as a coactivator in a nuclear receptor-dependent, non-DNA binding 
manner; SRC-1 induces structural changes in nuclear receptors and recruits CBP/P300, PRMT1, and CARM1 to form a transcriptional complex. The emerg-
ing model is that SRC-1 directly binds to TFs and co-recruits to the target gene promoter to promote target gene transcription
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both glucose and NAD+/NADH homeostasis, thus par-
ticipating in the Warburg effect in tumour cells [30]. In 
the absence of glucose, SRC-1 can be stabilized by the 
26 S proteasome and promotes the conversion of NADH 
to NAH+ by upregulating the expression of complex I of 
the mitochondrial electron transport chain [30].

SRC-1 plays a key role in synaptic plasticity and energy 
homeostasis in neurons
Recent reports suggest that SRC-1 can also indirectly 
modulate energy metabolism by affecting food intake. 
Leptin is a signal of nutritional deficiency, and decreas-
ing leptin levels trigger a range of responses, including 

restoring energy homeostasis by increasing food intake 
and reducing energy expenditure [31]. During eating, 
an increase in leptin levels triggers neuronal activation 
and expression of the anorexic peptide Pomc, leading to 
a decrease in food intake. Genetic deletion of SRC-1 in 
mice attenuated leptin-mediated STAT3 depolarization 
and Pomc expression, which promoted food intake and 
high-fat diet-induced obesity in mice [31, 32].

In addition, SRC-1 plays a key role in regulating hippo-
campal synaptic plasticity and spatial learning and mem-
ory [33, 34]. In the brain, SRC-1 functions to regulate 
ER-mediated PR gene induction and hormone-depen-
dent behaviour, and there are sex-specific differences in 

Fig. 3 The role of SRC-1 in promoting various biological and pathological processes. SRC-1 has various biological functions and serves as a coactivator 
for various genes that regulatemetabolic homeostasis, food intake, learning/memory, parturition, and tumorigenesis. SRC-1 is recognized as a coactivator 
of PPARγ, NR2F6, PGC-1α, and acetyltransferase and participates in the regulation of genes involved in lipid metabolism and adipocyte differentiation. 
SRC-1 transactivates pyruvate carboxylase by elevating the expression of C/EBPα and regulates both glucose and NAD+/NADH homeostasis, thus par-
ticipating in the Warburg effect. SRC-1 promotes leptin-mediated STAT3 depolarization and Pomc expression, participating in regulating food intake. In 
the brain, SRC-1 regulates ER-mediated induction of PR-related gene expression and plays a key role in regulating hippocampal synaptic plasticity and 
spatial learning and memory. Additionally, SRC-1 promotes parturition by regulating the expression of several genes, including SP-A, partner genes of 
NF-κb activation, PGF2α, and Il13ra2
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its expression in specific regions of the brain [35–38]. 
The age-related differences in SRC-1 expression are also 
noteworthy, as the level of SRC-1 significantly decreases 
with age in various brain functional regions, including 
those related to motor centre regulation, learning and 
memory, and in neural stem cells [39]. Aromatase plays 
an important role in the regulation of hippocampus-
related learning, memory, and cognitive functions by 
catalysing the conversion of androgen to estrogen in the 
hippocampus. It has been reported that the aromatase 
inhibitor letrozole can inhibit the expression of SRC-1 in 
functional areas of the brain, which may induce neuro-
logical disorders [40]; in addition, SRC-1 may modulate 
hippocampal synaptic plasticity by regulating synaptic 
protein PSD-95 expression and estrogen signalling [41]. 
Estrogen regulates actin polymerization and spatial 
memory in the hippocampus by activating estrogen 
receptor α/β and SRC-1-mammalian target of rapamy-
cin complex 2 (mTORC2) signalling [42–44]. Another 
study showed that letrozole regulated the F/G-actin ratio 
in the hippocampus of mice by inhibiting the expres-
sion of SRC-1, and this effect was reversed by estrogens 
[45]. These results suggest that SRC-1 plays an important 
role in regulating actin cytoskeleton dynamics and local 
estrogens-mediated synaptic plasticity in the hippocam-
pus. Moreover, SRC-1 expression was significantly down-
regulated in the hippocampus of mice who underwent 
orchiectomy (ORX), and this effect could be reversed by 
testosterone in a dose-dependent manner [46]. However, 
the effect of testosterone on cognitive maintenance seems 
to be insignificant in comparison to the effect of local 
estrogens [47]. Undoubtedly, SRC-1 is closely related to 
cognition and is a major risk factor for Alzheimer’s dis-
ease (AD).

