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Abstract 

Crohn’s disease (CD) is regarded as a lifelong progressive disease affecting all segments of the intestinal tract and mul-
tiple organs. Based on genome-wide association studies (GWAS) and gene expression data, transcriptome-wide 
association studies (TWAS) can help identify susceptibility genes associated with pathogenesis and disease behavior. 
In this review, we overview seven reported TWASs of CD, summarize their study designs, and discuss the key methods 
and steps used in TWAS, which affect the prioritization of susceptibility genes. This article summarized the screening 
of tissue-specific susceptibility genes for CD, and discussed the reported potential pathological mechanisms of over-
lapping susceptibility genes related to CD in a certain tissue type. We observed that ileal lipid-related metabolism 
and colonic extracellular vesicles may be involved in the pathogenesis of CD by performing GO pathway enrichment 
analysis for susceptibility genes. We further pointed the low reproducibility of TWAS associated with CD and dis-
cussed the reasons for these issues, strategies for solving them. In the future, more TWAS are needed to be designed 
into large-scale, unified cohorts, unified analysis pipelines, and fully classified databases of expression trait loci.
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Introduction
Genome-wide association studies (GWAS) have been 
considerably successful in the past decade. From 2005 
to 2022, approximately 400,000 single-nucleotide 

polymorphisms (SNPs) associated with human traits 
were included in the NHGRI-EBI GWAS Catalog [1, 2]. 
However, a limitation of GWAS is that approximately 
90% of these crucial signals are located in noncod-
ing regions [3]. Transcriptome-wide association study 
(TWAS) is a bioinformatic approach that integrates 
large-scale GWAS, uses expression quantitative trait 
loci (eQTL) datasets to predict gene expression levels, 
and attempts to identify disease-related genes and verify 
associations of interest. This is important for exploring 
specimens that are not easily collected and phenotypes 
rarely collected with genetic data. TWAS can assess the 
association between variation in gene expression levels 
and phenotypic variation based on different population 
genotype and tissue-specific gene expression data—an 
additional analytical approach to GWAS data—and may 
be used to screen candidate pathogenic genes.
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Crohn’s disease (CD), a type of inflammatory bowel 
diseases (IBD), is a lifelong progressive disease with a ten-
dency of symptoms to flare up or subside as the condition 
alternates between active and remission periods [4]. All 
segments of the gastrointestinal tract can be affected. The 
Montreal classification introduced subgroups of CD by 
considering the location of the disease, age of onset, and 
phenotype [5]. In recent decades, many researchers have 
believed that the pathogenesis of CD is an irrepressible 
immune response to luminal bacterial antigens. Immune 
cells participate in this process when infiltrating the gut 
of CD patients. Therefore, the onset of CD involves the 
immune system, segments of the digestive tract, intesti-
nal tract contents, and multiple organs, which experience 
complications.

Over the past decades, GWAS have identified over 240 
IBD susceptibility genes or loci outside the human leuko-
cyte antigen region, and 37 of these genes are specific for 
CD [6, 7]. However, many of the polymorphic sites asso-
ciated with CD are located in non-transcribed regions 
and do not cause amino acid substitutions or functional 
mutations, nor do they exhibit disease susceptibility. For 
instance, the GWAS results of Japanese patients with CD 
showed that among the 11 susceptibility gene loci associ-
ated with CD, only rs76418789 located in IL23R had an 
amino acid substitution [8]. The other 10 polymorphic 
sites may be located in these disease-susceptible regions, 
thereby affecting the expression of nearby genes and par-
ticipating in the occurrence and development of CD [9]. 
However, the function of these SNPs in the occurrence 
and development of CD remains unclear. Thus, TWAS 
must be conducted to provide a biological context for 
interpreting disease risk loci by nominating candidate 
susceptibility genes not only in GWAS risk regions but 
also in other regions of potential that cannot be detected 
by current GWAS.

Therefore, we aim to provide an overview of previous 
TWAS on CD and summarize the databases and meth-
ods used in these studies. This review also discusses the 
overlapped susceptibility genes in different tissues and 
the potential pathway involved in CD by GO functional 
analysis, which may provide clues to explore the patho-
genesis, diagnosis, and classification of CD.

Heterogeneity across TWASs of CD
There were seven TWASs for CD overviewed in this 
review with details in Table  1. Four of these studies 
conducted TWA in single tissue types of Japanese [9], 
Korean [10], American [11], and British [12] populations. 
In particular, the Japanese study also used a cross-tissue 
eQTL database to explore susceptibility genes based on 
genotypic data from the Japanese population [9]. The 
other three studies used cross-tissue and multi-country 

eQTL designs [13–15]. The selection of GWAS datasets, 
eQTLs, sample sizes, tissue types, and screening criteria 
varied among previous TWAS (Fig. 1).

Selection of genotype data
Large-scale genotype data provide fundamental material 
for TWAS. Many multi-country GWASs reported to be 
associated with CD provide investigators with a variety of 
options for data selection [16]. As the genetic structure 
of disease-causing mutations varies in different popula-
tions, the effect sizes and risk prediction scores derived 
for SNPs in one population may not be directly generaliz-
able to other populations [17, 18]. CD has a great ances-
tral dependency by comparing the GWAS data from 
East Asian and European ancestries [19]. As yet, most of 
the available genetic information is based on data from 
populations of European ancestry [20–22]. Key variants 
that are low in frequency or absent entirely in European 
populations are likely to be missed when studied in other 
populations, especially if the variant is ethnic-specific, 
leaving additional blind spots for future studies [23, 24]. 
Therefore, considering the study population during the 
study design stage, caution should be exercised in geno-
type dataset selection. Most of the 7 TWAS selected con-
sistent races to establish this relationship. For example, 
the Japanese and Korean TWAS selected genotype and 
expression populations from their countries. Dai et  al. 
chose genotyped data of European ancestry as the GWAS 
population and 24 CD patients and 23 healthy controls 
from the IBD–BIOM inception cohort from UK [12, 
25]. Gettler et al. used both the genotype and expression 
populations of the Childhood CD Study derived from the 
RISK cohort [11]. However, the selection of a consistent 
population race may limit the sample size of the study.

Selection of eQTL data
eQTL datasets are constructed using statistical models 
based on genotype and tissue expression data from the 
same population, which is an effective tool for fine-map-
ping GWAS that identifies SNPs associated with complex 
phenotypic traits and can be used to improve the herita-
bility explained by identifiable genetic factors and to bet-
ter understand the biological basis of complex traits [26].

