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Abstract
Background & Aims Glucose-lowering drug is associated with various cancers, but the causality with 
gastrointestinal cancer risk is rarely reported. We aimed to explore the causality between them in this Mendelian 
randomization (MR) study.

Methods Two-sample MR, summary-data-based (SMR), mediation MR, and colocalization analyses was employed. 
Ten glucose-lowering drug targets (PPARG, DPP4, GLP1R, INSR, SLC5A2, ABCC8, KCNJ11, ETFDH, GPD2, PRKAB1) and 
seven types of gastrointestinal cancer (anal carcinoma, cardia cancer, gastric cancer, hepatocellular carcinoma (HCC), 
intrahepatic cholangiocarcinoma (ICC), pancreatic cancer, rectum cancer) were included. Patients with gastrointestinal 
cancers from six different large GWAS databases, including the UK Biobank and Finnish cohorts were incorporated, 
for discovery and external validation. Meta-analysis was employed to integrate the results from both discovery and 
validation cohorts, thereby ensuring the reliability of findings.

Results ABCC8/KCNJ11 were associated with pancreatic cancer risk in both two-sample MR (odds ratio (OR): 
15.058, per standard deviation unit (SD) change of glucose-lowering durg target perturbation equivalent to 1 SD 
unit of HbA1c lowering; 95% confidence interval (95% CI): 3.824–59.295; P-value = 0.0001) and SMR (OR: 1.142; 95% 
CI: 1.013–1.287; P-value = 0.030) analyses. The mediation effect of body mass index (OR: 0.938; 95% CI: 0.884–0.995; 
proportion of mediation effect: 3.001%; P-value = 0.033) on ABCC8/KCNJ11 and pancreatic cancer was uncovered. 
Strong connections of DPP4 with anal carcinoma (OR: 0.123; 95% CI: 0.020–0.745; P-value = 0.023) and ICC (OR: 7.733; 
95% CI: 1.743–34.310; P-value = 0.007) were detected. PPARG was associated with anal carcinoma (OR: 12.909; 95% 
CI: 3.217–51.795; P-value = 0.0003), HCC (OR: 36.507; 95% CI: 8.929-149.259; P-value < 0.0001), and pancreatic cancer 
(OR: 0.110; 95% CI: 0.071–0.172; P-value < 0.0001). SLC5A2 was connected with pancreatic cancer (OR: 8.096; 95% CI: 
3.476–18.857; P-value < 0.0001). Weak evidence indicated the connections of GLP1R, GPD2, and PRKAB1 with anal 
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Introduction
Type 2 diabetes mellitus (T2DM), a chronic metabolic 
disease characterized by insulin resistance and elevated 
blood glucose levels, has become a pervasive global epi-
demic and is projected to impact 463  million adults in 
2019 [1]. Moreover, the prevalence of this condition 
is escalating rapidly, with estimates suggesting that it 
will affect a staggering 700  million individuals by 2045 
[1]. Achieving and maintaining optimal glycemic con-
trol necessitates the long-term administration of vari-
ous glucose-lowering drugs for individuals with T2DM, 
including thiazolidinediones, dipeptidyl peptidase IV 
inhibitors, glucagon-like peptide-1 analogues, insulin/
insulin analogues, sodium-glucose cotransporter inhibit, 
sulfonylureas, and metformin [2, 3].

Gastrointestinal cancers, including liver cancer, pan-
creatic cancer, gastric cancer, esophageal cancer, and 
colorectal cancer, stand as the leading contributors to 
cancer-related fatalities on a global scale [4]. T2DM, in 
turn, is recognized as a significant risk factor for various 
forms of gastrointestinal cancer, encompassing gastric 
cancer, hepatocellular carcinoma (HCC), and colorectal 
cancer [5–7]. However, the development of efficacious 
drugs with minimal side effects for alleviating gastroin-
testinal cancer symptoms has been limited [8]. A recent 
study unveiled a correlation between the utilization of 
certain glucose-lowering medications and the onset and 
progression of specific cancer types [9]. Metformin, a 
widely employed glucose-lowering drug in managing 
T2DM, exhibits substantial benefits concerning overall 
cancer incidence [10]. The use of metformin is signifi-
cantly linked to reduced risks of cancer mortality, overall 
cancer incidence, and the incidence of liver cancer, colon 
cancer, rectal cancer, pancreatic cancer, gastric cancer, 
and esophageal cancer [6, 11]. Thiazolidinediones have 
also exhibited inhibitory effects on cancer cell growth 
[12, 13]. In contrast, the associations between other glu-
cose-lowering drugs, such as alpha-glucosidase inhibi-
tors, glucagon-like peptide-1 agonists, and dipeptidyl 
peptidase-4 inhibitors, and cancer risk remain inconclu-
sive, likely influenced by specific medications, dosages, 
and treatment durations [9].

Mendelian randomization (MR) analysis, often referred 
to as a “natural” randomized controlled trial, holds the 
potential to mitigate confounding factors and elucidate 
causal relationships by leveraging genetic variations as 

instrumental variables (IV) [14]. Concurrently, MR anal-
ysis focused on drug targets serves as a widely adopted 
approach for investigating the causal effects of these tar-
gets on disease endpoints [15]. Given that cancer devel-
opment is a protracted process, the utilization of drug 
target MR analysis becomes valuable in assessing the 
feasibility of drug repurposing and predicting potential 
side effects [16]. Notably, prior MR investigations have 
revealed associations between glucose-lowering drug 
targets and various conditions, including Alzheimer’s 
disease, non-alcoholic fatty liver disease, breast cancer, 
and prostate cancer, underscoring the significance of glu-
cose-lowering drugs in the realm of disease management 
[17–19]. Some earlier MR studies suggested that specific 
targets related to metformin might protect against cancer 
and improve longevity [20, 21]. Time-related biases had 
been detected in observational studies of drug effects like 
metformin, which manifested the importance of using 
drug target MR analysis to reassess the potential effects 
of drug-lowering targets on gastrointestinal cancer risk 
before embarking on further long and expensive trials 
[22].

To date, a comprehensive MR study that delves into 
the causal relationship between glucose-lowering drug 
targets and the risk of gastrointestinal cancer remains 
scarce. So far as we know, only Yarmolinsky et al. exam-
ined the causal association between glucose-lowering 
drug targets and colon cancer [23]. Consequently, in 
this study we undertook a two-sample MR and sum-
mary-data-based Mendelian randomization (SMR) anal-
ysis to explore the potential associations between ten 
glucose-lowering drug targets and risks of seven types 
of gastrointestinal cancer, including anal cancer, cardiac 
cancer, gastric cancer, hepatocellular carcinoma, intra-
hepatic cholangiocarcinoma, pancreatic cancer, and 
rectal cancer. Moreover, we employed mediation MR 
analysis and colocalization analysis to provide additional 
insights and enhance our understanding of these causal 
relationships.

