
M E T H O D O LO G Y Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, 
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included 
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The 
Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available 
in this article, unless otherwise stated in a credit line to the data.

Abraham et al. Cell & Bioscience           (2024) 14:19 
https://doi.org/10.1186/s13578-024-01199-4

Background
Over the past two decades, there has been growing 
appreciation for the role of the tumour microenviron-
ment (TME) in cancer biology [1, 2]. As such, the cen-
tral dogma of tumour progression has evolved to assert 
that oncogenic mutations underlie the transformation of 
normal cells to malignant cells, and subsequently, non-
transformed cells are recruited via secretion of soluble 
factors, such as cytokines, chemokines, and extracellu-
lar vesicles, to support further cancer cell survival and 
propagation [3–6]. The non-transformed cellular ele-
ments of the TME, including immune cells, fibroblasts, 
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Abstract
Background The tumour microenvironment (TME) consists of tumour-supportive immune cells, endothelial cells, 
and fibroblasts. PhenoCycler, a high-plex single cell spatial biology imaging platform, is used to characterize the 
complexity of the TME. Researchers worldwide harvest and bank tissues from mouse models which are employed 
to model a plethora of human disease. With the explosion of interest in spatial biology, these panoplies of archival 
tissues provide a valuable resource to answer new questions. Here, we describe our protocols for developing tunable 
PhenoCycler multiplexed imaging panels and describe our open-source data analysis pipeline. Using these protocols, 
we used PhenoCycler to spatially resolve the TME of 8 routinely employed pre-clinical models of lymphoma, breast 
cancer, and melanoma preserved as FFPE.

Results Our data reveal distinct TMEs in the different cancer models that were imaged and show that cell-cell 
contacts differ depending on the tumour type examined. For instance, we found that the immune infiltration in a 
murine model of melanoma is altered in cellular organization in melanomas that become resistant to αPD-1 therapy, 
with depletions in a number of cell-cell interactions.

Conclusions This work presents a valuable resource study seamlessly adaptable to any field of research involving 
murine models. The methodology described allows researchers to address newly formed hypotheses using archival 
materials, bypassing the new to perform new mouse studies.
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and endothelial cells, interact with tumour cells, and both 
cellular composition and intercellular interactions within 
the TME are critical influencers of cancer cell growth, 
metastasis, and response to therapy. Many emerging 
therapeutics, most notably immune checkpoint inhibi-
tors (ICIs), specifically target components of the TME to 
elicit tumour control.

Phenotyping of the murine TME has helped to under-
stand the response to novel combinatorial therapies and 
to track changes in tumour progression from initiation 
to metastatic disease [7, 8], with multi-parameter flow 
cytometry being the most widely used technique to study 
the composition of the TME [9]. In this method, malig-
nant tissues are dissociated into single cell suspensions, 
stained with a panel of antibodies, and run through a 
flow cytometer, allowing for the identification of cells 
within the TME. However, a recent body of work has 
highlighted that TME composition alone is only part of 
a much bigger picture, and spatial information (e.g. cell-
cell interactions) is crucial to further understand tumour 
progression and response to treatment. Immunofluores-
cence (IF) imaging of tumour sections, on the other hand, 
can preserve tissue architecture but is usually restricted 
to detection of 1 or 2 markers. To overcome these limita-
tions, a surge of highly multiplexed tissue imaging tech-
nologies has emerged in the last 10 years [10–13], aimed 
at providing single cell spatial phenotyping of the TME 
and other complex tissue types.

PhenoCycler, formerly known as CODEX (CO-Detec-
tion by indEXing [13]), has shown immense promise in 
the highly multiplexed imaging space. In brief, antibodies 
targeting desired proteins are conjugated to unique oli-
gonucleotide “barcodes” and are then used to stain fresh 
frozen or formalin-fixed paraffin-embedded (FFPE) tis-
sues. The PhenoCycler instrument is then used to auto-
mate the cyclic process of tissue washing, hybridizing 
up to three fluorescent “reporters” to primary antibod-
ies’ oligonucleotide “barcodes”, imaging the tissue, then 
removing the fluorescent reporters before starting a new 
cycle process. This iterative process is repeated until 
all antibodies in a staining panel have been visualized 
[14]. Reporters are complementary oligonucleotides to 
the unique barcodes, and are tagged with either fluoro-
phores ATTO550 AF647, or AF750. As of this writing, 
PhenoCycler has been used to image up to 101 different 
markers in single tissue [15, 16], and has been used to 
spatially profile human cancers such as cutaneous T cell 
lymphoma [17], follicular lymphoma [18], diffuse large B 
cell lymphoma [19], Hodgkin’s lymphoma [20], bladder 
cancer [21], colorectal cancer [22], basal cell carcinoma 
[23], glioblastoma [24], breast cancer [25], and head and 
neck squamous cell carcinoma [26], and human non-can-
cerous conditions such as ulcerative colitis [27], diabetic 

nephropathy [28], functional dyspepsia [29], vitiligo [30], 
and Alzheimer’s disease [31].

Comparatively fewer publications have used Pheno-
Cycler technology to image murine tissues, and all have 
reported staining for fresh-frozen samples [13, 32–36]. 
However, many research groups maintain archives of 
FFPE murine tissues. FFPE tissue blocks can be suc-
cessfully sectioned and imaged with minimal evidence 
of degradation for up to 30 years [37], and FFPE tissues 
from multiple cohorts or experimental conditions can be 
easily combined into a single tissue microarray (TMA). 
Thus, we aimed to develop a tunable murine PhenoCy-
cler antibody panel optimized for FFPE staining, thereby 
enabling researchers to utilize their archival materials to 
test newly developed hypotheses with existing material 
and bypassing the need to perform new mouse studies.

Herein, we describe our protocol for the conjugation 
of antibodies that are optimized for IF staining of murine 
tissues preserved as FFPE and provide our protocols for 
PhenoCycler staining and open-source data analysis, 
which enables visualization of staining, cell segmenta-
tion, cell classification, and neighbourhood/proximity 
analysis. The protocols described below are tunable and 
offer flexibility to researchers who wish to use their 
own antibodies of interest for highly multiplexed stain-
ing. Furthermore, we demonstrate the feasibility of this 
approach with TME data obtained using 16-plex Pheno-
Cycler staining on FFPE tissues from pre-clinical mouse 
models of lymphoma, breast cancer, and melanoma.

Materials and methods
Our tunable PhenoCycler workflow has four major com-
ponents: (1) antibody selection; (2) antibody conjugation 
and optimization; (3) tissue staining and imaging; and (4) 
data analysis (Fig. 1).

Selection and validation of antibodies for conjugation, and 
quality control of staining
Due to epitope masking associated with FFPE preserva-
tion [38], the careful selection of antibodies is critical to 
successful PhenoCycler staining. Below, we describe our 
IF staining protocol for the selection of antibody clones 
which can prioritized for barcode conjugation. All anti-
bodies should be tested on the tissue they are ultimately 
meant to stain.