Previous TWAS exhibited acute instability when 
choosing various eQTL datasets based on different tissue 
types. Since eQTL limited the specific tissue to find dif-
ferentially expressed genes, overlapping the same GWAS 
database with eQTLs of different tissues could result in 
different results of TWAS.

eQTLs are race-specific in several aspects. (1) For a 
specific phenotype, causal genes might be distinct across 
ethnicities. (2) Many polymorphisms were rare in some 
races but common in others, which could ignore some 
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Table 1 Summary of the basic information of TWAS studies in CD

CD Crohn’s disease, UC ulcerative colitis, IBD inflammatory bowel disease, HC healthy control, GWAS genome-wide association studies, TWAS transcriptome-wide 
association studies, eQTL expression quantitative trait loci; PGC Psychiatric Genomics Consortium, IIIBDGC International Inflammatory Bowel Disease Genetics 
Consortium, GEO Gene Expression Omnibus database, BarcUVa-Seq The University of Barcelona and University of Virginia RNA sequencing project; CEDAR correlated 
expression and disease association research, STARNET Stockholm-Tartu Atherosclerosis Reverse Networks Engineering Task study, S-PrediXcan Summary-PrediXcan, FC 
fold change

Year GWAS data eQTL Methods Associated 
tissue type

Association 
screening 
criteriaCountry Database N Country Tissue type of 

RNA-seq
N

Diez-Obrero
et.al. [15]

Europe IBD GWASs 
of European 
ancestries

IBD: 25,042 
HC: 34,915

Spain 
(BarcUVa-
Seq)
Europe 
(CEDAR)

Ascending 
colon

HC:138 S-PrediXcan Ascending 
colon,
Transverse 
colon,
Descending 
colon

P Bonfer-

roni < 0.05

Transverse 
colon

HC:143

Descending 
colon

HC:164

Uellendahl-
Werth et. Al. 
[13]

15 countries 
cross Europe, 
North 
America, 
Australia

Ten case–
control 
GWAS 
datasets

CD: 21,771 
HC: 41,206

US (GTEx), 
Sweden 
(STARNET), 
UK (BLUE-
PRINT)

Small intestine non‐IBD 77 UTMOST Small intestine,
Sigmoid colon,
Transverse 
colon,
Whole blood,
CD14 + Mono-
cytes,
CD16 + Neu-
trophils,
Naïve T cell

P Bonfer-

roni < 0.05Sigmoid colon non‐IBD 
124

Transverse 
colon

non‐IBD 
169

Whole blood non‐IBD:338

CD14 + Mono-
cytes, 
CD16 + Neu-
trophils, Naïve 
T cell

non‐IBD 
338

Kakuta et.al. 
[9]

Japan CD GWASs 
of Japanese

CD: 713 HC: 
2063

Japan Intestines active CD: 
15 active 
UC: 5

GWAS-eQTL 
analysis

Effector 
memory T cells
from inflam-
mation sites

Susceptibility:
P FDR < 0.05 
Candidate: P 
FDR < 0.1

US (GTEx) Sigmoid colon HC: 203 FUSION Sigmoid colon,
Transverse 
colon,
Small Intestine,
Whole blood,
EBV trans-
formed 
lymphocytes

Transverse 
colon

HC: 246

Small Intestine HC: 122

Whole blood HC: 369

EBV trans-
formed 
lymphocytes

HC: 117

Jung et.al. 
[10]

Korea CD GWAS 
of Korean

CD: 899 HC: 
3805

Korea Peripheral 
blood

CD:101 FUSION Whole blood P Bonfer-

roni < 0.05

Gettler et.al. 
[11]

Cross coun-
tries

15 GWAS 
of CD and/
or UC

CD: 6299
HC: 15,148

America 
(GEO)

Terminal ileum CD: 213, UC: 
50, Unspeci-
fied IBD:4, 
HC: 35

COLOC Terminal ileum P FDR < 0.1

Dai et.al. [12] Europe IIIBDGC CD: 5956
HC: 21,770

British Whole blood CD: 24 HC: 
23

TESA 
MetaXcan

Terminal ileum
Whole blood
Spleen

FC ≥ 1.5 
or ≤ 0.67 P 
Pascal < 0.05

Cheng et. al. 
[14]

Europe IBD GWAS 
of European 
ancestries

CD: 18,405
UC: 14,308
HC: 34,241

Cross coun-
tries (GEO)

Intestinal IBD: 134, 
non‐IBD: 
134

FUSION Sigmoid colon,
Transverse 
colon, Whole 
blood/ Periph-
eral blood, 
Small Intestine 
terminal ileum
EBV trans-
formed 
lymphocytes

P-value < 0.05 
& FC > 1.5

Whole blood IBD: 75, 
HC:12

Peripheral 
blood

HC:42, 
UC:26, 
CD:59
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associations between SNP and expression in the appli-
cation. (3) The degree of association between a specific 
SNP and the expression level in one race might also dif-
fer from that in others. Owing to these diversities, when 
utilizing the same GWAS dataset, substantial discrepan-
cies exist in the conclusions drawn among different stud-
ies conducted in different countries. As can be seen in 
Additional file 1: data S1, for the same TWAS methods, 
it tends to screen out more genes with a consistent eth-
nicity of GWAS population and eQTL population. For 
example, for whole blood, the Japanese study used GTEx 
(eQTL from the United States) to screen out only 1 gene, 
and the Korean study used their own eQTL to screen out 
a total of 21 genes, which also suggested that eQTLs are 
race-specific and the consistent ethnicity of GWAS and 
eQTL populations may increase the accuracy of expres-
sion prediction.

Whether eQTLs are disease-specific is uncertain [27]. 
Because epigenetic modifications differ according to the 
disease state [28], the relationship between expression 
mapping and genotype could also be affected. In our 

review, most TWAS combined the expression data of 
healthy individuals and CD patients into the same eQTL 
establishment. Uniquely, the Japanese study selected data 
from CD and UC patients to construct its own eQTL 
dataset of IBD [9], which may interfere with the homo-
geneity of eQTLs in expression prediction and further 
association analysis between CD patients and healthy 
controls though reduce the test power concomitantly. 
The relationship between eQTL and GWAS associations 
at the same locus could be unpredictable for different dis-
ease types. A previous study of non-alcoholic fatty liver 
disease used the disease-specific eQTL to pinpoint indi-
viduals that harbor specific genotypes more or less sus-
ceptible to the disease [29]. Thus, using disease-specific 
eQTL to establish the relationship in patients is worth 
investigating.

The resolution is low and unreliable with a sample size 
of 100 [27], though the sample size of the original eQTLs 
in most CD TWASs did not exceed 50 pairs. Various pub-
lic eQTL databases are available to explore CD, including 
the Genotype-Tissue Expression (GTEx, https:// www. 