Methods
Study design
The current study was reported according to the 
STROBE-MR statement [24]. Two-sample MR and 
SMR analyses were applied to reveal genetic relation-
ships between glucose-lowering drug targets and 

carcinoma, cardia cancer, ICC, and rectum cancer. In addition, the corresponding results were consistently validated in 
both the validation cohorts and the integrated outcomes.

Conclusions Some glucose-lowering drugs were associated with gastrointestinal cancer risk, which might provide 
new ideas for gastrointestinal cancer treatment.
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gastrointestinal cancer risks. The validation of MR anal-
yses’ causal estimation relied on three crucial assump-
tions: (i) the genetic IVs were closely connected with ten 
glucose-lowering drug targets; (ii) the independence of 
genetic IVs from confounding factors; and (iii) no direct 
effects of genetic IVs on gastrointestinal cancer risk other 
than through the glucose-lowering drug targets [25]. The 
random-effect inverse-variance weighted (IVW) method 
was the primary approach to elucidate the association 
between glucose-lowering drug targets and gastrointes-
tinal cancer risks in the two-sample MR analyses [26]. 
We have also integrated validation cohorts for exter-
nal corroboration of the pertinent results and employed 
meta-analysis to synthesize the findings from discovery 
and validation cohorts, guaranteeing the dependability 
and universality of our research outcomes. Similarly, we 
utilized a tool (https://shiny.cnsgenomics.com/mRnd/ 
) to independently calculate the statistical power of the 
related analyses in both the discovery and validation 
cohorts, thereby assuring the efficacy of the analyses. 
Meanwhile, we conducted SMR analysis, which leverages 
expression quantitative trait loci (eQTLs) as instruments, 
to explore and validate the causal relationships between 
exposures and outcomes at the gene expression level [15]. 
Additionally, colocalization analysis, employing Bayes 

factor computation, was performed within a window of 
± 500 KB around the gene encoding of each independent 
glucose-lowering drug target to calculate the posterior 
probabilities of connection between exposures and out-
comes [27]. Furthermore, the mediation effects of some 
confounding factors (including body mass index (BMI), 
glucose measurement, and T2DM) and gastrointestinal 
cancer risks were uncovered through the two-step MR 
analyses to examine whether the observed relationship 
was direct. Figure  1 shows the detailed process of this 
study.

All summary data utilized in this study had been 
approved by the relevant institutional review board of 
each country on the basis of the Declaration of Helsinki, 
and all participants involved in these studies had signed 
the informed consent forms. Separate ethical approval 
was not required for this study.

Extraction and selection of instrumental variables
Ten targets of seven different glucose-lowering drugs 
were eventually involved. Thiazolidinediones (TZDs) 
target PPARG (peroxisome proliferator-activated recep-
tor gamma) precisely, activating it to increase tissue sen-
sitivity to insulin and effectively lower blood sugar levels 
[28]. Dipeptidyl Peptidase IV Inhibitors, also known as 

Fig. 1 The flowchart of this study. Abbreviations HEIDI: heterogeneity in dependent instruments; MR-PRESSO: Mendelian Randomization Pleiotropy 
RESidual Sum and Outlier
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DPP4 inhibitors, act on DPP4, reducing its activity to 
prevent the breakdown of incretins like GLP-1 [29]. This 
increase in GLP-1 levels encourages insulin secretion 
from pancreatic β-cells, helping to reduce blood sugar. 
Similarly, Glucagon-like Peptide-1 Analogues focus on 
GLP1R, boosting insulin secretion, hindering glycoge-
nolysis, slowing gastric emptying, and increasing satiety 
[30]. Concurrently, Insulin and Insulin Analogues, which 
target INSR, mimic the effects of natural insulin, facili-
tating glucose uptake and utilization, thereby decreasing 
blood glucose levels [31]. Sodium-Glucose Cotransporter 
Inhibitors, or SGLT2 inhibitors, target SLC5A2 and block 
SGLT2 in the renal tubules, reducing glucose reabsorp-
tion and increasing urinary glucose excretion, leading 
to lower blood glucose levels [32]. Sulfonylureas, target-
ing ABCC8 and KCNJ11, close ATP-sensitive potassium 
channels, causing an increase in intracellular calcium and 
subsequent insulin release from β-cells [33]. Finally, Met-
formin acts on ETFDH, GPD2, and PRKAB1, activating 
AMPK, which reduces hepatic glycogenolysis and gluco-
neogenesis and enhances insulin sensitivity, collectively 
contributing to the reduction of blood glucose levels [34]. 
Each of these medications plays a unique and intercon-
nected role in managing blood sugar levels through vari-
ous mechanisms. Corresponding coding gene targets and 
pharmacologically active protein targets were searched 
from ChEMBL (https://www.ebi.ac.uk/chembl) and 
DrugBank (https://www.drugbank.ca) databases (Supple-
mentary Table S1) [35, 36]. However, we also recognize 
that other significant genetic variations apart from these 
known targets might be related to glucose metabolism. 
To comprehensively solve this problem, we adopted a 
two-step strategy: (i) broad screening: during the GWAS 
data selection process, we employed an unbiased strategy 
to identify all potential genetic variations related to glu-
cose metabolism. (ii) in-depth analysis: for those varia-
tions that showed a significant correlation with glucose 
metabolism in the preliminary screening, we conducted 
a more comprehensive and in-depth research search and 
review to ascertain whether they had been reported in 
previous studies and the potential biological roles they 
might play in disease [28–34]. Furthermore, we con-
ducted a comprehensive search of existing GWAS data-
bases. After excluding glucose-lowering drug targets for 
which adequate data could not be obtained, we incorpo-
rated ten targets of seven glucose-lowering drugs to the 
maximum extent possible, ensuring the comprehensive-
ness of our study.

For obtaining more effective IVs, the glucose-lowering 
drug targets were proxied by IVs collected from the sum-
mary genetic association data of HbA1c measurement 
(N = 389,889) in the two-sample MR analyses (Supple-
mentary Table S2) [37]. IVs were constructed within a 
range of ± 500 KB around the gene encodings for each 

of the ten glucose-lowering drug targets based on a sig-
nificance threshold of P-value < 5 × 10− 8. Any IVs in high 
linkage disequilibrium (LD) with each other (r2 ≥ 0.01) 
were removed. Genetically proxied perturbation of per 
standard deviation unit (SD) change in glucose-lower-
ing drug targets were scaled to represent an SD unit of 
HbA1c reduction.