SRC-1 contributes to the onset of mammalian parturition
Surfactant protein-A (SP-A), which is secreted into 
amniotic fluid by the foetal lung, is considered the initia-
tion signal of parturition, and SRC-1/2 can promote the 
initiation of parturition by upregulating SP-A expression 
[48, 49]. Parturition was severely delayed in heterozygous 
maternal mice harbouring SRC-1/-2-deficient embryos, 
and the expression of key genes involved in parturition, 
including the partner genes of NF-κb activation, PGF2α, 
and contraction-related genes, which are associated with 
impaired luteolysis and high circulating progesterone, 
was reduced in the myometrium of the maternal uterus 
[49]. Clinically, the expression of SRC-1 in the foetal 
membranes of patients predelivery was greater than 
that of patients postdelivery [50]. Progesterone partici-
pates in the regulation of early pregnancy by inhibiting 
estrogen-induced cell proliferation and inducing stromal 
cell differentiation during decidualization to promote 
endometrial receptivity; interleukin-13 receptor subunit 

alpha-2 (Il13ra2) is the executor of this process and is 
regulated by SRC-1 [51].

SRC-1 can also participate in the dynamic regulation 
of blood pressure. The evidence from the Framingham 
Heart Study showed that a single-nucleotide polymor-
phism of the SRC-1 gene (rs1550383) is associated with 
elevated diastolic blood pressure in women but not in 
men [52]. Compared with wild-type littermates, female 
mice with genetic deletion of SRC-1 exhibited increased 
blood pressure and aortic stiffness, and SRC-1-deficient 
mice exhibited increased cardiac energy expenditure 
[53]. Hyperglycaemia-induced endothelial cell injury is 
the major trigger for the development of cardiovascular 
disease, and SRCs are related to the regulation of vascular 
homeostasis; SRC-1 is expressed in endothelial cells, vas-
cular smooth muscle cells, and neointimal cells and pro-
motes vascular protection by inhibiting the formation of 
neointima after vascular injury [54, 55].

SRC-1 is a crucial promoter of the progression of 
various tumours
The carcinogenic role of SRC-1 was discovered after its 
identification in 1995. Initially, SRC-1 was found to serve 
as a predictor of tamoxifen response in recurrent breast 
cancer patients [56]; it is an independent predictor of 
reduced disease-free survival (DFS) [57]. Its novel role 
in promoting the progression and metastasis of various 
tumours, particularly tumours of the reproductive and 
urinary systems, including tumours of the breast, pros-
tate, uterus, and ovary, has since been reported (Table 1). 
These organs, which contain abundant steroid hormones, 
are the epicentre of SRC-1 dysregulation, as secreted sex 
hormones or glucocorticoids regulate transcription and 
physiological function through their nuclear receptors 
and rely on the assistance of SRC-1.

Breast cancer
Acquired resistance to endocrine therapy in breast can-
cer is a major clinical challenge, where the involvement 
of SRC-1 in estrogen receptor (ER)-mediated resistance 
is critical. ER is an important regulator of mammary epi-
thelial growth and differentiation, and its transactivation 
is dependent on leucine-rich motifs, which constitute the 
ligand-regulated binding site of SRC-1. ER contains α and 
β subunits that can bind to estrogen and act as homodi-
mers or heterodimers to bind to the estrogen responsive 
element (ERE) of the target gene; SRC-1 and SRC-3 can 
be heterodimerized and recruited to the promoter of 
genes containing classical EREs [58].