Deparaffinization and antigen retrieval
1. Mount 4 μm microtome tissue sections onto 

SuperFrost Plus slides (Fisherbrand).
2. Deparaffinize slides using the following solutions, for 

5 min each: Xylene (x3),100% EtOH (x2), 95% EtOH, 
70% EtOH, 50% EtOH, and running tap water

3. Transfer slides to a PT Link Pre-treatment machine 
filled with 1X Tris-EDTA antigen retrieval buffer 
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(pH 9.0) and cook at 90 °C for 20 min. After 
depressurization, cool slides for 1 h.
 i. Note: Less toxic alternatives, such as HistoChoice, 

can be used in place of Xylene.
ii. Note: Recipes for all solutions used in these 

protocols can be found in Table 1.

Blocking
4. Rinse slides in tap water and dry the glass around 

the tissue with a Kimwipe. Circle tissue with a 
hydrophobic PAP pen, and rinse with 2 changes of IF 
Wash Buffer.

5. Block slides for 30 min at room temperature with 
Primary Blocking Buffer, then rinse with 2 changes of 
IF Wash Buffer.

6. Block slides for another 30 min at room temperature 
with FC Blocking Buffer, then rinse with 2 changes of 
IF Wash Buffer.

Primary and secondary antibody incubation
7. Dilute primary antibody in Antibody Buffer and 

incubate slides in primary antibody at 4 °C overnight 
in a humidity chamber.
 i. Note: For initial optimization, we try 10 ug/ml 

antibody dilution (approximatively 1 in 100).
ii. Note: Staining specificity can be improved for 

some antibodies by incubating with a higher 
antibody concentration (e.g. 20 ug/ml), for 30 min 
at 37 °C.

8. Rinse slides with 3 changes of IF Wash Buffer.

9. Incubate slides for 1 h at room temperature with 
secondary antibody conjugated to AlexaFluor647, 
diluted 1 in 500 in Antibody Buffer.

10. Rinse slides with 3 changes of IF Wash Buffer.

Counterstaining, mounting, and imaging
11. Stain tissue with prepared DAPI for 15 min, then 

rinse slides 3 times with IF Wash Buffer.
12. Mount coverslips onto slides with Flouromount-G, 

and then allow to dry for 15 min.
13. Image slides with the same microscope that will be 

used for PhenoCycler image acquisition.
 i. Note: Acquiring on the same microscope used 

for the Phenocycler image acquisition will give a 
better representation of the final staining. In this 
study, we used the Fusion microscope from Akoya 
Biosciences.

ii. Note: The results from optimization staining 
will help in the subsequent steps in assessing the 
efficacy of the antibody conjugation by comparing 
both stains.

Assessing IF staining
Assessing staining quality is challenging. Appropri-
ate negative and positive tissue controls are required. If 
possible, staining assessment by a pathologist can guide 
selection of the most appropriate antibody clones. Ide-
ally, a TMA comprising an array of different tissues 
and pathologies will provide the opportunity for robust 
assessment of antibody specificity and sensitivity, but 
whole-tissue slides can be used if a TMA is not available. 
Critical parameters to consider include:

Fig. 1 Workflow for selection of antibodies, antibody conjugation, and PhenoCycler staining. Schematic showing the workfow outlined in this Research 
Resource
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a) if staining pattern within the tissue is consistent with 
reported literature. Multiple online resources can be 
used, such as ProteinAtlas.

b) Signal to Noise Ratio (SNR): this parameter will 
guide the user to which fluorescent reporter to use. 
For example, if the SNR is very high, the dim AF750 

Table 1 Recipes for IF staining, antibody conjugation, and PhenoCycler staining solutions
Solution Name Composition
10X Tris-EDTA Antigen Retrieval Buffer, pH 9.0 6.05 g Tris

1.85 g EDTA
400 mL ddH2O
 - Adjust to pH 9.0
 - Complete to 500 mL with ddH2O
Store at 4 °C for up to 30 Days

1X Tris-EDTA Antigen Retrieval Buffer, pH 9.0 50 mL 10X Tris/EDTA Buffer pH 9.0
450 mL ddH2O
250 µL Tween20
 - Mix well and make fresh.

10X Tris Buffered Saline (TBS) 80 g NaCl
2 g KCl
30 g Tris
 - Adjust pH to 7.4
 - Complete to 1000 mL with ddH20

IF Wash Buffer 200 mL 10X TBS
800 mL ddH2O
250 uL Tween20

Primary Blocking Buffer 1000 µL IF Wash Buffer
20 µL Goat or Donkey Serum
 - Vortex to mix.

FC Blocking Buffer 500 µL FC Block
5 µL Anti-Mouse HRP
 - Vortex to mix.

Antibody Buffer 1000 µL IF Wash Buffer
1 µL Goat or Donkey Serum
 - Vortex to mix.

Prepared DAPI 500 µL PBS
1 µL 1 mg/mL DAPI
 - Vortex to mix.

Antibody Reduction Master Mix (A)
(for 1 conjugation)

6.6 µL Reduction Solution 1 (A)
275 µL Reduction Solution 2 (A)
 - Thawed aliquots of Reduction Solution 1 (A) should not be re-used

Bleaching Solution 0.8 mL 10 M NaOH
2.7mL 50% H2O2
26.5 mL 1X PBS

Staining Buffer with Blockers (A)
(for 2 samples)

362 µL Staining Buffer
9.5 µL N Blocker (A)
9.5 µL G2 Blocker (A)
9.5 µL J Blocker (A)
9.5 µL S Blocker (A)

Post-Staining Fixation (A) 1 mL 16% PFA
9 mL Storage Buffer (A)

Final Fixative Solution (A) 1000 µL 1X PBS
20 µL Fixative Reagent (A)
 - Thawed aliquots of Fixative Reagent (A) should not be re-used

Screening Buffer (A) 3.5 mL 10X PhenoCycler Buffer (A)
24.5 mL Nuclease-Free Water
7 mL DMSO
 - Allow the Screening Buffer to equilibrate to room temperature prior to use

Reporter Stock Solution (A)
(for 5 cycles)

1220 uL Nuclease Free Water
150 uL 10X PhenoCycler Buffer (A)
125 uL Assay Reagent (A)
5 uL Nuclear Stain (A)



Page 5 of 22Abraham et al. Cell & Bioscience           (2024) 14:19 

reporter should but used, while the bright AF647 can 
be used for markers with low SNR.

Antibody conjugation to an oligonucleotide barcode
Once an antibody has shown strong and specific sig-
nal by IF, it can proceed to conjugation. Antibodies can 
be conjugated to barcodes which have complementary 
reporters in ATTO550, AF647, or AF750 fluorophores. IF 
screening will inform which fluorophore will give optimal 
results. In general, antibodies which show very strong 
and specific staining should be conjugated to barcodes 
that have complementary reporters in AF750, antibodies 
which have weaker signal and lower abundance should 
be conjugated with barcodes that have complementary 
reporters in AF647, and antibodies which have medium 
abundance and weak to medium signal strength should 
be conjugated with barcodes that have complementary 
reporters in ATTO550.