In SMR analyses, the common (minor allele frequency 
(MAF) > 1%) eQTLs were identified from eQTLGen Con-
sortium (https://www.eqtlgen.org/) and GTEx Consor-
tium Version 8.0 (https://gtexportal.org/) as significant 
(P-value < 5 × 10− 8) IVs associated with the expression of 
DPP4, GPD2, ETFDH, GLP1R, INSR, KCNJ11, PPARG, 
PRKAB1, and SLC5A2 in blood tissue. Since no signifi-
cant eQTLs about ABCC8 were found in blood tissue, we 
collected IVs related to the expression of ABCC8, specifi-
cally in muscle and skeletal tissues. Low weak linkage dis-
equilibrium (r2 < 0.01) IVs were selected within the ± 500 
KB windows of gene encodings for proxying glucose-
lowering drug targets to ensure the high strength of the 
instruments.

Validation of instrumental variables
The F-statistic method was hired to avoid potential weak 
IV bias with the criterion of F-value > 10 [38]. T2DM is 
the original indication of glucose-lowering drugs, and 
these drugs will ultimately affect the patient’s blood sugar 
levels [39]. A former meta-analysis indicated that some 
glucose-lowering drugs contribute to weight gains, such 
as sulfonylureas, insulin analogues, and thiazolidinedio-
nes, whereas GLP-1 analogues cause weight loss, which 
manifested body weight was another distinct phenotype 
affected by glucose-lowering drugs [40]. Therefore, BMI 
(N = 461,460), glucose measurement (N = 400,458), and 
T2DM (N = 655,666) selected from extensive summary 
data were utilized as positive controls to validate the 
strong association of IVs and genetically proxied glucose-
lowering drug target perturbation [41, 42].

Outcome data source for gastrointestinal cancer
Seven types of gastrointestinal cancer were selected 
from three large European ancestry databases (ana-
lyzed by Longda Jiang et al., Saori Sakaue et al., and 
Joshua D Backman et al. based on the UK Biobank and 
Finnland cohorts, respectively) as the discovery data-
bases, including anal carcinoma (N = 456,348), cardia 
cancer (N = 456,348), gastric cancer (N = 456,348), HCC 
(N = 456,276), intrahepatic cholangiocarcinoma (ICC) 
(N = 456,348), pancreatic cancer (N = 635,945), and rec-
tum cancer (N = 387,797) (Supplementary Table S2) 
[43–45]. In addition, for the purpose of validation, we 
have engaged additional cohorts from Finland (DF10, 
Public release: Dec 18, 2023) and other European popula-
tions (such as Kaiser Permanente Genetic Epidemiology 

https://www.ebi.ac.uk/chembl
https://www.drugbank.ca
https://www.eqtlgen.org/
https://gtexportal.org/
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Research on Adult Health and Aging and UK Biobank 
cohorts), as analyzed by Sara R Rashkin et al., Saori 
Sakaue et al., and Longda Jiang et al., respectively [43, 
44, 46, 47]. These validation cohorts encompass anal 
carcinoma (N = 314,291), cardia cancer (N = 411,441), 
gastric cancer (N = 476,116), HCC (N = 314,693), ICC 
(N = 315,400), pancreatic cancer (N = 456,276), and rec-
tal cancer (N = 316,683), with further details provided 
in Supplementary Table S2. Patients with gastrointes-
tinal cancer were clinically or pathologically diagnosed 
based on the National Comprehensive Cancer Network 
standards. For no participants overlapping in the expo-
sures and outcomes data, type I error was well avoided to 
ensure the strength of the MR analyses [48].

Colocalization analysis
To scrutinize the alignment between the exposures and 
outcomes (specifically, the antihyperglycemic drug target 
and the susceptibility to gastrointestinal cancer) and to 
distinguish any confounding arising from linkage disequi-
librium potentially ascribed to a shared causal variant, we 
employed colocalization analysis. This method leverages 
the computation of approximate Bayes factors to yield 
posterior probabilities, facilitating a more sophisticated 
interpretation of the interrelationships involved [27]. The 
colocalization analysis encompassed five hypotheses: (i) 
H0: neither the glucose-lowering drug targets nor gas-
trointestinal cancer possessed a causal variant within the 
genomic locus; (ii) H1: only the glucose-lowering drug 
targets harbored a causal variant; (iii) H2: only gastroin-
testinal cancer had a causal variant; (iv) H3: each of the 
glucose-lowering drug targets and gastrointestinal can-
cer had distinct causal variants; (v) H4: a shared causal 
variant was present for both glucose-lowering drug tar-
gets and gastrointestinal cancer [23]. To facilitate a thor-
ough exploration of the genomic terrain encircling these 
critical regions, the colocalization analysis was executed 
by generating ± 500  kb windows surrounding the gene 
responsible for encoding each respective glucose-low-
ering drug target [27]. We utilized default parameters 
to conduct the colocalization, setting p1 = 1 × 10− 4 (the 
prior probability that a SNP is linked with the glucose-
lowering drug target), p2 = 1 × 10− 4 (the prior probability 
that a SNP is linked with gastrointestinal cancer), and 
p12 = 1 × 10− 5 (the prior probability that a SNP is concur-
rently linked with both the glucose-lowering drug target 
and gastrointestinal cancer) [49]. A posterior probability 
for H4 (PP4) surpassing 0.8, under a variety of priors and 
windows, was construed as compelling evidence, signify-
ing colocalization. The “coloc” (Version 5.2.1) and “Locus-
CompareR” (Version 1.0.0) packages were harnessed in 
the colocalization analysis to compute and graphically 
represent the outcomes.