Fig. 1 Workflow of TWAS in CD. The initial stage of TWAS design should consider characteristics of CD such as disease behavior, disease location, 
and disease status, and select GWAS datasets and eQTL populations with specific CD subtypes to ensure homogeneity within studies. TWAS 
could choose the public eQTL database or establish an original eQTL. The large-scale genotype dataset is used to predict expression data by eQTL 
to associated with CD related outcomes. CD Crohn’s disease, TWAS transcriptome-wide association studies, SNP single nucleotide polymorphism, 
eQTL expression quantitative trait loci

https://www.genome.gov/Funded-Programs-Projects/Genotype-Tissue-Expression-Project


Page 5 of 19Jia and Shen  Cell & Bioscience           (2024) 14:29  

genome. gov/ Funded- Progr ams- Proje cts/ Genot ype- Tis-
sue- Expre ssion- Proje ct), eQTLGen (https:// www. eqtlg 
en. org/ phase1. html), and the Blood eQTL browsers 
(http:// genen etwork. nl/ blood eqtbr owser/). Although 
GTEx has been in development for 10  years, it is still 
worth using because its data is relatively stable and still 
update yet with a wide range of tissue types and sample 
size. As the largest eQTL database, GTEx data included 
genotype data from 714 donors and 11,688 RNA-seq 
data from 53 tissue sites and two cell lines, with sufficient 
assay power to establish eQTLs in 48 tissue types/sites. 
Although the database only included the data of a healthy 
population, it could be combined with the expression 
database of CD patients for further analysis. As GTEx 
included data/patients solely from the United States, 
its utility is limited for other countries’ populations. 
eQTLGen included 37 datasets from 31,684 individu-
als, including cis-eQTL, trans-eQTL, eQTS, and single-
cell eQTLGen Consortium; however, only blood samples 
were used [30].The Blood eQTL Browser, which has 5311 
individuals’ data, also included only blood samples [31], 
which limited the exploration of other tissue types more 
likely to be causally related to CD. Therefore, a database 
with more comprehensive and specific classifications 
across tissue types, diseases, and ethnicities is warranted 
to facilitate the use of multiple disease-targeting tissue 
types in future large-scale eQTL studies and to provide 
a unified platform for mining more robust associations in 
next-generation studies.

Selection of software or methods of TWAS
Integrating GWAS and expression data in TWAS could 
performed by various tools, including PrediXcan for 
individual-level GWAS data, Fusion and S-PrediXcan 
for summary-level GWAS data, closely related meth-
ods, including SMR and HEIDI, based on Mendelian 
randomization (MR), and GWAS–eQTL colocalization 
methods, including Sherlock, coloc, QTLMatch, eCaviar, 
enloc, and RTC, for detecting genes whose expression 
regulated by the same GWAS hit [32, 33].

Of the seven CD TWAS, five TWAS used commonly 
used methods such as Fusion, PrediXcan or MetaXcan 
to integrate GWAS and expression data. MetaXcan is an 
expanded method calculating the results PrediXcan with-
out using individual data [33].

Besides, Uellendahl-Werth et.al conducted cross-tis-
sue TWAS associated with gut-brain-axis performed 
by UTMOST (multivariate-response penalized regres-
sion models) to predict cross-tissue gene expression 
[13]. And they observed that UTMOST could get more 
moderate associations and effectively select predictive 
cis eQTL variants compared with S-PrediXcan (logistic 
regression model) and FUSION (Bayesian linear mixed 

model) [13]. When comparing across studies, the genes 
screened by ULMOST and MetaXcan rarely overlap with 
those screened by traditional methods (Additional file 1: 
Data S1), which suggests that the methods bias was not 
the main result responsible for the poor reproducibility. 
Since Uellendahl-Werth et  al. did not present the asso-
ciated genes screened by S-PrediXcan and FUSION in 
their results, whether method bias contributed to the low 
repetition rate is uncertain.

Gettler et  al. [11] used the coloc R package, which, 
as Wainberg et  al. previously mentioned, is vulnerable 
because co-regulation bias makes it difficult to distin-
guish causality based on GWAS and expression data [32, 
34]. Hukku et al. compared PrediXcan and GWAS–eQTL 
colocalization methods and found that the GWAS–eQTL 
colocalizations may have a higher specificity and limited 
sensitivity, and PrediXcan could be possible to report 
more results with difficult in biological interpreting [35]. 
Therefore, caution should be used when interpreting 
TWAS test results derived from controversial methods, 
as some of them may simply be false hits. [32].

Heterogeneity of various tissue types selected 
in eQTL
All segments of the digestive tract, including the systemic 
immune inflammatory response, could be involved in 
CD. Previous reviews have summarized the differences 
in the epidemiology, genetics, histology, microbiology, 
and immunology of ileal and colic celiac disease, suggest-
ing that CD at different lesion sites should be regarded 
as distinct subtypes [36, 37]. Each segment of the diges-
tive tract, immune cells, and other complex organs can 
be used as follow-up tissues to explore the unique pathol-
ogy and etiology of CD. To date, only blood, immune 
cells, colon tissue, and ileum tissue have been reported in 
previous TWAS for CD. In this section, several biospeci-
men-related issues of utmost concern are discussed. Sus-
ceptibility genes associated with CD reported in TWASs 
in different tissue type were took union set and summa-
rized in Additional file 2 Data S2. The overlapped suscep-
tibility genes between TWASs are visualized in Fig. 2.

In this review, GO functional analyses of all suscep-
tibility genes associated with CD in each tissue type 
(Shown in Additional file 2: Data S2) were conducted 
by “clusterProfiler” and “pathview” packages of R 
software [38, 39]. Since the logFC of these associated 
genes were not available, the GO function enrichment 
analysis was roughly conducted with a random assign-
ment of foldchange (1 or -1), which can only suggest 
relevant functional enrichment and cannot indicate 
up-regulation or down-regulation. The top 10 results 
for significance (P value < 0.05) of Cellular Compo-
nent (CC), Molecular Function (MF), and Biological 

https://www.genome.gov/Funded-Programs-Projects/Genotype-Tissue-Expression-Project
https://www.genome.gov/Funded-Programs-Projects/Genotype-Tissue-Expression-Project
https://www.eqtlgen.org/phase1.html
https://www.eqtlgen.org/phase1.html
http://genenetwork.nl/bloodeqtbrowser/
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Process (BP) are shown in Fig. 3. And the total signifi-
cant results were shown in Additional file 3 data S3.

Digestive tissue
Clinical inflammation in CD can infect the entire gas-
trointestinal tract from the mouth to the anus [40]. 
The intestinal epithelium is a single layer of columnar 
epithelium that produces mucus and antimicrobial fac-
tors and can establish a buffer zone between the lumi-
nal contents and itself [4]. Destruction of the intestinal 
epithelium may cause bacterial invasion and lead to 
the occurrence of CD. Thus, in CD studies, epithelial 
lesion tissue is commonly seen as the top-priority cas-
ual biospecimen [41].