Antibody conjugation requires reagents from Akoya 
Biosciences, and thus follows their recommended proto-
col. A more detailed protocol can be found here: https://
www.akoyabio.com/wp-content/uploads/2021/01/
CODEX-User-Manual.pdf.

Pre-experiment notes
  • Antibodies to be conjugated must be carrier-free. 

The presence of BSA or other stabilizing agents will 
interfere with conjugation.

  • If conjugating more than one antibody, carefully 
label all MWCO columns prior to starting. We 
recommend conjugating no more than 3 antibodies 
at a time, to reduce the risk of cross-contamination.

  • Reagents which are purchased from Akoya 
Biosciences will be annotated as (A).

Conjugation reaction
1. For each antibody to be conjugated, add 450 µL of 

Filter Blocking Solution (A) to a labelled 50 kDa 
MWCO column, then spin at 12,000 g for 2 min. 
Following centrifugation, discard flowthrough and 
aspirate any remaining liquid out of the filter unit.
 i. Note: This is the only step where the liquid 

should be aspirated out of the filter unit. In all 
subsequent steps, the remaining liquid contains 
the unconjugated/conjugated antibody.

2. Add 50 µg of each antibody to be conjugated to 
their respective filter units, at an adjusted volume of 
100 µL. Spin down tubes at 12,000 g for 8 min and 
discard the flowthrough.

3. Add 260 µL of Antibody Reduction Master Mix (A) 
to the top of each filter unit, close this lid, vortex for 
3 s, then allow to sit at room temperature for 30 min.
 i. Note: do not allow this reaction to exceed 30 min, 

as it can result in irreversible antibody damage.

4. Spin down tubes at 12,000 g for 8 min, then discard 
the flowthrough.

5. Add 450 µL of Conjugation Solution (A). Spin 
down again at 12,000 g for 8 min, then discard the 
flowthrough.

6. During the second centrifugation, prepare each 
assigned Barcode (A) by adding 10 µL of molecular 
biology grade nuclease free water, then add 210 µL 
of Conjugation Solution (A) to the resuspended 
barcodes.

7. Add the barcode solution to the filter. Close the lid 
and vortex for 3 s. Incubate the antibody conjugation 
reaction at room temperature for 2 h.

8. Spin down tubes at 12,000 g for 8 min, then discard 
the flowthrough.

9. Add 450 µL of Purification Solution (A) to each filter, 
and spin down tubes at 12,000 g for 8 min, then 
discard the flowthrough.

10. Repeat Step 9 for a total of 3 purifications. At the end 
of the third purification, the filter will contain the 
conjugated antibody.

11. For each antibody, label a fresh tube with the 
antibody name and the barcode ID. Add 100 µL of 
Antibody Storage Solution (A) to each filter. Then, 
invert the filter unit into the new collection tube, and 
spin down at 3,000 g for 2 min.
 i. Note: The final volume of the antibody will be 

around 120 µL.
ii. Note: For long term storage, transfer antibodies 

to autoclaved screw top tubes, to reduce 
evaporation.

Validation of conjugation to an oligonucleotide barcode
12. Cast a 10% SDS-PAGE gel, with 2 wells for each 

antibody whose conjugation is being validated, 
plus an additional well for the protein ladder (i.e. if 
validating 4 antibodies, you would need a total of 9 
wells, so a 10-well gel will suffice). Set up gel running 
apparatus as you would for a typical western blot.
 i. Note: Details on SDS-PAGE gel casting can be 

found here: https://www.bio-rad.com/webroot/
web/pdf/lsr/literature/Bulletin_6201.pdf.

13. Add 1 µL of unconjugated antibody to a tube with 
9 µL of 1X lammeli loading dye. Add 0.5 µL of 
conjugated antibody to a different tube with 9.5 µL of 
1X lammeli.

14. Boil samples for 5 min on a heating block at 95 °C.
15. Load samples and protein ladder into the gel and run 

until resolved.
 i. Note: We typically run our gels at 90 V for 1.5 h.

16. Following running, carefully remove the gel from the 
cassette, and place in a glass container. Cover the gel 
with GelCode Blue Reagent.

https://www.akoyabio.com/wp-content/uploads/2021/01/CODEX-User-Manual.pdf
https://www.akoyabio.com/wp-content/uploads/2021/01/CODEX-User-Manual.pdf
https://www.akoyabio.com/wp-content/uploads/2021/01/CODEX-User-Manual.pdf
https://www.bio-rad.com/webroot/web/pdf/lsr/literature/Bulletin_6201.pdf
https://www.bio-rad.com/webroot/web/pdf/lsr/literature/Bulletin_6201.pdf
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17. Allow the gel to incubate in the GelCode reagent 
with gentle rocking, until the solution changes from 
pale brown to blue.

18. Carefully discard the GelCode reagent and replace 
with distilled water. Allow the gel to rinse with gentle 
rocking for 20 min. Wash 3 times with distilled water 
in the same fashion for 20 min each.

19. Following washing, blue antibody bands should 
resolve around 50 kDa. Image the bands with any gel 
imaging apparatus, such as a ChemiDoc.

20. Conjugation occurred successfully if there is an 
upward shift in weight from the unconjugated 
antibody to the conjugated antibody.

Optimization of conjugated antibodies
Prior to performing a complete PhenoCycler experiment, 
conjugated antibodies must be further quality controlled 
and titrated. To do this, tissues are stained with the con-
jugated antibody of interest, and PhenoCycler reporters 
are manually applied and imaged. Staining fidelity is then 
assessed, and proper staining conditions are noted for 
larger multiplexed staining experiments.

Tissue staining and fixation
1. Follow Steps 1–3 for Deparaffinization and Antigen 

Retrieval, described above.
2. To quench auto-fluorescence, place the slide in 

glass container and cover with Bleaching Solution. 
Sandwich the glass container between two LED 
lamps for 45 min at room temperature.

3. Replace the Bleaching Solution with fresh Bleaching 
Solution and repeat LED photobleaching for 45 min 
at room temperature [39].
 i. Note: we find that this extended LED 

photobleaching step helps decrease auto-
fluorescence associated with FFPE tissue staining.

ii. Note: The amount of H2O2 can be increased to 
10% in tissue which demonstrate high levels of 
autofluorescence, such as heart or liver.

4. Wash the tissue 4 times in 1X PBS for 5 min per 
wash.

5. Dry the glass around the tissue with a Kimwipe, and 
circle tissue with a PAP pen.

6. Cover the tissue with Staining Buffer (A) and allow 
the tissue to equilibrate at room temperature for 
30 min.

7. While the tissue is equilibrating, prepare the 
antibody solution. Antibodies are diluted in Staining 
Buffer, completed with N Blocker, G2 Blocker, J 
Blocker, and S Blocker (A).

8. Stain tissue by adding prepared antibody onto the 
tissue.
 i. Note: Staining time and temperature need to be 

optimized for each antibody. Common staining 

conditions include 3 h at room temperature, or 
overnight at 4 °C.