The ER can interact with SRC-1 to modulate the expres-
sion of genes central to breast cancer progression, but the 
expression of its beta subunit is negatively correlated with 
that of SRC-1 [59]. Cyclin D1 can act as a bridging factor 
between the ER and SRC-1, recruiting SRC-1 to the ER in 
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the absence of ligands to promote breast cancer progres-
sion [60]. However, ER-dependent transcription is not 
limited to the regulation of SRC-1; for example, c-Myc 
expression is blocked in SRC-1-deficient MCF7 cells 
but can be rescued with estrogen stimulation [61]. Some 
studies also indicate that the resistance of breast cancer to 
endocrine therapy is due to an increase in cell plasticity, 
which leads to the emergence of hormone-independent 
tumours. SRC-1 can drive tumour adaptation by interact-
ing with developmental proteins and other nonsteroidal 
transcription factors [62]. HOXC11 is a regulator of cel-
lular development, and SRC-1 cooperates with HOXC11 
to promote the expression of the calcium-binding protein 

S100beta in endocrine-resistant breast cancer cells [63]. 
ADAM22, which is highly expressed in endocrine-resis-
tant tumours, plays a critical role in the SRC-1-mediated 
transition of steroid-responsive tumours to a steroid-
resistant state [62]. Another study demonstrated that 
SRC-1 modulates endocrine-resistant breast cancer pro-
gression through an epigenetic reprogramming pathway, 
and a set of prodifferentiation genes associated with poor 
clinical outcome (i.e., NR2F2, NTRK2, SETBP1, CTDP1, 
and POU3F2) were found to be hypermethylated by 
SRC-1 combined with a complex of methylators [64]. In 
addition, SRC-1 has been reported to mediate endocrine 
resistance independent of ER receptors; in this context, 

Table 1 The novel role of SRC-1 in promoting various tumor progression
Tissue Collaborator Regulated genes Transcriptional potential Ref
Breast SRC-3 — Interacting with ER to regulate the core genes of breast cancer progression  [58, 59]

Cyclin D1 — Cyclin D1 serves as a bridging factor between ER and SRC-1  [60]
Ets2 c-Myc, MMP9, HER2, 

CSF-1
Interacting with Ets2 to upregulate target gene expression  [61, 

68–70]
HOXC11 S100beta Collaborate with HOXC11 to promote S100beta expression  [63]
— ADAM22 Promoting steroid resistance by upregulating ADAM22 expression  [62]
Methylation fac-
tor complex

NR2F2, NTRK2, SETBP1, 
CTDP1, POU3F2

Promoting endocrine resistance through an epigenetics reprogramming 
pathway

 [64]

STAT1 SMAD2, ASCL1, NFIA, 
E2F7

Binding with STAT1 to promote its transcriptional activity  [65]

Ets1/2 HER2 Ets1/2 upregulates HER2 expression by recruiting SRC-1  [67].
c-Fos CSF-1 SRC-1 and c-Fos can be recruited to the functional AP-1 site in the CSF-1 

promoter
 [71]

c-Fos, HIF1α VEGFa Combining and recruiting the AP-1 site or HIF1α-binding element of VEGFa 
promoter

 [72]

PEA3 Twist, N-cadherin, 
vimentin

Collaborating with PEA3 to promote Twist expression to regulate target genes  [73]

AP-1 ITGA5 Collaborating with AP-1 to promote transcriptional activity of ITGA5  [74]
STAT3 Leptin mediated genes Interacting with the STAT3 activation domain to enhance its signal transduction  [75].

Prostate 
Cancer

AR, Androgen, 
IL-6, MAPK

AR-regulated genes Enhancing the transactivation of AR  
[76–78]

AR PSA Promoting the proliferation of prostate cancer cells by regulating PSA  [79, 80]
RORγ AR-regulated genes Be recruited to AR-ROR response elements by RORγ  [82]

Endometrial 
cancer

— Mig-6 SRC-1 is reduced in endometrial cancer tissue  [97, 98]

Ovarian 
cancer

ERα, Estrogens c-Myc c-Myc is downregulated in SRC-1-deficient cells  [99]

Meningioma Progesterone, PR PR-regulated genes SRC-1 is expressed in the tissues of meningioma patients  [88]
Astrocytoma Progesterone, PR VEGF VEGF downregulated in SRC-1 deficient cells  [89, 