A comparative study observed that 19 hub genes 
were differentially expressed between the colon and 
ileum [42], suggesting that the tissues of different 
intestinal segments should be explored separately. Tak-
ing Th17 cells—identified in the pathogenesis of IBD—
as an example, the genes related to Th17 pathways 
involved in CD were inconsistent between the colon 
and ileum, and the regulation (up or down) of mRNA 
expression levels of these genes in the colon and ileum 
lesion tissue from CD patients were also inconsistent 
[43–49]. These data suggest that gene expression pat-
terns are significantly distinct at different intestinal 
sites.

Ileum
The ileum, filled with abundant bile and digestive juice, is 
a relatively germ-free environment. A recent study found 
a trace amount of microbiota in the ileum, which differed 
radically from colonic microbiota [50]. A cultivable bac-
terial density of approximately 104 CFU/mL in the ileum 
was also much less than the 1011–1012 CFU/mL in the 
colon [51]. This might indicate that the ileum and colon 
are situated in different external environments, which 
could stimulate differential gene expression.

Five TWASs selected ileum as etiological tissue of 
CD. ATG16L1 [11, 13], ERAP2 [11–13], GBAP1 [11, 12], 
GSDMB [11, 12], RNASET2 [11, 12], SLC22A5 [11, 12], 
and ZNF300P1 [11, 12, 14] in the ileum were susceptibil-
ity genes overlapped between at least two TWASs.

ATG16L1 has been reported as an autophagy-related 
gene [6] and a major risk polymorphism in CD [52]. In a 
genotypic study in a U.K. population, the strongest asso-
ciation was observed for the ATG16L1 risk variant with 
ileal disease [53]. And William J. Sandborn commented 
that ATG16L1 genotype is associated with response to 
anti-TNF therapy. The ATG16L1 mutation results in 
altered function and survival of highly specialized secre-
tory epithelial Paneth cells located in small intestinal 
crypts, resulting in decreased secretion of antimicrobial 
proteins [54, 55]. The CD-associated ATG16L1 mutation 
observed in animals is associated with low clearance of 
Yersinia enterocolitica and adherent-invasive Escherichia 

Fig. 2 Summary of susceptibility genes associated with CD in different tissue types founding in TWAS. The bold gene names were the susceptibility 
genes at least found in two TWASs
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coli, which further increase the production of inflamma-
tory cytokines [56, 57]. And several studies have reported 
that the presence of the adherent-invasive E. coli abnor-
mally colonize the ileal mucosa of CD patients [58]. Thus, 
the ATG16L1 mutation may be involved in the pathologi-
cal process of CD by causing intestinal barrier disruption. 
The expression of ATG16L1 could be targeting regulated 
by a variety of micro-RNA, including miR-106b found in 
intestinal epithelial HCT116 cells, and four microRNA 
(miR-106a [59], miR-874 [60], miR-410 [61], and miR-
223 [62]) found in cancer or other inflammation disease, 
which may provide pharmaceutical strategies for devel-
oping small molecule drugs for CD.

ERAP2 shows limited polymorphism coding for 
Lys392Asn change, which affects the activity of amin-
opeptidases [63]. ERAP2 forms a repertoire of ligands 
for HLA class I, involving in the processing of MHC-I 
ligands antigen presentation and the antigenic response 
of infection [64], which associated with various inflam-
mation diseases, such as IBD, ankylosing spondyli-
tis, birdshot chorioretinopathy, Behcet’s disease and 

psoriasis [65–67]. In this review, ERAP2 is also observed 
an overlapping susceptibility gene in colon and blood, 
which has potential application in clinical screening and 
diagnosis of CD. Accumulating evidence suggests that 
ERAP2 is tractable targets for the regulation of immune 
responses [68]. In pancreatic cancer cells, gemcitabine 
could increase the mRNA and protein levels of ERAP2 
[69]. However, no drugs targeted ERAP2 in CD yet.

GBAP1 is a pseudogene for the glucocerebrosidase 
(GBA) gene encodes for the enzyme glucocerebrosidase. 
Previous studies have demonstrated that GBAP1 can act 
as a competitive endogenous RNA to competitively bind 
with microRNAs in gastric cancer [70, 85] and Parkin-
son’s disease [71] through functional prediction, thereby 
promoting the expression of GBA. However, the role of 
glucocerebrosidase in CD has not been reported.

GSDMB, a member of the Gasdermins family, was 
originally known for its role in pyroptosis [72], and most 
prevalently expressed in gastrointestinal-associated 
organs, including stomach, small intestine and colon 
[73]. Studies have found that the expression of GSDMB is 

Fig. 3 The top 10 results obtained from GO functional analyses of all susceptibility genes associated with CD in each tissue type. BP biological 
process, CC cellular component, MF molecular function
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increased in the inflammatory mucosa of ileum and colon 
of CD patients, and the related genes are enriched in 
cell proliferation, migration, and adhesion other than of 
pyroptosis [74]. As an inducer of GSDMB, methotrexate 
could induce upregulation of IEC-derived GSDMB-FL 
and translocation to the plasma membrane, but not lytic 
cell death in undifferentiated HT-29 cells. And the devel-
opment of methotrexate in CD tarfeting GSDMB has 
entered phase III clinical trials (NCT00132899, Table 2).

RNASET2 is the only human member of the Rh/
T2/S family of acidic hydrolases [75]. An eQTL analy-
sis observed an association between decreased RNA-
SET2 and TNFSF15-mediated IFN-γ production, a key 
mediator of mucosal inflammation [76]. The circulating 
RNASET2 protein levels was decreased in CD patients 
compared with healthy control [75]. In cancer studies, 
RNASET2 has been found to be involved in recruitment, 
activation, and polarization of monocytes and mac-
rophages [77, 78]. However, the role of RNASET2 in CD 
needs to be further investigated.

SLC22A5 code organic cation transporters (OCTN2), 
which was widely expressed and also the susceptibility 
genes observed in colon and blood (can be seen below). 
OCTN2 is mainly localized at the brush-border of api-
cal membranes of intestinal epithelial cells and has a high 
transport capacity of L-carnitine in the small intestine, 
which is vital for β-oxidation of long-chain fatty acids in 
the mitochondria [79]. Several studies have observed the 
expression of OCTN2 downregulated in inflamed sites 
compared with non-inflamed sites both in patient intes-
tinal tissue and mice model [80, 81]. And the PPARα/γ 
may act as transcription factors in the expression of 
OCTN2 and further regulate inflammatory response 
[80]. OCTN2 also could transports drugs, such as TEA, 
ipratropium, prednisolone, and beta-lactam antibiotics 
[82–84].