Sensitive analysis
In the two-sample MR analyses, the IVW method offers 
an unbiased estimate of causality, provided that all IVs 
are valid and free from pleiotropy [50]. To assess the 
heterogeneity of IVs and detect any pleiotropic effects, 
we conducted the Cochran’s Q test, with a significance 
threshold set at a P-value for heterogeneity < 0.05 [50]. 
As for potential horizontal pleiotropy, we performed 
additional analyses including weighted median and MR-
Egger. the MR-Egger method allows for robust causal 
inference even when all IVs are potentially invalid and 
indicates the presence of unbalanced pleiotropy when 
the P-value for the intercept is < 0.05 [51]. Additionally, 
we applied the MR Pleiotropy RESidual Sum and Outlier 
(MR-PRESSO) global test to identify and adjust for outli-
ers. Furthermore, in the SMR analysis, we employed the 
heterogeneity in dependent instruments (HEIDI) test, 
leveraging multiple SNPs within a genomic locus, to dis-
tinguish between associations of glucose-lowering drug 
targets with gastrointestinal cancer risk that are attrib-
utable to a shared genetic variant as opposed to genetic 
linkage [52]. A HEIDI test with a P-value > 0.01 indicated 
that the observed association between glucose-lowering 
drug targets and gastrointestinal cancer risk was not con-
founded by linkage disequilibrium [53].

Statistical analysis
All analyses were performed using R software (Version 
4.2.3) and SMR software (Version 1.3.1) [15]. R packages, 
including “TwoSampleMR” (Version 0.5.6) and “MR-
PRESSO” (Version 1.0) were utilized. The Bonferroni-
corrected significance level of P-value < 0.0007 (0.05/70, 
ten glucose-lowering drug targets and seven types of 
gastrointestinal cancer) was utilized to avert bias [54]. 
Associations with a P-value between 0.0007 and 0.05 was 
considered suggestive, while a P-value > 0.05 indicated no 
statistical association between glucose-lowering drug tar-
gets and gastrointestinal cancer.

Results
Positive control analysis
The F-values of each IV were calculated to avoid poten-
tial weak IV bias with the F-values > 10 (Supplementary 
Table S3). IVs utilized in two-sample MR and SMR analy-
ses were tested through positive controls, including BMI, 
glucose measurement, and T2DM. Results of positive 
controls illustrated the credible association between IVs 
and BMI, glucose measurement, and T2DM indicating 
the effectiveness of IVs (Supplementary Table S4-S9).

Two-sample MR analysis
The results of two-sample MR analyses on glu-
cose-lowering drug targets and gastrointesti-
nal cancer risks are shown in Table  1; Fig.  2. The 
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Gene Cancer Discovery Cohort Validation Cohort Combined
OR (95% CI) P-value OR (95% CI) P-value OR (95% CI) P-value

ABCC8 + KCNJ11 Anal Carcinoma 2.749 × 10− 4 
(1.18 × 10− 6, 0.064)

0.003 4.370 × 10− 6 
(1.700 × 10− 10, 
0.112)

0.017 1.000 × 10− 4 
(0.0001, 0.013)

0.0002

Cardia Cancer 4.217 (0.007, 
2.46 × 103)

0.658 0.518 (0.091, 2.952) 0.459 0.600 (0.112, 3.211) 0.550

Gastric Cancer 0.107 (0.001, 22.430) 0.412 0.884 (0.364, 2.147) 0.786 0.835 (0.348, 2.005) 0.687
Hepatocellular 
Carcinoma

0.009 (1.01 × 10− 4, 
0.852)

0.042 0.001 (8.782 × 10− 5, 
0.026)

7.058 × 10− 6 0.003 (2.000 × 10− 4, 
0.028)

< 0.0001

Intrahepatic 
Cholangiocarcinoma

440.752 (1.751, 
1.11 × 105)

0.031 56.759 (6.941, 
464.115)

1.651 × 10− 4 73.520 (10.312, 
524.150)

< 0.0001

Pancreatic Cancer 8.440 (1.633, 43.635) 0.010 56.728 (4.720, 
681.753)

0.001 15.058 (3.824, 
59.295)

0.0001

Rectum Cancer 3.805 (0.871, 16.620) 0.076 0.280 (0.073, 1.068) 0.062 0.911 (0.338, 2.457) 0.855
DPP4 Anal Carcinoma 4.453 × 10− 6 

(2.04 × 10− 8, 0.001)
7.325 × 10− 6 0.447 (0.020, 0.910) 0.005 0.123 (0.020, 0.745) 0.023

Cardia Cancer 0.152 (0.004, 6.255) 0.321 5.092 (0.669, 
38.723)

0.402 2.275 (0.383, 
13.501)

0.366

Gastric Cancer 0.192 (0.003, 13.660) 0.449 1.251 (0.430, 3.645) 0.681 1.120 (0.397, 3.160) 0.830
Hepatocellular 
Carcinoma

19.221 (1.47 × 10− 4, 
2.51 × 106)

0.623 3.455 (0.312, 
382.858)

0.389 3.988 (0.133, 
120.054)

0.426

Intrahepatic 
Cholangiocarcinoma

7.993 × 103 (51.330, 
1.25 × 106)

4.846 × 10− 4 3.991 (0.839, 
18.977)

0.082 7.733 (1.743, 
34.310)

0.007

Pancreatic Cancer 0.315 (0.074, 1.334) 0.117 0.455 (0.053, 3.904) 0.472 0.353 (0.106, 1.170) 0.089
Rectum Cancer 2.685 (0.110, 65.590) 0.545 8.268 (0.278, 

246.197)
0.148 4.555 (0.445, 

46.650)
0.202

ETFDH Anal Carcinoma 0.004 (2.47 × 10− 14, 
6.53 × 108)

0.675 0.684 (0.025, 
190.226)

0.990 0.589 (0.007, 
48.429)

0.814

Cardia Cancer 3.149 × 10− 4 
(6.35 × 10− 11, 
1.56 × 103)

0.305 1.228 (0.129, 
11.711)

0.953 1.032 (0.111, 9.616) 0.978

Gastric Cancer 1.578 (3.17 × 10− 8, 
7.86 × 107)

0.96 0.666 (0.022, 
20.340)

0.816 0.687 (0.024, 
19.720)

0.826

Hepatocellular 
Carcinoma

3.949 (1.34 × 10− 9, 
1.16 × 1010)

0.902 4.262 (0.037, 
485.767)

0.345 4.248 (0.042, 
434.573)

0.540

Intrahepatic 
Cholangiocarcinoma

0.070 (5.75 × 10− 11, 
8.57 × 107)

0.803 0.490 (0.000, 
611.716)

0.845 0.401 (0.001, 
341.417)

0.790

Pancreatic Cancer 8.505 (0.025, 
2.95 × 103)

0.473 6.546 (0.142, 
302.443)

0.132 7.082 (0.287, 
174.724)

0.231

Rectum Cancer 3.248 (0.012, 
8.59 × 102)

0.679 0.083 (0.001, 9.994) 0.309 0.394 (0.010, 
14.895)