91].
Estradiol, ERα — Promoting estradiol induced astrocytoma cell growth  [92]

Glioblastoma bFGF, PEA3 VEGF, MMP9 Enhancing bFGF or PEA3 mediated angiogenesis  [93]
XIST/mi-152 KLF4 Promoting KLF4 expression and cell glioma of glioblastoma  [94]

Liver cancer β-catenin c-Myc, PCNA Interacting with β-catenin directly to enhance Wnt/β-catenin signaling  [83, 84]
miR-105-1 — miR-105-1 negatively regulates the mRNA level of SRC-1  [85]

Colorectal 
cancer

miR-4443 — miR-4443 negatively regulates the mRNA level of SRC-1  [86]
GLI2 cyclin D1, Bcl-2, Slug, 

N-cadherin, Vimentin
Enhancing Hedgehog signaling by directly binding to the zinc finger domain 
of GLI2

 [16]

Melanoma HOXC11 S100beta Collaborating with HOXC11 to promote S100beta expression  [100]
Thyroid 
cancer

NF-κB VEGFC Combining with NF-κB to form a coactivating complex that directly promotes 
VEGFC transcription

 [101, 
102]
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STAT1 acts a novel transcription factor partner of SRC-
1. SRC-1 directly binds to STAT1 to initiate a transcrip-
tional cascade and promote the expression of a set of 
central endocrine resistance-related genes, including 
SMAD2, ASCL1, NFIA, and E2F7 [65].

It has been reported that SRC-1 is significantly asso-
ciated with disease recurrence in HER2-positive breast 
cancer patients [66]. Ets1 and Ets2, which are mitogen-
activated protein kinase-activated transcription factors, 
bind to DNA response elements and recruit SRC-1 to 
recruit the transcription factor-DNA complex to upreg-
ulate HER2 protein expression [67]. The growth factor 
EGF induces transcription of Ets2-initiating oncogenes 
in a SRC-1-dependent manner; in this process, SRC-1 
directly interacts with Ets2 to upregulate the expression 
of c-Myc and MMP9 [68, 69]. MMTV-polyoma middle 
T antigen (PyMT) mice, which spontaneously develop 
breast tumours, were used to investigate the role of 
SRC-1 on tumour viability in vivo. One study showed that 
SRC-1 did not affect the proliferation of primary breast 
cancer cells but significantly promoted their invasion 
and lung metastasis [70]. SRC-1 may contribute to the 
metastatic activity of breast cancer by promoting Ets2-
mediated HER2 expression and promoting the recruit-
ment of macrophages to tumour sites by upregulating 
the expression of colony-stimulating factor 1 (CSF-1) 
[70]. The underlying mechanism was subsequently eluci-
dated. SRC-1 and c-Fos can be recruited to a functional 
AP-1 site in the CSF-1 promoter, directly upregulating 
CSF-1 levels [71]. Angiogenesis is critical in the progres-
sion of breast cancer, and knockout of SRC-1 reduces 
the microvessel density (MVD) of breast cancer cells and 
inhibits angiogenesis in xenograft tumours, and these 
effects can be rescued by VEGFa treatment [72]. Mecha-
nistically, SRC-1 promotes VEGFa transcription by asso-
ciating with both c-Fos and HIF1α to recruit to the AP-1 
site or HIF1α-binding element of the VEGFa promoter, 
respectively [72].

Furthermore, genetic deletion of SRC-1 can inhibit the 
migration and invasion of breast cancer cells by down-
regulating the expression of N-cadherin and vimentin 
and maintaining E-cadherin levels, and SRC-1 partici-
pates in the regulation of the above target proteins by 
cooperating with PEA3 to promote Twist expression 
[73]. Another possibility for metastatic breast cancer is 
that SRC-1 deficiency promotes the adhesion and migra-
tion of breast cancer cells to fibronectin, and further 
decreases the time needed for the degradation and reor-
ganization of adhesions [74]. Integrin α5 (ITGA5) medi-
ates cell adhesion and migration by upregulating paxillin, 
focal adhesion kinase, Rac1, and Erk1/2 expression or 
phosphorylation; SRC-1 can promote the transcriptional 
activity of the ITGA5 promoter by cooperating with the 
transcription factor AP-1 [74]. Leptin, derived from fat 

cells, stimulates the growth of breast epithelial cells and 
is a risk factor for breast cancer, especially in obese post-
menopausal women. Leptin promotes breast cancer cell 
proliferation by activating STAT3; in this process, SRC-1 
can be recruited to the STAT3 promoter and interact 
with its activation domain to enhance STAT3 signalling 
[75].