9. Following antibody incubation, wash tissue 3 times 
in fresh Staining Buffer.
 i. Note: For highly multiplexed experiments where 

antibody staining conditions differ, staining can 
be done sequentially. For instance, 3 antibodies 
can be applied for 30 min at 37 °C, then tissue can 
be washed in buffer and the remaining antibodies 
in the staining panel can be applied overnight at 
4 °C.

10. Perform first tissue fixation, by incubating tissue in 
Post-Staining Fixation Solution (A) for 10 min at 
room temperature. Rinse tissue 3 times with PBS.

11. For the second fixation, transfer slides to a Coplin 
jar on ice filled with pre-chilled methanol. Allow to 
incubate for 5 min, then quickly transfer back to PBS. 
Rinse 3 times with PBS.

12. For the third and final fixation, add Final Fixative 
Solution (A) to slides, and incubate in a humidity 
chamber at room temperature for 20 min. Rinse 
tissue 3 times with PBS.

13. Transfer slide to Coplin jar with Storage Buffer (A).
 i. Note: Slides can remain in Storage Buffer (A) at 

this step for up to 5 days at 4 °C.

Manual application of PhenoCycler reporters and tissue 
imaging

14. Prepare Screening Buffer (A) and allow to equilibrate 
to room temperature for 20 min before use.

15. Rinse slides in 3 changes of Screening Buffer (A) for 
1 min each, to allow the tissue to equilibrate to the 
new buffer.

16. Prepare the Reporter Stock Solution (A) and add 
2.5 µL of each reporter to be tested to 97.5 µL of 
Reporter Stock Solution (A).
 i. Note: More than one antibody/reporter can 

be tested at a time, provided the reporters 
are conjugated to different fluorophores. For 
instance, if tissue is stained with CD4-BX001 
and CD19-BX002, 2.5 µL of both RX001-AF750 
and RX002-ATTO550 can be diluted into 95 
µL of Reporter Stock Solution (A) for marker 
visualization in a single step.

17. Pipette the prepared Reporter Stock Solution (A) 
onto the tissue and incubate, protected from light, 
for 5 min.

18. Rinse slides in 3 changes of Screening Buffer (A), for 
1 min each.

19. Rinse slides with 1 change of 1X PhenoCycler Buffer 
(A).

20. Mount coverslips onto slides with Flouromount-G, 
and then allow to dry for 15 min.
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21. Image slides with the same microscope that will be 
used for PhenoCycler image acquisition.

Assessing PhenoCycler staining
When assessing the quality of a conjugated antibody, it 
is important to keep in mind the SNR from the previ-
ous step, as it will be used as a reference to compare for 
quality control. At this stage, multiple antibody concen-
trations should be tested as well as multiple incubation 
times and temperatures in order to get the best SNR. We 
also recommend performing one final staining with two 
extra markers: one that should co-localize and one that 
should not with the conjugated antibody being tested. 
This step will allow you to assess any non-specific bind-
ing of conjugated antibody and adjust staining and acqui-
sition parameters for best SNR. Staining intensity and 
pattern should match the one obtained by standard IF 
staining.

PhenoCycler multiplexed imaging
Once all antibodies have been conjugated and optimized, 
you may proceed to a full PhenoCycler staining experi-
ment. Prior to beginning, all antibodies must be assigned 
to a cycle, a step that requires some thoughtful consid-
eration. Each cycle will consist of up to 3 different anti-
bodies, conjugated to barcodes that have reporters with 
different fluorophores. For instance, cycle 2 may con-
sist of imaging CD4-BX001, CD19-BX002, and CD11b-
BX003, which have RX001-AF750, RX002-ATTO550, 
and RX003-AF647 complementary reporters. When 
designing cycles, we try to include markers that are 
not likely to be present on the same cell type (i.e., CD4, 
a marker of helper T cells, may be put in cycle 2, while 
CD3, a pan-lymphocyte marker, may be put in cycle 3). 
The first and last cycle of each staining experiment will 
consist of only DAPI (“Blank” cycle).

Tissue staining and reporter plate preparation
1. Follow Steps 1–13 for Tissue Staining and Fixation, 

using all conjugated antibodies in the staining panel. 
Leave slide in Storage Buffer (A) until prepared to 
proceed to a full PhenoCycler Image Acquisition run.
 i. Note: For full PhenoCycler staining experiments, 

antibodies should not exceed 40% of the total 
Complete Staining Buffer solution, or insufficient 
blocking will occur.

2. Prepare enough Reporter Stock Solution (A) for 
the number of cycles in the experiment (each cycle 
requires a maximum of 250 µL of Reporter Stock 
Solution (A)).

3. For each cycle, label an amber 1.5 mL Eppendorf 
tube, and add 5 µL of each reporter for the assigned 
cycle. Complete to a volume of 250 µL using 

Reporter Stock Solution (A). Mix the contents gently 
by pipetting up and down.
 i. Note: keep reporters on ice until use, and 

spin down prior to pipetting to collect any 
accumulated liquid in the cap.

ii. Note: the first cycle and the final cycle will 
consist of Reporter Stock Solution (A), with no 
fluorescent reporters added (i.e. “Blank” cycles).

4. For each assigned cycle, pipette the reporter solution 
into a black-walled 96-well plate. Cover the wells 
with adhesive foil.

5. The reporter plate can be stored at 4 °C for up 
to two weeks or can be used immediately for the 
PhenoCycler experiment.

PhenoCycler image acquisition
Images are acquired using the default PhenoCycler pro-
tocol. In this study, we used the Phenocycler-Fusion sys-
tem combining Phenocycler instrument with the Fusion 
microscope to streamline acquisition. We used acquisi-
tion parameters of the different antibodies defined during 
the titration step to acquire the fully stained tissue.

Open-source data analysis
Following a complete PhenoCycler staining experiment, 
PhenoCycler software will process images for down-
stream analysis. Imaging processing includes tile stitch-
ing and background correction. The final multiplexed 
image will be in QPTIFF format, which can be imported 
and visualized by many image analysis programs.

In this pipeline, we use the open source QuPath soft-
ware, v3.2, which can be found here:

https://github.com/qupath/qupath/releases/.
Cell segmentation is achieved using StarDist, which 

can be found here:
https://github.com/qupath/qupath-extension-stardist/

releases.
The pre-trained model we used for StarDist Segmenta-

tion can be found here:
https://github.com/qupath/models/tree/main/stardist.
The StarDist.groovy file used in this study and sample 

Classifier data can be found here:
https://github.com/MMdR-lab/mouseCODEX-paper.

Setup
1. Create directory including StarDist segmentation 

extension (qupath-extension-stardist-0.5.0.jar), 
the pre-trained StarDist model (dsb2018_heavy_
augment.pb), and stardist_segmentation_0.5px.
groovy file.

2. To install the StarDist extension into QuPath, 
open QuPath and drag and drop the segmentation 
extension (qupath-extension-stardist-0.5.0.jar) 
directly into the open QuPath window.

https://github.com/qupath/qupath/releases/
https://github.com/qupath/qupath-extension-stardist/releases
https://github.com/qupath/qupath-extension-stardist/releases
https://github.com/qupath/models/tree/main/stardist
https://github.com/MMdR-lab/mouseCODEX-paper
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3. Create a list of the channel names in the order of 
acquisition in a.txt file with a separate line for each 
name.