ZNF300P1 encode a long intergenic noncoding RNA, 
suggesting its primary function may be to regulate 
expression of other genes [85]. ZNF300P1 was found 

upregulated in ileum, rather than in colon or whole 
blood [86]. Besides, ZNF300P1 may alter tissue-specific 
expression of TNF and a range of additional genes pre-
viously implicated in colitis and/or autophagy. Besides, 
ZNF300P1 is reported to regulate polarity, proliferation, 
migration, and adhesion in ovarian epithelial cells [87], 
suggesting that it may similarly participant in intestinal 
epithelial functions.

The pathways of susceptibility genes associated with 
CD in ileum were enriched in lipid-related metabolism 
(Fig.  3A). Previous observational studies have reported 
a distinct lipid profile in CD patients compared with 
healthy population [88, 89]. And growing evidence 
showed emulsifying omiga-3 fatty acids maybe a poten-
tial supplementary in maintaining remission of CD 
patients [90, 91]. An epidemiological study observed that 
lower total cholesterol levels, LDL-C, and HDL-C were 
associated with higher incidence of CD, but not UC [92]. 
Coincidentally, another study also observed that more 
lipid components significantly changed in CD patients 
than in UC patients compared with healthy population 
[93]. Considering that ileal lesions are present only in 
CD, the different association of lipid metabolism with 
these two types of IBD may be due to the location of the 
lesion in the ileum. However, A shotgun lipidomics study 
of noninflammatory ileal biopsy tissue identified only 
phosphatidylinositol 16:0/18:1 was different between 
healthy controls and CD patients, although the sample 
size was small [89]. Additional future exploration will be 
necessary to confirm this observation.

Colon
Unlike the ileum, the colon has a substantial bacterial 
load, which plays a crucial role in regulating gut health. 
Changes in the abundance of specific bacteria have 
been used as biomarkers for screening gastrointesti-
nal disorders, including IBD, irritable bowel syndrome, 
adenomatous colonic polyps, and colorectal cancer. 
Changes in the abundance of some bacteria have been 

Table 2 Targeted drugs had been developed of overlapped genes

CD Crohn’s disease, UC ulcerative colitis

Genes Target Regulatory factor/drug Disease Developed process Clinical trials. 
gov identifier

GSDMB GSDMB Methotrexate CD A Phase III randomized, placebo-controlled, double-blind NCT00132899

IL23R IL23 p19 Brazikumab CD The Phase 3 trial was terminated NCT03961815

Risankizumab CD In phase 3, randomized, placebo-controlled, double-blind trial NCT06063967

Mirikizumab CD In Phase 3 open-label trial NCT04232553

Guselkumab CD In Phase 3 randomized, placebo-controlled trial NCT05347095

IL23R JNJ-67864238 CD Study terminated early as futility criteria met NCT04102111

TNFSF15 TNFSF15 PF-06480605 UC Phase 2a single-arm trial NCT02840721
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used as biomarkers to screen for IBD and other gastro-
intestinal diseases [94–96]. A TWAS conducted in the 
gut microbiota has detected multiple tissue-specific 
candidate genes in the sigmoid and transverse colon, 
respectively, such as TOB2P1 for Enterococcaceae in 
sigmoid colon, WDR6 for Coprococcus in sigmoid 
colon, and KCNIP3 for Veillonellaceae in transverse 
colon [97]. An association study using bioinformatic 
analysis in colorectal cancer also observed two overlap-
ping pathways, the bile secretion and steroid hormone 
biosynthesis pathways, enriched by operational taxo-
nomic units (OTUs) and gene expression patterns in 
colon tissue, respectively [98]. These results indicate a 
close cross-talk between the intestinal microbiota and 
the colon transcriptome. Thus, the results of colon 
TWAS could identify potential genes stimulated by the 
microbiota and provide hints to explore the colon-spe-
cific pathology of CD.

Four TWASs included colon as casual tissue, and each 
study included at least 2 segments of colon. In several 
studies, susceptibility genes observed in the sigmoid and 
transverse colon almost overlap. In Japanese population, 
among five genes observed in colon, four genes, including 
ERV3-1, NPIPB9, ZNF713, and WDR31 overlap between 
sigmoid and transverse colon [9]. However, none of these 
genes overlap with the results of other reports. For the 
cross-tissue TWAS, Uellendahl et al. found that 18 genes 
were differentially expressed in the sigmoid colon, and 
31 genes were differentially expressed in the transverse 
colon [13]. Seven genes were overlapped between two 
segments of colon. In European ancestries, Cheng et  al. 
found that ZNF300P1 and MICB were significantly dif-
ferentially expressed in both the sigmoid and transverse 
colon among the 3 susceptibility genes in colon [14]. In 
a meta-analysis, Virginia et al. conducted TWAS in three 
colon segments, including the ascending, transverse, 
and descending colon. And three colon segments had 11 
overlapping genes, including SLC22A5, GSDMB, ENTR1, 
ERAP2, C4A, FUT2, UBA7, GSDMA, FLRT3, RBM6, and 
HLA-C [15]. In the comparison between Uellendahl’s and 
Virginia’s studies, ERAP2 and IL23R in the transverse 
colon were observed in both. None of these susceptibility 
genes was replicated across studies in the sigmoid colon, 
because two of these studies found a relatively small 
number of genes (Additional file 2: data S2) [9, 14].

Among all susceptibility genes reported in colon 
regardless of which segments, ERAP2 [13, 15], Interleu-
kin-23 receptor (IL23R) [13, 15], Major histocompatibil-
ity complex class I chain- related gene B (MICB) [14, 15], 
Post-GPI attachment to the proteins 3 (PGAP3) [13, 15], 
and SLC22A5 [14, 15] were overlapped between TWASs. 
ERAP2 and SLC22A5 were also overlapped with ileum 
discussed above.

IL23R is one of popular genes affects disease suscepti-
bility and highly expressed on cell membrane of memory 
T cells and other immune cells, such as natural killer 
cells, monocytes, and dendritic cells [99]. IL23R interacts 
with IL-23, regulating the of immune activity and against 
infection by bacteria and viruses [99]. And the functional 
IL23R pathway polymorphisms play a role in modulating 
neonatal development of intestinal tolerance and bacte-
rial colonization [100]. There were several of humanized 
monoclonal IgG, including Brazikumab, Risankizumab 
and Mirikizumab, could binds p19 of IL23 has entered 
clinical trial, and most of them has enter phase 3 clinical 
trials (Table 2). Due to the presence of protective or dis-
ease-associated variants in IL23R and related genes, only 
one locally acting oral peptide (JNJ-67864238) directly 
antagonizing IL-23R was found but was recently termi-
nated after meeting criteria for futility [NCT04102111] 
[101].