In conclusion, breast cancer is the primary cancer in 
which SRC-1 promotes progression. To better under-
stand the mechanism by which SRC-1 promotes the pro-
gression of breast cancer, an overview map supported by 
existing evidence is presented (Fig. 4). Briefly, SRC-1 pro-
motes the transcriptional activityof several transcription 
factors, including HOXC11, PEA3, AP-1, HIF1α, c-FOS, 
Ets1/2, and STAT1/3, in breast cancer. Their target genes 
have various forms of biological activity, such as promot-
ing tumour proliferation, metastasis, or angiogenesis.

Prostate cancer
SRC-1 has the second-most potent effect in prostate 
cancer, as the prostate is rich in endogenous androgen, 
which regulates various physiological activities through 
the androgen receptor (AR), and SRC-1 is a crucial medi-
ated of these effects. SRC-1 can functionally promote 
the transactivation of AR and participate in the ligand-
independent activation of AR by IL-6 in prostate cancer 
cells [76, 77]. IL-6 mediates AR-independent activation 
in prostate cancer cells in the absence of androgens, and 
MAPK involvement is necessary. IL-6 promotes SRC-1 
phosphorylation and nuclear transport by stimulating 
the MAPK pathway [77] (Fig.  5). Androgens in the epi-
thelium and stroma drive the functional differentiation 
of the prostate epithelium as the critical process in the 
growth and development of prostate epithelial cells [78]. 
Ligands induce the binding of AR and SRC-1 to DNA 
elements in stromal cells, while epithelial cells promote 
this interaction between AR and SRC-1 in an androgen-
dependent manner [78]. SRC-1 changes were found to be 
slight in normal prostate and prostate cancer tissues, but 
the increased expression of SRC-1 in tumour tissues was 
associated with the clinical and pathological variables of 
increased tumour invasiveness [79]. However, another 
study revealed that the expression of SRC-1 was signifi-
cantly greater in primary prostate cancer tissue than in 
normal prostate tissue [80]. These distinct results may be 
related to tumour heterogeneity.

Furthermore, downregulation of SRC-1 expres-
sion inhibited the growth of prostate cancer cells and 
decreased the transcriptional activity of prostate-specific 
antigen (PSA), an AR target gene [79] (Fig. 5). However, 
some researchers believe that SRC-1 is not required 
for murine prostate carcinogenesis. They found that 
the expression of SRC-1 was relatively constant in mice 
with spontaneous prostate cancer, while that of SRC-3 
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was significantly increased; moreover, SRC-3 is over-
expressed during prostate tumour progression in SRC-
1-deficient mice, so SRC-3 may compensate for the loss 
of SRC-1 function [81]. Retinoic acid receptor-related 
orphan receptor γ (RORγ) is overexpressed and drives 
AR expression in castration-resistant prostate can-
cer (CRPC). RORγ can recruit SRC-1 to the AR-ROR 
response element to promote the transcriptional activa-
tion of AR-regulated genes [82] (Fig. 5).