0.615

GLP1R Anal Carcinoma 1.044 × 104 (9.548, 
1.14 × 107)

0.010 9.431 (0.194, 
458.377)

0.150 49.160 (1.648, 
1.466 × 103)

0.025

Cardia Cancer 3.094 × 102 (3.695, 
2.59 × 104)

0.011 17.191 (3.092, 
95.583)

0.536 25.073 (5.064, 
124.149)

< 0.0001

Gastric Cancer 19.724 (0.189, 
2.06 × 103)

0.209 0.553 (0.293, 1.043) 0.067 1.526 (0.065, 
35.899)

0.793

Hepatocellular 
Carcinoma

0.046 (5.91 × 10− 4, 
3.645)

0.168 2.666 (0.205, 
34.673)

0.454 0.942 (0.103, 8.597) 0.958

Intrahepatic 
Cholangiocarcinoma

63.028 (0.261, 
1.52 × 104)

0.139 0.975 (0.187, 5.091) 0.976 1.379 (0.283, 6.714) 0.690

Pancreatic Cancer 1.085 (0.274, 4.292) 0.907 7.414 (0.732, 
75.066)

0.090 1.792 (0.549, 5.846) 0.334

Rectum Cancer 4.290 (0.795, 23.160) 0.091 1.136 (0.302, 4.273) 0.851 1.886 (0.665, 5.346) 0.233

Table 1 Results of two-sample Mendelian randomization analyses on glucose-lowering drug targets and risks of gastrointestinal 
cancer
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Gene Cancer Discovery Cohort Validation Cohort Combined
OR (95% CI) P-value OR (95% CI) P-value OR (95% CI) P-value

GPD2 Anal Carcinoma 2.365 × 103 
(1.74 × 10− 10, 
3.22 × 1016)

0.615 14.585 (0.004, 
500.561)

0.380 17.511 (0.057, 
5.406 × 103)

0.328

Cardia Cancer 0.509 (2.28 × 10− 7, 
1.14 × 106)

0.928 4.010 (0.516, 
313.133)

0.078 3.648 (0.160, 
83.440)

0.418

Gastric Cancer 2.869 × 103 
(1.32 × 10− 4, 
6.25 × 1010)

0.356 1.267 (0.040, 
40.233)

0.893 1.729 (0.058, 
51.164)

0.752

Hepatocellular 
Carcinoma

2.161 (3.09 × 10− 7, 
1.51 × 107)

0.924 0.009 (7.779 × 10− 8, 
1.132 × 103)

0.434 0.065 (0.0001, 
779.411)

0.568

Intrahepatic 
Cholangiocarcinoma

3.333 × 104 
(6.74 × 10− 5, 
1.65 × 1013)

0.308 0.002 (7.750 × 10− 8, 
76.031)

0.254 0.078 (0.0001, 
766.568)

0.586

Pancreatic Cancer 8.064 (0.024, 
2.71 × 103)

0.482 12.495 (0.003, 
4.623 × 104)

0.547 9.334 (0.081, 
1.076 × 103)

0.357

Rectum Cancer 0.004 (1.83 × 10− 5, 
0.728)

0.038 0.062 (0.003, 1.277) 0.086 0.031 (0.002, 0.428) 0.010

INSR Anal Carcinoma 1.095 × 103 (0.001, 
1.99 × 109)

0.341 0.381 (0.008, 
173.995)

0.885 0.889 (0.008, 
97.817)

0.961

Cardia Cancer 5.233 × 103 (0.032, 
8.60 × 108)

0.162 9.896 (0.103, 
94.798)

0.058 15.804 (0.594, 
420.471)

0.099

Gastric Cancer 0.031 (3.35 × 10− 8, 
2.96 × 104)

0.622 2.047 (0.139, 
30.057)

0.601 1.756 (0.126, 
24.528)

0.676

Hepatocellular 
Carcinoma

0.050 (4.49 × 10− 7, 
5.49 × 103)

0.612 0.067 (2.086 × 10− 4, 
21.519)

0.359 0.063 (4.000 × 10− 4, 
11.094)

0.295

Intrahepatic 
Cholangiocarcinoma

0.001 (4.81 × 10− 10, 
2.41 × 103)

0.360 0.036 (0.001, 1.513) 0.081 0.029 (0.001, 1.086) 0.056

Pancreatic Cancer 0.397 (0.007, 21.720) 0.651 11.007 (0.023, 
5.234 × 103)

0.446 1.063 (0.037, 
30.495)

0.972

Rectum Cancer 0.669 (0.014, 33.000) 0.840 0.428 (0.032, 5.811) 0.524 0.492 (0.056, 4.292) 0.521
PPARG Anal Carcinoma 42.852 (6.09, 

301.523)
1.601 × 10− 4 3.757 (0.519, 

27.180)
0.190 12.909 (3.217, 

51.795)
0.0003

Cardia Cancer 1.440 (0.29, 7.151) 0.656 11.018 (5.995, 
202.492)

0.109 3.851 (0.525, 
28.257)

0.185

Gastric Cancer 0.063 (0.012, 0.339) 0.001 0.758 (0.545, 1.055) 0.101 0.691 (0.500, 0.956) 0.026
Hepatocellular 
Carcinoma

63.807 (13.260, 
306.900)

2.152 × 10− 7 3.644 (0.150, 
88.367)

0.026 36.507 (8.929, 
149.259)

< 0.0001

Intrahepatic 
Cholangiocarcinoma

8.980 (1.241, 64.975) 0.030 5.238 (2.699, 
12.193)

0.046 5.609 (2.772, 
11.347)

< 0.0001

Pancreatic Cancer 0.290 (0.171, 0.492) 4.549 × 10− 6 0.010 (0.004, 0.023) 2.371 × 10− 27 0.110 (0.071, 0.172) < 0.0001
Rectum Cancer 2.031 (0.616, 6.690) 0.244 1.470 (0.974, 

22.190)
0.066 1.803 (0.699, 4.654) 0.223

PRKAB1 Anal Carcinoma 0.035 (4.917 × 10− 4, 
2.539)

0.125 0.608 (7.671 × 10− 6, 
482.378)

0.090 0.059 (0.001, 2.814) 0.151

Cardia Cancer 20.741 (0.854, 
503.700)

0.062 3.209 (0.805, 
1.279 × 103)

0.098 9.325 (0.836, 
104.023)

0.070

Gastric Cancer 0.285 (0.007, 11.250) 0.503 1.032 (0.551, 1.933) 0.922 0.995 (0.536, 1.847) 0.987
Hepatocellular 
Carcinoma