MICB almost exclusively expressed in the intestinal 
epithelium [102]. MICB was reported in many human 
cancers via immune evasion [103–105]. And the immune 
cells, including natural killer (NK) cells and T cells, 
involved in MICB were also connected with CD. How-
ever, the functions of MICB in CD were still lack of evi-
dence. In addition, MICB has only been reported as a 
CD susceptibility gene in whole blood, but not in blood 
immune cells, which needs further study.

PGAP3 is ubiquitously expressed and code a Glyco-
sylphosphatidylinositol (GPI)-specific phospholipase 
involving in lipid remodeling of GPI-anchored pro-
teins[106]. The function of PGAP3 was most reported 
in brain morphogenesis and mental development [107, 
108]. However, the mechanism of PGAP3 in CD was still 
under studied.

To be noted, the susceptibility genes associated with 
CD in colon enriched in the cell component of vesicle 
membrane (Fig.  3B), including exosomes, microvesi-
cles and apoptotic bodies from endosomes, plasma 
membrane, plasma membrane/endoplasmic reticulum, 
respectively [109]. And the vesicle may be related with 
bacteria–host communication, which may involve in 
internalization of bacterial extracellular vesicles of epi-
thelial cells [110]. Endocytic routes of intestinal epithe-
lial cells, including macropinocytosis, clathrin-mediated 
endocytosis and lipid raft-mediated processes, may 
involve in CD pathogenesis [109]. Furthermore, extracel-
lular vesicle (EV), mainly secreted by immune cells and 
intestinal epithelial cells, could package double-strand 
DNA (dsDNA), activating the STING pathway to pro-
voke inflammatory responses [111]. Increasing evidence 
found EVs containing nucleotides have the potential to be 
biomarkers for the diagnosis of UC or general IBD [112–
115]. And EVs may have therapeutic value for IBD [116]. 
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However, the mechanism of EVs in the pathogenesis of 
CD remains to be further explored.

Immune cells
The clinical symptoms of CD, including fever, diarrhea, 
and abdominal pain, mainly depend on the site of inflam-
mation [117]. Various combinations of immune cell types 
and their locations may also indicate discrepant bio-met-
abolic pathways and pathogeneses.

Intestinal immune cells
CD development involves a combination of environmen-
tal, microbial, and immune-mediated factors in individu-
als with susceptibility gene mutations [118]. Population 
studies have reported the highest incidence of CD activ-
ity in areas with high bacterial counts (colon) and relative 
retention of fecal material (terminal ileum and rectum) 
[119, 120]. Once bacteria destroy a single layer of colum-
nar epithelium of the gut, the mucus and antimicrobial 
factors produced by the intestinal epithelium cannot 
defend against bacterial invasion [121], and the immune 
response occurs first in intestinal tissue. Thus, immune 
cells in the intestine could reflect the ultimate origin of 
CD.

At present, only Japanese studies have performed 
TWAS on immune cells in intestinal tissues using 
their own genome-wide and transcriptome data, and 
only TNXA was found to be significantly differentially 
expressed in CD4 + effector memory T cells (TEM cells) 
derived from lamina propria mononuclear cells (LPMCs) 
in the inflammatory sites of intestinal tissues [9]. 
Epstein–Barr virus (ERV) 3–1 in EBV-transformed lym-
phocytes was identified as a susceptibility gene for CD in 
Japanese patients using the GTEx database [9]. However, 
this gene was not screened in the populations of Western 
countries [14]. Owing to the small sample size, the study 
also broadened the significance level and defined RAP1A 
as a candidate gene associated with CD (FDR < 0.10) [9].

Immune cell in blood
As the disease progresses, lesion locations may change 
or increase, and the risk of complicated diseases, such 
as rectal disease and perianal lesions, also increases. The 
metabolites of the microbiota associated with CD partici-
pate in immune progress, which can provoke the autoim-
mune response of the whole body [122]. Therefore, the 
genetics of immune cells in the circulatory system could 
also reflect the pathogenesis of CD.

There were three studies include blood immune cells 
as targeted tissue type. ATG16L1, NOD2, ZGLP1, BRD7, 
CISD1, and SNX20 were significantly related to CD in 
multiple immune cells, including naïve CD4 + T cells, 
CD14 + monocytes, and CD16 + neutrophils, in the same 

TWAS [13]. No gene was found to be significantly associ-
ated with CD using gene expression data from the Gene 
Expression Omnibus database to explore related genes in 
EBV-transformed lymphocytes, [14]. Because the diver-
sity of immune cell types varies widely, no overlapped 
susceptibility gene in blood immune cells were observed 
cross different TWASs.

Susceptibility genes in blood immune cell reported in 
TWASs are involved in the activation of immune cells 
and the maintenance of gastrointestinal epithelium 
(Fig. 3C), suggesting that immune cells may tend to func-
tion in the gut, where they may be more susceptible to 
CD.

Blood
Whole blood is a heterogeneous tissue that includes a 
variety of immune cells, including lymphocytes, neutro-
phils, monocytes, and macrophages, with unique and 
disease-related roles in CD pathology. Extensive studies 
of whole blood or lymphoblasts are often used to maxi-
mize test power; however, they are mechanistically less 
relevant to disease. Owing to the relatively low cost of 
DNA and RNA extraction from whole blood, choosing 
whole blood for early exploration with a large sample size 
is feasible.

In a multi-tissue analysis using the GTEx in humans, 
compared with other tissue types, whole blood exhib-
ited the fewest detected transcribed regions [123]. Whole 
blood seems to be a tissue type with less disease-speci-
ficity. However, it is also the most accessible biospeci-
men in clinical practice and could thus obtain sufficient 
test power with a large sample size. The differentially 
expressed gene is most likely to have the potential to be a 
biomarker and could be extensively used in clinical prac-
tice to help earlier diagnosis and disease classification.

Among seven TWASs associated with CD, five TWASs 
selected whole blood as targeted tissue. And among total 
144 susceptibility genes in whole blood related with 
CD, ATG16L1 [12, 13], Caspase recruitment domain 9 
(CARD9) [12, 14], ERAP2 [12, 13], MICB [12, 14], NOD2 
[10, 12, 13], SLC22A5 [12, 14], and Tumor necrosis fac-
tor superfamily 15 (TNFSF15) [9, 10, 12] were overlapped 
between TWASs. ATG16L1, ERAP2, MICB and SLC22A5 
were overlapped with intestinal and discussed in the 
above.