Gastrointestinal cancer
The tumorigenic role of SRC-1 in human hepatocellular 
carcinoma (HCC) and colorectal cancer (CRC) has been 
demonstrated [16, 83]. SRC-1 was reported to be highly 
expressed in HCC tissue, with a positive rate of 62.5%, 
and knocking down SRC-1 can inhibit the proliferation of 
liver cancer cells and the growth of xenograft tumours in 
mice [83]. Activated Wnt/β-catenin signalling is critical 
and can be enhanced by SRC-1 via direct interaction with 
β-catenin, thereby promoting the expression of c-Myc 
and PCNA [83] (Fig. 6). Leupaxin, a novel coactivator of 

β-catenin involved in the promotion of HCC progression, 
can interact with β-catenin and promote its transcrip-
tional activity by recruiting SRC-1 and p300 [84]. It has 
been reported that the microRNA miR-105-1 can nega-
tively regulate SRC-1 to suppress the progression of HCC 
by binding to the 3’-UTR of SRC-1 mRNA to inhibit its 
expression [85] (Fig. 6). Another study indicated that the 
microRNA miR-4443 can be significantly upregulated by 
leptin and insulin in HCT116 and HT29 cells and can 
directly negatively regulate SRC-1 to inhibit the invasion 
and proliferation of CRC cells [86] (Fig. 6). Recently, the 
facilitative role of SRC-1 in CRC proliferation and metas-
tasis has been comprehensively elucidated. SRC-1 is 
highly expressed in the tumour tissues of CRC patients; 
knockdown of SRC-1 significantly inhibits the prolifera-
tion and invasion of CRC cells in vitro, as well as their 
growth and metastasis in vivo [16]. GLI family zinc fin-
ger 2 (GLI2) is an important transcription factor in the 
Hedgehog signalling pathway that mediates the transcrip-
tion of genes related to proliferation and invasion, includ-
ing cyclin D1, Bcl-2, Slug, and VIM; SRC-1 can directly 

Fig. 4 Potential mechanisms by which SRC-1 promotes breast cancer progression. The transactivation of ER is dependent on leucine-rich motifs, which 
constitute the ligand-regulated binding site of SRC-1. ER can interact with SRC-1 to modulate the expression of genes central to breast cancer progres-
sion. The transcriptional activity of several transcription factors, including HOXC11, PEA3, AP-1, HIF1α, c-FOS, Ets1/2, and STAT1/3, can be increased by 
SRC-1. Their target genes have various biological activities, such as promotion of tumour proliferation, metastasis, or angiogenesis
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bind to the zinc finger domain of GLI2, co-recruit to 
their target gene promoter and serve as a coactivator to 
enhance the transcriptional activity of GLI2 [16] (Fig. 6). 
SRC-1 also has tumour-promoting effects in esophageal 
squamous cell carcinoma (ESCC). SRC-1 can affect the 
prognosis of ESCC and serve as an independent predic-
tor of overall survival; knocking down SRC-1 can signifi-
cantly inhibit the proliferation, migration, and invasion of 
ESCC cells [87].

Neurological cancer
Meningiomas are more common in women than in men 
and are associated with progesterone receptor expression 
and hormone disruption. SRC-1 is expressed in menin-
gioma patient tissues, and significantly associated with 
progesterone; progesterone is involved in the regulation 
of specific intracellular receptor interactions and SRC-1 
is required for its transcriptional activation [88]. SRC-1 
in astrocytoma is regulated by sex steroid hormones, 

and progesterone dynamically regulates SRC-1 expres-
sion at the evolutionary level in astrocytes [89]. Multiple 
factors are involved in the progression of astrocytoma; 
high expression of EGFR, cyclin D1, VEGF, and PR 
are features of this disease [90]. Progesterone treat-
ment increased VEGF and EGFR levels in astrocytoma 
by acting on PR, and knockdown of SRC-1 significantly 
reduced VEGF expression but had no significant effect on 
EGFR [91]. Estradiol induces astrocytoma cell growth by 
acting on ERα, SRC-1 facilitates these effects [92]. Glioma 
is another major primary brain tumour that is associated 
with abnormal angiogenesis and abnormal proliferation 
of glioblastoma. SRC-1 can enhance angiogenesis medi-
ated by basic fibroblast growth factor (bFGF) in vivo to 
promote glioma progression; in addition, SRC-1 binds 
with polyoncovirusenhancer activator 3 (PEA3) to pro-
mote the transcription of its target genes VEGF and 
MMP-9, regulating endothelial cell (EC) function and 
promoting angiogenesis [93]. Another study confirmed 