QuPath image import
1. Create a new project in QuPath and add the 

PhenoCycler QPTIFF as a new image. Double 
click to open the image, and a pop-up will prompt 
you to select the image type. Set the image type as 
Fluorescence and keep “Auto-generate pyramids” 
selected.
 i. Note: QPTIFF files are generated by the 

Phenocycler-Fusion system. For researchers 
using the Phenocycler combined to standard 
microscope, single channel OME-TIFF files can 
be combined into multiple channel OME-TIFF in 
ImageJ prior to proceeding.

2. Once the QPTIFF image is opened, all markers (i.e. 
αSMA, CD3, CD4, CD8, CD11b, CD11c, CD19. 
CD31, CD45, c-Myc, F4/80, FoxP3, Ki67, MelanA, 
MPO, and NaKATPase) will be simultaneously 
visible on the tissue, labeled as the fluorophore they 
were conjugated to in the order of cycle acquisition.

3. To set channel names, copy the list of channel names 
to the clipboard and then select the corresponding 
channels in the “Brightness/Contrast” dialog from 
the “View” dropdown menu and paste. Click apply to 
confirm.

4. In the “Brightness/Contrast” dialog box, you can 
toggle markers on and off, change their pseudo-
colouring, and adjust their min/max display.

5. Make the channel names available as classifications 
in the “Annotations” tab by right-clicking or selecting 
the vertical ellipsis next to “Auto set” and choosing 
“Populate from image channels”.

QuPath cell classification and cell segmentation
6. To classify cells into phenotypes, a training image 

is used. The training image will contain 5 or 6 
representation regions of interest, pooled into a 
single image.
 i. To create a training image, select “Training 

images” from the “Classify” dropdown menu, and 
select “Create region annotations”.

ii. Using the default settings of: Width- 500; Height- 
500; Size units- µm; Classification- Region*; 
and Location- Viewer Centre, create regions 
throughout the tissue which contain the cell 
phenotypes you wish to annotate.

iii. Save the image.
iv. From the “Classify” dropdown menu, select 

“Training images”, and select “Create training 
image”.

v. From the popup menu, select “Region*” as the 
Classification, type “50,000” px as Preferred image 
width, and toggle “Rectangles only”, then click OK.

vi. A training image will appear in the Project Image 
List dropdown menu.

vii. Open the training image, and save the project.

7. To segment the training image into cells, StarDist is 
used. Using the rectangle annotation tool, select the 
entire region.

8. To segment the annotated region into cells, drag 
and drop the stardist_segmentation_0.5px.groovy 
file into the open QuPath window. When the script 
editor appears, select “Run”.
 i. Note: If an annotation is not selected, the error 

“Please select a parent object!” will appear.
9. A dialog box will appear, prompting the selection of 

the segmentation file. Choose the dsb2018_heavy_
augment.pb file located in the directory you created 
in Setup Step 1.

10. Once segmentation is complete, you will be able to 
see cell detections in red overlay on the image. You 
can toggle the visibility of the cell detections using 
the overlay capacity slider bar at the top of the image 
window.

11. To proceed with cell classification, from the 
“Classify” dropdown menu, select “Training images” 
and select “Create duplicate channel training images”. 
From the popup window, select the markers that you 
wish to use to enable cell classification. Check the 
“Initialize Points annotations” box then select “OK”. 
There will now be duplicate training images in the 
Project Image List dropdown menu for each marker 
in the staining panel. These duplicate channels will 
be used for manual annotation of cell phenotypes.
 i. Note: cell classification should be done in a single 

duplicate training image for phenotypes that are 
characterized by mutually exclusive markers (i.e. 
lineage markers). For instance, if CD8 + T cells 
are classified as CD3 + CD8+, macrophages are 
classified as CD11b + F4/80+, and fibroblasts are 
classified as CD45- αSMA+, they can be used in a 
classifier together.

ii. Note: in this project, we trained two classifiers to 
detect a total of 10 cell types. The first classifier 
was trained to detect CD8, FoxP3, CD31, 
F4/80, and CD11c. The second classifier was 
trained to detect CD4, CD19, MPO, αSMA, and 
Ki67 + tumour cells.

12. Open the duplicate image for the first cell type(s) you 
wish to classify.

13. Open the points annotation tool, add an annotation, 
and right click to set the annotation class (ex. if 
you are classifying helper T cells, set the class to 
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CD4). Add a second annotation and set the class to 
“Ignore*”.
 i. Note: an “Ignore” class is necessary for cell 

classification. This cannot be skipped.
14. Using point annotation, annotate 30–60 cells of 

your class of interest, and annotate another 30–60 
cells as “Ignore*”. The “Ignore*” cells should be 
mutually exclusive from the cell you are classifying. 
For instance, if you are classifying CD4 + T cells, you 
could select CD8 + T cells, B cells, or tumour cells for 
the “Ignore*” class. This helps train the classifier to 
better detect your cells of interest.

15. From the “Classify” dropdown menu, select “Train 
object classifier”.
 i. Set Object filter to “Cells”.
ii. Set Classifier to “Artificial neural network 

(ANN_MLP).
iii. Set Feature to “All measurements”.
iv. Set Classes to “Selected classes”.
v. Set Training to “Unlocked annotations”.

16. Click “Live update”. The cell mask on the training 
image should update to show where your cell 
phenotype has been detected.

17. Manually assess if the cell classifier is accurately 
detecting your cell phenotype of interest. If there 
are many false positive detections, continue to add 
annotations for “Ignore*”. If there are many false 
negative detections, continue to add annotations for 
your cell type of interest.

18. Once you are content with the cell classifier, enter 
the object classifier name, and click “Save”.

19. Repeat Steps 12–18 for all cell phenotype classes you 
wish to annotate in your tissues.

20. Open the main image from the Project Image List.
21. Using the rectangle or polygon annotation tool, 

select the regions you wish to analyze. Following 
Steps 7–9, use StarDist to segment the annotation 
region into cells.

22. Classify cells into phenotypes by opening the 
“Classify” dropdown menu, selecting “Object 
classification”, then selecting “Load object 
classification”. Select the classifiers you wish to 
apply to the tissue, then select “Apply classifiers 
sequentially”.
 i. Note: If more than one classifier is used to 

detect cell types, there may be redundancy in 
classification (i.e., some cells will be annotated as 
more than one class). For instance, in this study, 
our first classifier detected FoxP3 + cells, and our 
second classifier detected CD4 + cells. Thus, when 
the classifiers were applied together, regulatory T 
cells were classified as FoxP3 + CD4+.

ii. Note: Due to cell segmentation noise, sometimes 
dual classifiers may not make biological sense. It is 

up to the researcher to manually assess each cell 
class, and collapse classes as necessary.