Among the over 40 risk loci associated with CD iden-
tified to date, polymorphisms in NOD2 account for 
the largest proportion of the genetic risk for this dis-
ease [124]. Experiments have demonstrated that NOD2 
recognizes bacterial muramyl dipeptides and recruits 
ATG16L1 to bacterial entry sites on the plasma mem-
brane, further regulating the intestinal barrier function 
and limiting transcellular permeability and bacterial 
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translocation [125, 126]. However, the differential expres-
sion of NOD2 in circulatory—but not intestinal—tissues 
is puzzling. NOD2 is widely expressed in macrophages 
and dendritic cells but to a lesser extent in intestinal epi-
thelial cells [127] and T cells [128], which may explain 
this phenomenon. In addition, NOD2 can act as a viral 
sensor protein and is activated by the orally bioavailable 
dinucleotide SB 9200 [129], but whether it is effective 
against CD is unknown.

CARD9 was a member of CARD family and an adap-
tor molecule predominantly expressed in lymphoid tis-
sues and immune cells. The expression of CARD9 was 
observed significant reduced in CD patients compared 
with healthy controls [130]. CARD9 is a central signal-
ing molecule in the innate immune via mediating NF-κB 
signaling and against fungi, bacteria, virus and mycobac-
teria [131–134], which is closely related to the patho-
physiological of CD development.

TNFSF15 is a Th-1-polarized cytokine that partici-
pates in systemic inflammatory responses and functions 
in regulating immune cells, inducing apoptosis, induc-
ing inflammation, and inhibiting tumorigenesis, which 
suggests that TNFSF15 is possibly a susceptibility gene 
in the blood. However, two studies of IBD observed that 
TNFSF15 was overexpressed in colonic tissues [135, 
136]. The protective effect of TNFSF15 polymorphisms 
on CD has been reviewed elsewhere [99, 137]. Notably, 
TNFSF15 was only screened in two Asian populations, 
Japanese and Korean, and was not found in other popula-
tions, and it can be tentatively speculated that the asso-
ciation of TNFSF15 with CD is stronger in Asian than in 
Western populations. Many previous studies have sup-
ported this hypothesis. A Japanese study reported a trend 
for a positive association between TNFSF15 SNPs and 
the risk of anal lesions in CD [138]. Similar results were 
obtained in Chinese [139] and Korean population s[140]. 
In European population, a protective effect of TNFSF15 
was observed in CD but fail to define a clinical subgroup 
of CD patients specifically associated with TNFSF15 [19]. 
A most recent study compared the susceptibility genes 
associated with IBD between two population from East 
Asian and European ancestries, respectively. In this study, 
researchers found that the genetic basis of CD appears to 
be more ancestral than that of UC due to the allele fre-
quency of NOD2 and the influence of TNFSF15 [19]. And 
a meta-analysis also observed that East Asians gene have 
unique SNPs of TNFSF15 associated with IBD [141]. And 
PF-06480605, an inhibitor of TNFSF15, has been devel-
oped and enter the Phase 2a clinical trial as a treatment 
strategy of UC patients (NCT02840721, Table 2).

The rough GO pathways enriched in whole blood 
mainly involves in the regulation of responses to biotic 
stimulus, including the regulation of defends system and 

the activation of immune system (Fig. 3D). This observa-
tion may suggest that the activity of immune cells and 
the process of inflammatory response in the whole blood 
may be affected by genetic background and reflect the 
disease status of CD.

Future perspectives
In this review, we summarized the susceptibility genes 
and enriched pathways associated with CD found in 
TWAS. Most susceptibility genes replicated between dif-
ferent tissues can only be observed in the same TWAS. 
For a fixed tissue type, susceptibility genes were rarely 
replicated in different TWAS. For instance, Uellendahl 
et  al. identified ATG16L1 as a susceptibility gene in 
almost all tissue types [13] but absent in Cheng’s multi-
tissue TWAS [14]. Similarly, MICB was significantly 
associated with CD in Cheng’s study [14] but was absent 
in the other TWAS [9, 11–13]. In this section, we discuss 
the reasons for these issues, strategies for solving them, 
and future directions, as shown in Fig. 4.

Epidemiologic studies have reported that the incidence 
of IBD has now leveled off in developed areas but con-
tinues to increase in developing regions [142]. This phe-
nomenon suggests that CD is more likely to result from 
the interaction of dietary behaviors and environmental 
factors with host immune mechanisms. The onset of CD 
can even be traced back to infancy; breast milk, contain-
ing oligosaccharides, contributes to the establishment 
of intestinal flora in infants and has a longer duration of 
benefit in inhibiting the adhesion of enteropathogenic 
bacteria and protecting against the development of the 
disease [142]. A recent study reported a transcriptome-
wide association with gut microbiota [97]. Since numer-
ous studies have demonstrated that the gut microbiota 
has a close relationship with CD pathology, the TWAS 
in the gut microbiota may provide new insights into 
investigating novel pathological mechanisms. This new 
gut microbiota-based tool may be influenced by diet 
and medication use, and its applicability to CD research 
remains to be demonstrated. Thus, broader exploration 
is needed, and the results should be interpreted with 
caution. Although over 200 genetic loci associated with 
IBD have been identified by GWAS, these variants can 
only explain a small proportion of the heritability of IBD 
(approximately 26% for CD and 19% for UC) [143]. No 
genetic markers have been reported to be predictive of 
complications [37, 144]. Considering that total expres-
sion is affected by genetic and environmental factors and 
that predicted expression in TWAS is only a part of the 
total expression, gene expression data assessed by geno-
type data and eQTLs have strong limitations and biases. 
The predicted expression in TWAS was generally slightly 
higher than the total expression correlations. The analysis 
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of the correlation between predicted expression and CD 
may result in the significance of non-causal genes over 
causal genes due to linkage disequilibrium [32]. When 
a large proportion of genes are in linkage disequilib-
rium, the linkage disequilibrium region may also contain 
causal associations not related to the gene set. Even if 
there is no causal relationship between the gene set and 
the phenotype, it can still exhibit a significantly high rate 
[145]. Therefore, more work is needed to understand the 
genetic structure of CD.

Before the emergence of GWAS, most genotypic-phe-
notypic associations failed to replicate owing to small 
sample sizes, improper reliance on standard significance 
thresholds, failure to account for associations with low 
prior probabilities, and failure to assess the same SNPs 
across studies [1, 146]. We must acknowledge that the 
replication of TWAS results is not easy. The following 
reasons make the replication for CD TWAS even harder. 
(1) As a complex disease, the subtypes of CD patients, 
such as age of onset, lesion site, disease behaviors, dis-
ease process (active/remission), and medication used 
(hormone/biologicals), have different expression profile 
[42, 147], which should be included in GWAS datasets. 
Due to the lack of detailed information on large-scale 
genotype data sets, few studies have explored the rela-
tionship between predicted expression data and CD 
subtypes. This critically restricts further exploration of 
genetic factors in CD pathology. As a progressive disease, 
the onset time of symptoms and occurrence of complica-
tions are also important outcomes. (2) The establishment 

of eQTLs, including the sample size, ethnic consistency 
with the GWAS population, and different control popula-
tions, will also have a great impact on the TWAS results. 
(3) The rapid improvement and update of TWAS meth-
ods also reduce the reproducibility of TWAS results. 
Therefore, replication of these findings still needs a good 
deal of work in the future.