0.097 (0.003, 3.010) 0.183 6.206 (0.541, 
71.205)

0.143 1.541 (0.211, 
11.276)

0.670

Intrahepatic 
Cholangiocarcinoma

544.800 (7.099, 
4.18 × 104)

4.441 × 10− 3 11.327 (0.369, 
477.766)

0.067 54.449 (3.434, 
863.226)

0.005

Pancreatic Cancer 0.599 (0.133, 2.703) 0.505 0.157 (0.025, 0.975) 0.069 0.348 (0.109, 1.114) 0.075
Rectum Cancer 2.403 (0.757, 7.626) 0.137 3.529 (0.110, 

112.742)
0.333 2.497 (0.835, 7.470) 0.102

SLC5A2 Anal Carcinoma 0.153 (0.004, 6.058) 0.317 0.370 (0.009, 
15.078)

0.599 0.237 (0.017, 3.230) 0.280

Table 1 (continued) 
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evidences of the meta-analyses of discovery and valida-
tion cohorts (P-value < 0.05, Table 1; Fig. 2) for the asso-
ciations of ABCC8/KCNJ11 with anal carcinoma (odds 
ratio (OR) = 1.000 × 10− 4, per SD change of glucose-low-
ering drug target perturbation equivalent to 1 SD unit 
of HbA1c lowering; 95% confidence interval (95% CI): 
0.0001–0.013; P-value = 0.0002), HCC (OR = 0.003; 95% 
CI: 2.000 × 10− 4-0.028; P-value < 0.0001), but elevated 
risks of ICC (OR = 73.520; 95% CI: 10.312–524.150; 
P-value < 0.0001), pancreatic cancer (OR = 15.058; 95% 

CI: 3.824–59.295; P-value = 0.0001). The evidence under-
scored the substantial link of DPP4 with anal carcinoma 
(OR = 0.123; 95% CI: 0.020–0.745; P-value = 0.023) and 
ICC (OR = 7.733; 95% CI: 1.743–34.310; P-value = 0.007). 
However, no correlation was discerned between ETFDH, 
INSR, and gastrointestinal cancer risks. GLP1R was ten-
tatively associated with anal carcinoma (OR = 49.160; 95% 
CI: 1.648–1.466 × 103; P-value = 0.025) and cardia cancer 
(OR = 25.073; 95% CI: 5.064-124.149; P-value < 0.0001). 
GPD2 was associated with rectum cancer (OR = 0.031; 

Fig. 2 IVW method results of two-sample Mendelian randomization analyses on glucose-lowering drug target and risks of gastrointestinal cancer in the 
discovery databases. Abbreviations IVW method: Inverse-variance-weighted method

 

Gene Cancer Discovery Cohort Validation Cohort Combined
OR (95% CI) P-value OR (95% CI) P-value OR (95% CI) P-value

Cardia Cancer 43.268 (2.771, 
675.700)

0.007 11.038 (3.381, 
36.036)

6.951 × 10− 5 13.666 (4.610, 
40.515)

< 0.0001

Gastric Cancer 0.652 (0.016, 26.550) 0.821 29.569 (11.585, 
551.493)

0.065 6.183 (0.156, 
244.359)

0.332

Hepatocellular 
Carcinoma

100.541 (2.926, 
3.455 × 103)

0.011 22.507 (4.289, 
118.097)

0.092 29.465 (6.568, 
132.195)

< 0.0001

Intrahepatic 
Cholangiocarcinoma

46.219 (0.439, 
4.868 × 103)

0.107 1.165 (0.400, 3.393) 0.780 1.401 (0.494, 3.971) 0.527

Pancreatic Cancer 6.650 (2.529, 17.486) 1.227 × 10− 4 15.351 (2.686, 
87.744)

0.002 8.096 (3.476, 
18.857)

< 0.0001

Rectum Cancer 1.284 (0.432, 3.814) 0.652 1.109 (0.525, 2.341) 0.786 1.162 (0.628, 2.152) 0.633

Table 1 (continued) 
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95% CI: 0.002–0.428; P-value = 0.010). PPARG were con-
nected with anal carcinoma (OR = 12.909; 95% CI: 3.217–
51.795; P-value = 0.0003), HCC (OR = 36.507; 95% CI: 
8.929-149.259; P-value < 0.0001), and ICC (OR = 5.609; 
95% CI: 2.772–11.347; P-value < 0.0001), but with lower 
risks of gastric cancer (OR = 0.691; 95% CI: 0.500-0.956; 
P-value = 0.026) and pancreatic cancer (OR = 0.110; 95% 
CI: 0.071–0.172; P-value < 0.0001). Moreover, PRKAB1 
was associated with ICC (OR = 54.449; 95% CI: 3.434-
863.226; P-value = 0.005). Furthermore, there were evi-
dences uncovering the associations between SLC5A2 
and cardia cancer (OR = 13.666; 95% CI: 4.610-40.515; 
P-value < 0.0001), HCC (OR = 29.465; 95% CI: 6.568-
132.195; P-value < 0.0001), and pancreatic cancer 
(OR = 8.096; 95%CI: 3.476–18.857; P-value < 0.0001).

SMR analysis
The results of SMR analyses on glucose-lowering drug 
targets and gastrointestinal cancer risks are illustrated 
in Fig.  3. The SMR analyses uncovered the genetic 
connections of anal carcinoma risk with ABCC8 
(OR = 1.762; 95% CI: 1.034–3.022; P-value = 0.037) and 
DPP4 (OR = 0.100; 95% CI: 0.011–0.893; P-value = 0.039) 
(Supplementary Table S10). Risk of cardia cancer was 
connected with KCNJ11 (OR = 0.229; 95% CI: 0.059–
0.884; P-value = 0.032) and PPARG (OR = 2.813; 95% CI: 
1.239–6.388; P-value = 0.013) (Supplementary Table S11). 
However, no evidence manifested the associations of ten 
glucose-lowering drug targets with gastric cancer, HCC, 
ICC, and rectum cancer (Supplementary Table S12-S15). 
Moreover, ABCC8 (OR = 1.142; 95% CI: 1.013–1.287; 
P-value = 0.030), ETFDH (OR = 1.249; 95% CI: 1.006–
1.550; P-value = 0.044), and PRKAB1 (OR = 0.798; 95% CI: 
0.662–0.962; P-value = 0.018) were associated with pan-
creatic cancer risks (Supplementary Table S16).