23. Now, each cell will be annotated as a Phenotype. To 
export this data for spatial analysis with CytoMAP:
 i. Save the QuPath project.
ii. From the “Measure” dropdown menu, select 

“Export Measurements.”
iii. Select the image you wish to export 

measurements from, and choose “cells” as the 
export type. Change separator type to “Comma 
(.csv)”.

iv. Click “Populate”, then select the columns to 
include from the dropdown list: Image Name, 
Image, Class, Centroid X, Centroid Y, and Cell 
Mean for each marker. The resulting.csv file will 
contain the fluorescence intensity of each marker 
for each cell within the image, plus all cells will be 
annotated for their cellular phenotypes.

CytoMAP spatial analysis
24. In MATLAB, install the CytoMAP plugin in the 

“Add-Ons” drop down menu.
 i. For desktop use without MATLAB downloaded, 

an installer for the compiled version of CytoMAP 
is available at https://gitlab.com/gernerlab/
cytomap/-/tree/master/. Follow the installation 
prompts.

25. Open CytoMAP. From the “File” dropdown menu, 
select “Load Table of Cells”, then select the.csv file 
generated in Step 23.
 i. Be mindful of.csv formatting when uploading. 

CytoMAP may not recognize certain symbols, 
such as ampersands or slashes.

26. A popup dialog box will prompt you to select the X 
axis. Click “Ch_Centroid_X_m” and click “Okay”.

27. A popup dialog box will prompt you to select the Y 
axis. Click “Ch_Centroid_Y_m” and click “Okay”.

28. A popup dialog box will prompt you to select the 
Z axis. Click “There is no Z (make a fake one)” and 
click “Okay”.

29. A “File Import Options” box will pop up. Select 
“Load”.

30. Select “Annotate Clusters”, and from the Select 
Classification Chanel dialog box, select “Ch_Class”. 
From the Annotate Class popup box, select “Save 
Annotations”. Close the Save Annotations box.

31. To make a heatmap showing the cellular mean 
intensity of the markers in the staining panel within 
the different cell phenotypes, click the “Extensions” 
dropdown menu, and select “cell_heatmaps.m”.
 i. Choose the cell phenotypes you wish to include.
ii. Choose the Channel MFIs you wish to include.
iii. Normalize per Sample.
iv. Select “MFI normalized to mean MFI of all cells”.

https://gitlab.com/gernerlab/cytomap/-/tree/master/
https://gitlab.com/gernerlab/cytomap/-/tree/master/
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v. Select “Phenotype” for what to compare.
vi. Select “Individual Heatmap for each Sample”.
vii. Select “linear” for scale.
viii. Click “Okay”.

 i. Note: If multiple.csv files are imported and 
annotated, you may choose to generate a 
combined heatmap.

32. To cluster cells into neighborhoods, select “Define 
Neighborhoods”.
 i. Choose “Raster Scanned Neighborhood” for 

Neighborhood Type.
ii. Type “50” for Neighborhood Radius.
iii. Select “Fast Way”.
iv. Click “Okay”.

33. Once the loading bar for Defining Neighborhoods 
has finished, click “Cluster Neighborhoods into 
Regions”.
 i. Select all Phenotypes for sorting.
ii. Use setting “Composition: Number of Cells/ 

Number of Cells in Neighborhood”.
iii. Use setting “MFI normalized to mean MFI per 

neighborhood” and Normalize per Sample.
iv. For Colour scheme, select “sum(y,2)”.
v. For Number of Regions, select “Davies Bouldin 

(default)”.
vi. For Model name, select “Create New Model”.
vii. For Data Input Type, select “Raster Scanned 

Neighborhood”.
viii. For Algorithm, select “NN Self Organizing Map”.
ix. Click “Okay”.
x. Enter a unique name for the Model.

34. Two figures will popup, one showing the Number 
of Clusters and the Davies Bouldin values, and 
the other showing the newly defined regions 
superimposed on the tissue image.
 i. Note: In tumour tissues, overall cellular 

disorganization leads to fewer definitive regions.
35. To generate a heatmap showing the spatial 

relationships between cells in the tissues, select “Cell-
Cell Correlation”.
 i. Select the Phenotypes you wish to include.
ii. For Neighborhood Type, select your unique 

Model name.
iii. For data preparation, select “Cellularity: Number 

of Cells / Neighborhood”.
iv. Normalize per Sample.
v. Select “Individual Heatmap for each Sample”.
vi. For Colour Scale, select “linear”.
vii. For Calculation, select “Pearson Correlation 

Coefficient”.
viii. For Transform, select “None”.
ix. For Confidence Interval, select “1”.

36. CytoMAP can be used for other types of spatial 
analysis, and details can be found here:

https://cstoltzfus.com/posts/2021/06/CytoMAP%20
Demo/.

Results
Development of a tunable PhenoCycler antibody panel for 
staining murine FFPE tissue
Using the protocols described above, we selected 16 anti-
bodies which could be used to phenotype most common 
cells found in the murine TME (Fig.  2A). Each of these 
antibodies were conjugated to Akoya PhenoCycler bar-
codes (Table  2) and were optimized for PhenoCycler 
staining. Each barcode has a complementary reporter 
conjugated to either ATTO550, AF647, or AF750, and 
barcodes were selected for each antibody with this in 
mind. In general, antibodies that showed very strong SNR 
were conjugated to barcodes with AF750-tagged comple-
mentary reporters, whereas antibodies that corresponded 
to antigens of lower abundance and lower expression 
were conjugated to barcodes with AF647-tagged comple-
mentary reporters, and antibodies that marked antigens 
of medium abundance and weak to medium SNR were 
conjugated to barcodes with ATTO550-tagged comple-
mentary reporters. We have noted the antibody clones 
which were used in this study in Table  2; however, we 
caution researchers to perform optimization staining 
on their tissues of interest, utilizing proper positive and 
negative controls, prior to proceeding to antibody con-
jugation for their own uses. With this staining panel, 
we were able to quantify tumour cells, endothelial cells, 
fibroblasts, myeloid cells (macrophages, neutrophils, 
and dendritic cells) and lymphoid cells (helper T cells, 
cytotoxic T cells, regulatory T cells, and B cells) in the 
murine TME (Fig. 2B). We found that the highly multi-
plexed PhenoCycler staining had similar fidelity to single-
plex IF stains for each antibody included in the staining 
panel (Supplemental Fig.  1). Furthermore, the protocols 
for analysis described above were used to examine how 
the spatial relationships between these cell types change 
across tumour models and experimental conditions.