Disease behavior of CD changes over time, and patients 
with inflammation as the main presenting behavior at 
diagnosis are highly likely to develop fistulas or stricture 
complications within 20  years [148]. Prolonged inflam-
matory responses during clinical remission can lead to 
complications (strictures, fistulas, and abscesses) and 
progressive intestinal damage [149]. The Montreal clas-
sification considers in detail whether a prescribed time 
point should be given before disease behavior classifica-
tion [5]. The homogeneity of participants and tissue type 
could effectively ensure the credibility of the results. Even 
compared with healthy people, the heterogeneity within 
CD patients can cause a large bias. Most of the popula-
tions in the available studies were heterogeneous, includ-
ing patients with various lesion sites or different disease 
states (active or remission). There are also other kinds 
of population heterogeneity. For instance, Gettler et  al. 
selected a TWAS population from a RISK cohort that 
recruited children and adolescents under 17 years of age 
[11, 150]. The susceptibility genes in this study may indi-
cate a different pathology compared to that in the adult 
study. This Japanese study investigated differentially 
expressed genes between patients diagnosed with active 

Fig. 4 Overview of future research direction of TWAS in CD. GWAS, genome-wide association studies; TWAS, transcriptome-wide association 
studies; eQTL, expression quantitative trait loci
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CD and active UC, which may reflect different pathologi-
cal processes in CD patients and healthy controls [9]. The 
heterogeneity of TWAS results in different tissue types is 
discussed at length above. Two IBD fine mapping stud-
ies published in 2017 found less than 30% concordance 
between eQTL and GWAS in identifying key genes [151, 
152]. One study suggested a more significant overlap 
between eQTL and methylation QTL, and both studies 
suggested that related effects may be specific to cell type 
or disease status [151, 152]. During the past 100  years, 
the incidence of inflammatory bowel disease has sharply 
risen, then plateaued in the western world, whereas coun-
tries outside the western world seem to be in the first 
stage of this sequence [142]. The fact that CD patients 
are often treated for life and tend to concentrated in a 
few well-known treatment centers, it is feasible to obtain 
sufficient numbers of patients and biological samples 
through recruitment in well-known treatment centers. 
And a certain tissue type within the same study design 
is recommended to be consistent, allowing for increased 
sample size on a limited budget. In the future, larger-
scale, cell/tissue-specific, and status-specific studies will 
be vital to resolve this problem. With the advancement 
of technology, single-cell RNA sequencing and single-
cell TWAS have already emerged, substantially improv-
ing the homogeneity of samples and further facilitating 
targeted interpretations of TWAS outcomes and disease 
mechanisms for individual cell types or specific disease 
states [153].

Among the most frequently mentioned TWAS genes, 
such as ATGL16L1, NOD2 and IL23R, were most 
reported by coding risk variants in GWAS studies instead 
of replicating the results of RNA-seq. Among the seven 
studies, only one TWAS provided the gene list associ-
ated with CD obtained by RNA-seq data [12]. Of the 95 
associated genes screened by TWAS and the 35 associ-
ated genes screened by RNA-seq, only two genes (RPL9 
and STMN3) overlapped. Since the most of RNA-seq 
data involved in the other six TWAS were either not 
associated with CD or did not include appropriate cases 
and controls (HC only, CD only, CD and UC), we found 
another two well-designed studies for comparison. Two 
Asina studies identified differentially expressed genes by 
RNA-seq in CD patients [154, 155]. Unfortunately, there 
was no susceptibility gene overlap between RNA-seq 
results and TWAS results neither in the ileum or colon. 
And the susceptibility genes screened by TWAS was less 
overlapped with the results of RNA-seq. There are several 
reasons for this phenomenon: (1) According to the dis-
tance of gene effect, eQTL includes cis-eQTLs (local) and 
trans-eQTLs (distal) [156]. A previous study observed 
that pervasive cis-eQTLs affect the majority of human 
genes (~ 75%) [157, 158], but a large twin study claimed 

that only 10% of the variation in gene expression was 
explained by cis-eQTL [123]. However, cis-eQTLs remain 
the only reliable tool in the TWAS method [32], which 
was limited in assessing the allele-specific expression 
[159]. (2) Stretch enhancers are large chromatin-defined 
regulatory elements that regulate the expression of cell 
type-specific genes and are enriched in disease-asso-
ciated genetic variants in disease-associated cell types. 
However, eQTL effect sizes for stretch enhancers may be 
smaller than for ubiquitous promoter regions, which may 
lead to prediction bias [34]. (3) The pleiotropy, including 
horizontal pleiotropy and vertical pleiotropy, is widely 
existed in genome but the exact extent is still unknown 
[160]. Most of the genes may be indirect causative genes 
for complex traits, and some of the GWAS gene expres-
sion predicted by eqtl may be amplified due to horizontal 
pleiotropy [35]. (4) Gene expression may be affected by 
heritable epigenetic variation, small signaling molecules 
or other environment factors [161]. For example, NOD2 
expression could be induced by bacterial lipopolysaccha-
ride, short-chain fatty acids, hormonal vitamin D, and 
TNF-α [162], which make it harder to predict the real 
expression levels. Although rarely reported in RNA-seq 
studies, these gene expressions are involved in mucosal 
immunity as previous reported [99, 162, 163]. This sug-
gests that RNA-seq and TWAS may have complementary 
roles in explaining genetic associations of complex traits.

Counterintuitively, a susceptibility gene, such as NOD2, 
identified in a tissue type is not always consistent with its 
function. This observation raises the question of whether 
differential expression results obtained by eQTLs can 
explain causal associations, and a growing body of data 
has raised this question. As Wainberg et al. pointed out, 
the TWAS method is merely a statistical test to predict 
expression and disease risk from genetic evidence, which 
can be used to screen candidate disease-causing genes 
but does not guarantee causality [32].

In conclusion, the following three considerations might 
benefit future TWAS for CD, facilitating a more rational 
study design. (1) Despite its generic nature, we require 
GWAS data from different countries and disease states 
with large sample sizes. (2) The demand for a compre-
hensive classification, including race, tissue, lesion site, 
status, and progressive time points, is increasing with 
the accumulation of eQTL data. (3) Transcriptome-wide 
data combined with new technologies, such as single-cell 
approaches, will provide novel insights into the patho-
logical mechanisms of CD and progress in TWAS. (4) In 
future TWAS, the results and data of intermediate pro-
cesses should also be provided to facilitate the integra-
tion of data from multiple studies, dig deeper into genetic 
information, and provide more predictions for drug 
discovery.
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