Fig. 5 Potential mechanisms by which SRC-1 promotes prostate cancer progression. SRC-1 participates in androgen-induced AR activation and the 
regulation of several oncogenes related to prostate cancer progression. IL-6 can modulate AR-independent activation of SRC-1 and promote SRC-1 
phosphorylation and nuclear transport by stimulating the MAPK pathway. RORγ can recruit SRC-1 to the AR-ROR response element to promote the 
transcriptional activity of AR-regulated genes
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that SRC-1 could promote the proliferation, migra-
tion, and tumour growth of glioblastoma and was posi-
tively correlated with the grade of glioma but negatively 
correlated with the prognosis of glioma [94]. The team 
demonstrated that SRC-1 could promote the stemness 
of glioblastoma cells, possibly through the X-inactive 
specific transcript (XIST)/mi-152 axis, promoting the 
expression of Kruppel-like factor 4 (KLF4) [94]. Further-
more, some case reports suggest that SRC-1 positivity 
may be associated with the occurrence of ependymoma, 
but the underlying mechanism remains unclear [95, 96].

Genital system cancer in females
In addition to breast cancer, tumours of the female geni-
tal system, including the uterus and ovaries, are also 

major causes of death, and the role of SRC-1 in these 
cancers has been reported. SRC-1 is highly expressed 
in normal endometrial tissues, with an average positive 
rate of 81.8%; unexpectedly, its expression is reduced in 
endometrial hyperplasia (58.9%) and endometrial carci-
noma (45.0%) tissues [97]. A lack of mitogen-inducible 
gene 6 (Mig-6) has been reported to be associated with 
endometrial hyperplasia in mice and the progression of 
endometrial carcinoma; notably, this gene is regulated by 
SRC-1 [98]. The above studies indicate that SRC-1 may 
play a protective role in endometrial cancer but not in 
ovarian cancer. Growing evidence suggests that estrogen, 
which can induce the expression of c-Myc and IGF-1 and 
facilitate the binding of ERα to the AP1 site of the IGF-1 
and c-Myc promoters to promote ovarian cancer cell 

Fig. 6 The potential role of SRC-1 in promoting the progression of liver and colorectal cancer. SRC-1 promotes the expression of c-Myc and PCNA by 
enhancing Wnt/β-catenin signalling, and miR-105-1 negatively regulates SRC-1 by binding to the 3’-UTR of SRC-1 mRNA in HCC. Similarly, SRC-1 promotes 
CRC progression by promoting the transcription of GLI2 target genes, and miR-4443 inhibits CRC cell proliferation and invasion through the negative 
regulation of SRC-1

 



Page 12 of 16Chen et al. Cell & Bioscience           (2024) 14:41 

proliferation, is a risk factor for epithelial ovarian cancer, 
and silencing SRC-1 can block inducible c-Myc expres-
sion and cell cycle progression [99].

Other cancers
SRC-1 is less commonly associated with other com-
mon cancers, including melanoma, lung cancer, thyroid 
cancer, and lymphatic cancer, and reports are sporadic. 
SRC-1 and its partner HOXC11 are highly expressed in 
malignant melanoma, and SRC-1 can cooperate with 
HOXC11 to promote the expression of S100beta, which 
is a stimulating factor for cell proliferation and migra-
tion and an inhibitor of cell apoptosis and differentiation 
[100]. Estrogen and SRC-1 are intricately intertwined, 
and some researchers have explored their role in the pro-
gression of thyroid cancer, although the thyroid is not a 
direct target of estrogen. Estrogen promotes SRC-1 and 
cyclin D1 expression and the proliferation of thyroid can-
cer cells, but knockout of SRC-1 did not abolish estrogen-
induced cell proliferation; a study also revealed that 87% 
of anaplastic thyroid cancer patients were SRC-1-posi-
tive, and SRC-1 positivity was associated with reduced 
disease-free survival [101]. Another study reported that 
SRC-1 protein levels were elevated in thyroid cancer tis-
sues compared to normal thyroid tissues. The team found 
that the expression of SRC-1 is positively correlated with 
vascular endothelial growth factor C (VEGFC) and that 
SRC-1 can bind with NF-κB to form a coactivating com-
plex that directly promotes VEGFC transcription, and 
this effect can be abolished by knocking down SRC-1 
[102]. Although the incidence rate of lung cancer is high, 
the tumorigenic role of SRC-1 in lung cancer remains 
unclear.