Generation of a multi-cancer TMA for PhenoCycler staining
Given that there is conservation amongst the cell types 
found in the TME across a number of tumour types [40], 
we generated a TMA with tumour cores banked from 
widely used pre-clinical mouse models of lymphoma, 
breast cancer, and melanoma, and matched normal tis-
sues, with the goal of performing spatial phenotyping of 
the murine TME. To achieve this, archival FFPE tissue 
blocks were sectioned and stained with H&E and an anti-
CD45 antibody to facilitate selection of immune-rich 
regions within the tumours for core-punching (Fig. 3A). 
From each tissue block, two to three 1  mm cores were 
included, for a total of 84 cores (Fig. 3B).

https://cstoltzfus.com/posts/2021/06/CytoMAP%20Demo/
https://cstoltzfus.com/posts/2021/06/CytoMAP%20Demo/
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For the lymphoma portion of the TMA, cores from 
A20 and Eµ-Myc tumours were included. A20 is a 
commonly used mouse model of B Cell Non-Hodg-
kin’s Lymphoma (B-NHL), syngeneic to BALB/C mice 
[41]. Upon tail vein injection, A20 cells will home to 
the liver to form an aggressive extranodal lymphoma, 
and samples from day-27 post-A20 tail vein injection 
were included in the TMA, with matched adjacent 

non-tumour bearing liver tissue (i.e., tissue from a non-
tumour bearing liver lobe). Eµ-Myc is a B-NHL model 
syngeneic to C57BL/6J mice, which forms tumours pri-
marily in the spleen and cervical and inguinal lymph 
nodes. Samples from the lymph nodes of non-tumour 
bearing mice and from the cervical lymph nodes of 
mice at day-14 post-Eµ-Myc injection were included in 
the TMA.

Fig. 2 16-plex PhenoCycler staining of murine FFPE tissues. (A) Table showing the antibodies included in our Murine FFPE PhenoCycler staining panel, 
and the cell type they are used to identify. (B) Images showing successful PhenoCycler staining of each antibody in the staining panel. In each image, 
DAPI is blue, and each individual marker is white. The colour of the outer border indicates the tissue type in the image. Scale bar is 50 µM

 

Table 2 Primary antibody table
Antibody Company Clone Catalog No. Barcode Reporter
αSMA Abcam 1A4 ab240654 BX014 RX014-ATTO550
CD3 Abcam CD3-12 ab255972 BX017 RX017-ATT0550
CD4 Invitrogen 4SM95 14-9766-82 BX002 RX002-ATTO550
CD8 Invitrogen 4SM15 14-0808-82 BX005 RX005-ATTO550
CD11b Abcam EPR1344 ab209970 BX003 RX003-AF647
CD11c Cell Signaling D1V9Y 39143SF BX015 RX015-AF647
CD19 Cell Signaling D4V4B 86916SF BX027 RX027-AF647
CD31 Dianova SZ31 DIA-310-BA-2 BX026 RX026-ATT0550
CD45 R&D Systems Polyclonal AF114-SP BX007 RX007-AF750
c-Myc Abcam Y69 ab168727 BX001 RX001-AF750
F4/80 Cell Signaling D2S9R 25514SF BX020 RX020-ATTO550
FoxP3 Cell Signaling D6O8R 72338SF BX019 RX019-AF750
Ki67 Akoya Biosciences B56 PN 232,179 BX047 RX047-ATTO550
MelanA Abcam EPR20380 ab222483 BX004 RX004-AF750
MPO R&D Systems Polyclonal AF3667-SP BX013 RX013-AF750
NaK-ATPase Abcam EP1845Y ab167390 BX023 RX023-ATTO550
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Reagent or Resource Reference or Source Identifier or Catalog No.
Experimental Models
BALB/C Mice Charles River BALB/cAnNCrl
C57BL/6J Mice The Jackson Laboratory Strain #:000664
Tyr::CreER/BRafCA/+/Ptenlox/lox Mice The Jackson Laboratory Strain #:013590
A20 ATCC TIB-208
Eµ-Myc Lab of Dr. Jerry Pelletier N/A
66cl4 Lab of Dr. Josie Ursini-Siegel N/A
4T1 ATCC CRL-2539
YUMMER1.7 Lab of Dr. Marcus Bosenberg N/A
Drugs and Treatments
4-Hydroxytamoxifen Sigma-Aldrich H6278
IgG Control Bio X Cell 2A3, BE0089
aPD-1 Bio X Cell RMP1-14, BE0146
Chemicals and Reagents
Tris Bio Basic TB0195
EDTA Bio Basic EB0185
Sodium Chloride Bio Basic SB0476
Potassium Chloride Bio Basic PB0440
Sodium Hydroxide 10 N VWR BDH7247-1
50% H2O2 Sigma-Aldrich 516813-500ML
Paraformaldehyde 16% Electron Microscopy Sciences 15,710
Tween20 VWR 0777-1 L
IHC and IF Reagents and Tools
SuperFrost Plus Slides Fisher 22-037-246
Xylenes Fisher X5-4
Ethanol Commercial Alcohols P016EAAN
Hydrophobic Barrier PAP Pen Thermo Scientific R3777
Harris’ Hematoxylin Sigma-Aldrich 638 A-85
Eosin Y Solution Sigma-Aldrich HT110116
Donkey Serum Jackson ImmunoResearch 017-000-121
FC Blocking Reagent Made in house
ECL Anti-mouse IgG, Horseradish peroxidase linked whole antibody from sheep Cytiva NA931V
Mouse CD45 Antibody R&D Systems AF114
Dnk pAb to Goat IgG (HRP polymer) Abcam Ab214881
ImmPACT DAB Substrate Kit, Peroxidase Vector Laboratories SK-4105
AF647 donkey anti-rabbit IgG Invitrogen A31573
Donkey anti-Rat IgG DyLight 650 Invitrogen SA5-10029
AF647 donkey anti-goat IgG Invitrogen A21447
DAPI (1 mg/mL) Thermo Scientific 62,248
Flouromount-G Invitrogen 00-4958-02
24 × 55 mm No. 1.5 Thickness Cover Slips Epredia 152,455
PhenoCycler Antibody Conjugation and Tissue Staining
Lammeli Loading Dye Bio-Rad #1610737EDU
GelCode Blue Stain Reagent Thermo Scientific 24,590
1X D-PBS Wisent 311-425-CL
Methanol Commercial Alcohols P016MEOH
Akoya Reagents
10X PhenoCycler Buffer Akoya Biosciences 7,000,001
Staining Kit Akoya Biosciences 7,000,008
Conjugation Kit Akoya Biosciences 7,000,009
Black-walled 96-well plate Akoya Biosciences 7,000,006
Adhesive foil Akoya Biosciences 7,000,007
Assay Reagent Akoya Biosciences 7,000,002

Table 3 Reagents and tools table
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Additionally, to define differences between the TME 
of primary and metastatic 4T1 tumours, samples were 
included from mice with 4T1 liver metastases, generated 
using the intrasplenic injection model of experimental 
metastasis [46].

Finally, to enable comparison of ICI-resistant and 
ICI-susceptible murine melanoma models, melano-
mas from the Tyr::CreER/BRafCA/+/Ptenlox/lox condi-
tional melanoma model [47] and the YUMMER1.7 
syngeneic melanoma model [48] were included. The 
Tyr::CreER/BRafCA/+/Ptenlox/lox transgenic mouse is a 
well-described murine model of melanoma, which allows 
4-hydroxytamoxifen-inducible melanocyte-targeted 
BRAFV600E expression and simultaneous PTEN inacti-
vation (referred to hereafter as BRAFV600E/PTEN−/−). 