Mediation MR analysis
Two-step MR analyses were conducted to uncover the 
mediation effects of BMI, glucose measurement, and 
T2DM on glucose-lowering drug targets and gastrointes-
tinal cancer risks, which had associations with two-sam-
ple MR analyses. The mediation effect of BMI on ABCC8/
KCNJ11 and risk of pancreatic cancer are manifested in 
Table  2 (OR = 0.938; 95% CI: 0.884–0.995; proportion 
of mediation effect: 3.001%; P-value = 0.033). However, 
there were no mediation effects of BMI, glucose mea-
surement, and T2DM on other glucose-lowering drug 
targets and gastrointestinal cancer risks (Supplementary 
Table S17-S18).

Colocalization analysis
Colocalization analyses were performed to show the 
probability of sharing one common causal variant of glu-
cose-lowering drug targets and gastrointestinal cancer 

risks (Supplementary Table S19). ABCC8/KCNJ11 were 
observed sharing gene regions with pancreatic can-
cer risk (PP4 = 0.836) (Fig.  4). Strong evidence sug-
gested colocalization between DPP4, GLP1R, ABCC8/
KCNJ11, and anal carcinoma (Supplementary Figure S1-
S3). Meanwhile, ABCC8/KCNJ11 shared common gene 
regions with HCC (Supplementary Figure S4). Colocal-
izations between DPP4, ABCC8/KCNJ1, PRKAB1, and 
ICC were observed (Supplementary Figure S5-S7). Strong 
evidence uncovering the colocalization between the 
GPD2 and rectum cancer (Supplementary Figure S8).

Sensitivity analysis and statistical power
The P-values of HEIDI tests in SMR analyses were all 
larger than 0.01, indicating horizontal pleiotropy due to 
linkage scenarios (Supplementary Table S10-S16). Addi-
tionally, the heterogeneity test, pleiotropy test, and MR-
PRESSO test in two-sample MR analyses elucidated that 
no heterogeneity and pleiotropy existed with the P-val-
ues > 0.05 in both discovery and validation databases 
(Supplementary Table S20-S21). Furthermore, the statis-
tical power of the related analyses in both the discovery 
and validation cohorts revealed that these analyses pos-
sess excellent efficacy (Supplementary Table S20-S21).

Discussion
This study systematically investigated the causal relation-
ship between ten glucose-lowering drug targets and the 
risks of seven types of gastrointestinal cancer. Associa-
tions of ABCC8/KCNJ11, DPP4, GLP1R, GPD2, PPARG, 
PRKAB1, and SLC5A2 with anal carcinoma, cardia can-
cer, gastric cancer, HCC, ICC, pancreatic cancer, and rec-
tum cancer were revealed in two-sample MR analyses. In 
SMR analyses, ABCC8/KCNJ11, DPP4, PPARG, ETFDH, 
and PRKAB1 were associated with anal carcinoma, car-
dia cancer, and pancreatic cancer. Furthermore, ABCC8/
KCNJ11, DPP4, GLP1R, PRKAB1, and GPD2 shared 
causal variants within anal cancer, HCC, ICC, pancreatic 
cancer, and rectum cancer according to the colocaliza-
tion analyses. In addition, the mediation effect of BMI 
on the causal connection between ABCC8/KCNJ11 and 
pancreatic cancer risk was detected.

The pathogenesis of gastrointestinal cancer was charac-
terized by a prolonged and intricate developmental cycle, 
with latent onset and convoluted mechanisms, which 
concomitantly posed challenges to the development of 
suitable therapeutic medications. Moreover, some glu-
cose-lowering drugs were confirmed to be associated 
with cancer risk [9]. Some studies have demonstrated 
that metformin yielded tangible benefits in reducing 
the overall incidence of cancer, as well as decreasing the 
chances of developing colorectal cancer, esophageal can-
cer, liver cancer, and pancreatic cancer [55]. While met-
formin may have specific anticancer effects, these are 
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Fig. 3 Results of summary-data-based Mendelian randomization analyses on glucose-lowering drug target and risks of gastrointestinal cancer
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Table 2 The mediation effects of body mass index on glucose-lowering drug targets and risks of gastrointestinal cancer
Gene Gastrointestinal Cancer OR 95%CI Proportion of mediation effect P-Value
ABCC8 + KCNJ11 Anal Carcinoma 1.102 [0.757, 1.604] 1.185% 0.612

Hepatocellular Carcinoma 0.908 [0.649, 1.269] 2.067% 0.571
Intrahepatic Cholangiocarcinoma 0.759 [0.257, 2.244] 4.527% 0.618
Pancreatic Cancer 0.938 [0.884, 0.995] 3.001% 0.033

DPP4 Anal Carcinoma 1.012 [0.694, 1.475] 0.097% 0.950
Intrahepatic Cholangiocarcinoma 0.967 [0.327, 2.859] 0.377% 0.951

GLP1R Anal Carcinoma 0.980 [0.672, 1.429] 0.218% 0.916
Cardia Cancer 1.039 [0.609, 1.774] 0.669% 0.888

GPD2 Rectum Cancer 0.997 [0.958,1.038] 0.055% 0.880
PPARG Anal Carcinoma 1.006 [0.690, 1.466] 0.156% 0.976

Gastric Cancer 1.003 [0.845, 1.191] 0.113% 0.972
Hepatocellular Carcinoma 0.994 [0.710, 1.393] 0.140% 0.973
Intrahepatic Cholangiocarcinoma 0.984 [0.333, 2.908] 0.756% 0.976
Pancreatic Cancer 0.996 [0.930, 1.067] 0.311% 0.913

PRKAB1 Intrahepatic Cholangiocarcinoma 1.381 [0.466, 4.091] 5.125% 0.560
SLC5A2 Cardia Cancer 1.222 [0.713, 2.092] 5.313% 0.466

Hepatocellular Carcinoma 1.111 [0.789, 1.564] 2.277% 0.548
Pancreatic Cancer 1.072 [0.978, 1.174] 3.663% 0.136