SRC-1-targeted therapy
To date, a variety of small molecule inhibitors, includ-
ing peptides, natural compounds, artificial small mol-
ecules, and naturally active extracts, have been reported 
to decrease the activity of SRC-1 directly or indirectly. 
A peptide containing the LXXLL motif of human SRC-1 
(TP10-SRC1LXXLL) induced the dose-dependent death 
of breast cancer cells in an ER- and hormone-indepen-
dent manner [103]. The flavonoid 3,6-dihydroxyflavone, 
which promotes the binding between PPARγ and SRC-1, 
can activate hPPAR and has a cytotoxic effect on human 
cervical cancer and prostate cancer cells [104]. Another 
study indicated that two naturally occurring sesquiter-
penoids (ST1 and ST2) could inhibit the expression of 
SRC-1 and AR in prostate cancer cells and suppress the 
nuclear transport of AR, further inhibiting the interac-
tion between SRC-1 and AR [105]. Metformin, a well-
known antidiabetic drug, has been reported to inhibit 
the androgen-dependent proliferation of prostate cancer 
cells by inhibiting the function of AR and the expression 

of its target genes; in this process, small heterodimer 
partner-interacting leucine zipper (SMILE), which is a 
nuclear receptor coregulator whose protein level can be 
increased by metformin, competes with SRC-1 to bind 
AR to inhibit SRC-1-mediated transactivation [106].

Bufalin is a cardiotonic agent extracted from the skin 
secretions of toads and has anticancer activity. It has 
been reported that bufalin can induce caspase-mediated 
cell apoptosis and decrease the levels of SRC-1, AR, and 
its target gene PSA, exerting an anti-prostate cancer 
effect [107]. Another study indicated that bufalin could 
inhibit CRC progression by inhibiting SRC-1 and its 
regulated Hedgehog signalling; in particular, the authors 
demonstrated that bufalin could increase the therapeutic 
efficacy of the Hedgehog pathway-targeting drug vismo-
degib in CRC [16]. Moreover, bufalin can reduce glio-
blastoma viability by inhibiting SRC-1 [94]. Additionally, 
dasatinib, an ATP-competitive dual Src/Abl inhibitor, 
could reverse SRC-1-mediated melanoma progression by 
suppressing the interaction between HOXC11 and SRC-1 
[100].

Conclusions
The emerging multiorgan oncogenic role of SRC-1 is still 
being studied, especially its roles in promoting breast 
cancer, prostate cancer, gastrointestinal cancer, neu-
rological cancer, and genital system cancer. The breast 
and prostate are the main affected organs because of 
their rich steroid hormone production. SRC-1 serves 
as a coactivator of multiple transcription factors, such 
as HOXC11, PEA2, AP-1, HIF1α, c-FOS, Ets1/2, and 
STAT1/3, to promote the expression of oncogenes, 
including S100β, Twist, ITGA5, VEGFa, CSF1, and HER2, 
in the progression of breast cancer, and estrogen-medi-
ated ER activation is critical (Fig. 4). Similarly, androgen-
mediated AR activation and SRC-1 recruitment are also 
classic mechanisms involved in prostate carcinogenesis 
(Fig. 5). In addition, clear evidence indicates that SRC-1 
promotes liver and colorectal cancer progression by syn-
ergistically promoting Wnt/β-catenin or Hedgehog path-
way signalling, respectively, possibly through a steroid 
hormone-independent pathway (Fig. 6). The tumorigenic 
role of SRC-1 varies in organs such as the uterus, ova-
ries, brain, skin, and thyroid, so further study is needed. 
Although a variety of targeted inhibitors of SRC-1 are 
available, their practical application in clinical cancer 
therapy is very rare. Therefore, research on the tumori-
genic roles of SRC-1 needs further improvement, and we 
sincerely hope that our review will attract more research-
ers to investigate this topic.
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