Abbreviations 95% CI: 95% confidence interval; OR: odds ratio

Fig. 4 Regional Manhattan plot of associations of ABCC8 + KCNJ11 and risk of pancreatic cancer. The lead SNP is shown as a purple diamond. SNPs 
within ± 500 kb of the glucose-lowering drug target quantitative trait locus were included; p12 = 1 × 10− 5, prior probability a SNP is associated with both 
ABCC8 + KCNJ11 and pancreatic cancer
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not universally consistent. Therefore, in our study, we 
conducted a detailed investigation into the three drug 
targets of metformin (ETFDH, GPD2, and PRKAB1), and 
the discovery cohorts and integrated results revealed that 
GPD2 has an inhibitory effect on the occurrence of rec-
tum cancer. Moreover, we found that PRKAB1 promotes 
the occurrence of ICC, while no association was found 
between ETFDH and the occurrence of gastrointestinal 
cancer. These findings suggest that metformin does not 
uniformly suppress all cancers. For clinical medication, 
further refining treatments in conjunction with the rel-
evant drug targets would be prudent. Yang et al. uncov-
ered that the use of gliclazide and glibenclamide was tied 
to a decline in cancer risk for T2D patients [56]. This was 
in harmony with our study where ABCC8/KCNJ11 was 
correlated with a higher risk of ICC and pancreatic can-
cer, as well as a lower risk of anal carcinoma and HCC. 
Simultaneously, the colocalization analyses revealed 
that ABCC8/KCNJ11 shared identical genetic regions 
with anal carcinoma, HCC, ICC, and pancreatic cancer. 
The promoting effect of ABCC8/KCNJ11 on pancreatic 
cancer was also observed in SMR analysis. Furthermore, 
BMI played a mediation role in the correlation between 
ABCC8/KCNJ11 and pancreatic cancer via the media-
tion MR analyses. Our mediation MR analyses indicated 
that glucose traits and T2DM had no causal effect on 
gastrointestinal cancer risks, which is consistent with 
earlier genetic studies detected by Motoki Iwasaki et al. 
and Neil Murphy et al. [57, 58]. These results suggest that 
in the clinical treatment of patients with type 2 diabetes 
concomitant with ICC/pancreatic cancer, the use of sul-
fonylureas should be avoided due to their potential role 
in promoting ICC and pancreatic cancer. DPP4 was asso-
ciated with a lower risk of anal carcinoma in both two-
sample MR analyses and SMR analyses. In comparison, 
it was associated with a higher risk of ICC in two-sam-
ple MR analyses. Interestingly, a recent meta-analysis 
found that DPP-4 inhibitors were not associated with an 
increased risk of pancreatic cancer, which was similar to 
our findings [59]. This finding implies that in a clinical 
setting, the use of dipeptidyl peptidase IV inhibitors to 
control blood sugar levels should be avoided in diabetic 
patients at risk for ICC due to the DPP4 potentially pro-
moting the occurrence of ICC. Meantime, prior studies 
suggested that thiazolidinediones and glucagon-like pep-
tide-1 analogues were connected with cancer risk, which 
could further validate our findings that PPARG and 
GLP1R were associated with increased anal carcinoma 
and cardia cancer risk [60]. This signifies that in a clini-
cal setting, the use of thiazolidinediones and glucagon-
like peptide-1 analogues should be avoided when treating 
diabetic patients who are at risk for anal carcinoma and 
cardia cancer. SLC5A2 was associated with increased 
risks of cardia cancer, HCC, and pancreatic cancer, which 

was in line with the findings of an earlier study by Tang 
et al. [61]. This suggests that caution should be exercised 
when using sodium-glucose cotransporter inhibitors to 
treat diabetic patients, as it may potentially elevate the 
risk of gastrointestinal cancer occurrence. While certain 
observational studies have hinted at a potential asso-
ciation between insulin usage and cancer susceptibility, 
these conclusions necessitate further refinement given 
the incomplete consideration of variables such as dosage, 
time span, and duration of insulin exposure [62]. This 
could tacitly bolster the discovery that INSR is not cor-
related with gastrointestinal malignancies, implying that 
insulin may not be linked with the risk of gastrointestinal 
cancer.

There are several strengths in this study. First, a com-
prehensive MR analysis based on two-sample MR and 
SMR analyses was undertaken to investigate the associa-
tions of ten glucose-lowering drug targets with the risk 
of seven types of gastrointestinal cancer. Second, the 
strength of selected IVs was validated through positive 
control analyses which effectively supported the suitabil-
ity of these IVs as appropriate proxies. Third, mediation 
MR analyses and colocalization analyses were performed 
to explore the causalities of glucose-lowering drug targets 
and gastrointestinal cancer risks further. Fourth, the par-
ticipants in this study were of European descent, which 
could minimize potential bias in population stratification.

Several limitations also exist in this study. Firstly, this 
study cannot investigate the relationship between the 
expression of ABCC8 in blood and the risk of gastroin-
testinal cancer, as there is no effective eQTL for ABCC8 
in blood tissue. Secondly, this study only predicted the 
target effect of glucose-lowering drugs by including pro-
tein targets with sufficient records, whereas the off-target 
effect cannot be detected. Thirdly, this study was con-
ducted in populations of European ancestry, raising con-
cerns about the translating of these results to other races. 
It is critical to increase data collection in populations of 
non-European ancestry for target validation to inform 
drug development in general. Fourthly, gastrointestinal 
cancer incidence and evolution require a long cycle, and 
translating these genotype-phenotype associations into 
practical treatment strategies remains a significant chal-
lenge. Additionally, the database encompassing the gas-
trointestinal cancers implicated in this study lacks data 
about the staging and subtyping of the tumors, thereby 
precluding our ability to ascertain the specific stage of 
tumorigenesis at which the glucose-lowering drug targets 
exert their influence. This limitation may impact the gen-
eralizability of the study’s findings. Subsequent research 
endeavors could concentrate on tumor staging and typ-
ing to mitigate this limitation. Concurrently, some abnor-
mal OR values were detected in our study. This may due 
to the assessment of gastrointestinal cancer risk in our 
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study was based on changes in the target levels of each 
standard deviation glucose-lowering drug. While this 
approach takes into account the distribution of target 
levels within the study cohort, offering a standardized 
measure of the impact of fluctuations in target levels on 
risk, thus facilitating comparisons across different studies 
and populations, it is susceptible to significant variability 
within the standard deviation range of the studied glu-
cose-lowering drug targets. Such variability could lead to 
observing anomalously high or low odds ratios in statisti-
cal analyses, associated with gastrointestinal cancer risk. 
In addition, the small fraction of positive outcomes in 
the employed database could also lead to statistical bias. 
Consequently, this issue merits further discussion with 
the advent of more comprehensive GWAS databases.

In summary, we have revealed associations between 
glucose-lowering drug targets and the risk of gastroin-
testinal cancer, which might provide new ideas for devel-
oping drugs for gastrointestinal cancer treatment. The 
underlying mechanisms should be elucidated in further 
research, and the role of glucose-lowering drug targets in 
gastrointestinal cancer risks could be evaluated in basic 
or clinical trials.
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