Reagent or Resource Reference or Source Identifier or Catalog No.
Nuclear Stain Akoya Biosciences 7,000,003
Flow Cell Akoya Biosciences 240,204
Software
QuPath Bankhead et al. (68)
StarDist Schmidt et al. (69)
MatLab MathWorks
CytoMAP Stoltzfus et al. (55)

Weigert et al. (70)
GraphPad Prism Dotmatics
Other
Microtome Leica RM2125 RTS
PT Link for Pre-Treatment Agilent
LED Lamps 20,000 lx Intensity
AxioScan 7 Zeiss
PhenoCycler-Fusion Akoya Biosciences 

Table 3 (continued) 

Fig. 3 Generation of a murine tissue microarray (TMA) for PhenoCycler Staining. (A) Representative H&E and CD45 staining from murine tumour tissues. 
H&E and CD45 staining was used to select regions of interest for TMA core punching. Scale bars represent 100 μm. Bottom row shows H&E staining of the 
tissue cores, following TMA generation. Each TMA core is 1 mm in size. (B) Table indicating the types and numbers of cores included in our multi-cancer 
murine TMA

 

Tumour samples grown from the 66cl4 and 4T1 murine 
triple-negative breast cancer cell lines were included 
in the multi-cancer TMA. Both cell lines are capable of 
forming primary tumours following inoculation into the 
mammary fat pads of syngeneic BALB/c mice [42]. How-
ever, they differ in their metastatic potential and route 
of dissemination [43]. 66cl4 cells are weakly metastatic 
and tend to travel via the lymphatic system to the lung 
[43]. Samples from our previously published [44] cohort 
of 66cl4 tumours from day-33 post-injection (roughly 
1750 mm3 in size) were included. The highly aggres-
sive 4T1 model is metastatic to the bone, lung and liver 
and predominantly does so via the vasculature [43, 45]. 
We included samples from primary 4T1 tumours har-
vested day-14 post-injection when they are 600 mm3. 
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Murine BRAFV600E/PTEN−/− melanomas are character-
ized by low immune cell infiltration and are therefore 
known to be “immune cold” and resistant to ICI-ther-
apy [49, 50]. YUMMER1.7 cells were derived from a 
BRAFV600E/PTEN−/− melanoma following subsequent 
exposure to ultraviolet radiation to increase mutational 
burden, making YUMMER1.7 melanomas sensitive to 
ICI treatment [48]. We included samples harvested at 
2000 mm3 from YUMMER1.7 melanomas treated with 
either αPD-1 immunotherapy or IgG control.

Comparing the TME of nodal and extranodal murine B cell 
non-hodgkin’s lymphoma
B-NHL is the most commonly diagnosed lymphoid 
malignancy, arising from the abnormal proliferation of 
B lymphocytes. B-NHL frequently arises in secondary 
lymphoid organs, such as the lymph nodes or spleen, but 
extranodal involvement is common and has been shown 
to correlate with adverse outcomes [51]. Studies have 
demonstrated that B-NHL has distinct biological features 
between different extranodal sites [52–54], and mouse 
modelling provides the opportunity to functionally exam-
ine how varied TMEs can impact the B-NHL immune cell 
infiltration, specifically as A20 tumours develop in the 
murine liver (Fig. 4A), while Eµ-Myc tumours develop in 
the lymph nodes (Fig. 4B).

Following PhenoCycler staining, DAPI-based segmen-
tation (StarDist) of images was performed to extract sin-
gle-cell marker expression, and cells were classified into 
phenotypes based on marker expression (Fig.  4C; see 
protocols above). In A20 and Eµ-Myc tumours, we were 
able to detect dendritic cells, B cells, endothelial cells, 
CD4 + T cells, CD8 + T cells, macrophages, regulatory T 
cells (Tregs), tumour cells, neutrophils, and fibroblasts. 
Of note, in these tissues and in the tissues derived from 
other tumour types, CD31 + endothelial cells formed 
close contacts with αSMA + fibroblasts, leading to fluo-
rescence spillover of CD31 and αSMA lineage markers 
following cell segmentation. We classified these cells as 
“EndoFib”, representing close contacts between endo-
thelial cells and fibroblasts. This was similarly observed 
with tightly packed CD4 + and CD8 + T cells in lym-
phoma tissues only, and we termed these cells “T Cells” 
in downstream analyses. Despite these challenges in 
cell segmentation, the proportions of immune cell 
types found in the A20 TME by PhenoCycler correlated 
closely with archival flow cytometry immunophenotyp-
ing of dissociated A20 tumours, showing that these two 
methodologies can similarly identify cells in the TME 
(Fig. 4D).

The A20 B-NHL TME was characterized by high 
infiltration of immune cells (55.12%), relative to adja-
cent non-tumour bearing liver (16.27%) (Fig.  4E). The 
A20 immune infiltration was comprised of dendritic 

cells (defined as CD11b + CD11c+), macrophages 
(defined as CD11b + F4/80+), CD8 + T cells (defined 
as CD3 + CD8 + FoxP3-), and Tregs (defined as 
CD3 + CD4 + FoxP3+), while immune cells in the adja-
cent liver were almost exclusively macrophages (likely 
Kupffer cells), consistent with what is expected in nor-
mal liver. We analyzed spatial interactions between the 
different cell phenotypes in A20 tumours using Cyto-
MAP to calculate the probability of different cell types 
being within 50 µM of each other [55] (see methods). 
We found that Tregs were in close proximity to T cells 
(correlation coefficient = 0.695) and CD8 + T cells (cor-
relation coefficient = 0.6011). Furthermore, tumour 
cells were spatially segregated from immune cells 
such as CD8 T cells (correlation coefficient = -0.1289), 
macrophages (correlation coefficient = -0.1287), and 
Tregs (correlation coefficient = -0.1942; Fig.  4F-G). 
These results suggest that tumour cells tend to local-
ize together within the extranodal B-NHL tumour 
mass while immune cells localize together at the 
tumour periphery and highlight that Tregs are a critical 
mediator of CD8 + T cell immunosuppression in A20 
tumours.

As expected, non-tumour bearing murine cervical 
lymph nodes consisted almost entirely of immune cells 
(84.04%); however, the presence of Eµ-Myc tumours 
drastically decreased this proportion (16.41%). In 
Eµ-Myc tumours, the overall immune composition 
was altered relative to healthy lymph nodes, with an 
increase in neutrophils (defined as CD11b + MPO+), 
and a decrease in Tregs, dendritic cells, and CD8 + T 
cells (Fig. 4H). Eµ-Myc tumours also had an increased 
proportion of stromal cells, including fibroblasts and 
endothelial cells (23.09% in Eµ-Myc tumours, com-
pared to 15.96% in healthy lymph node). Spatial anal-
ysis further demonstrated that Eµ-Myc tumours are 
relatively disorganized (Fig.  4I), and different cell 
types seem to be randomly distributed throughout the 
tumour. For instance, while CD8 + T cells and Tregs 
can be detected (Fig.  4J), they are spatially segregated 
and are likely not functionally interacting (correlation 
coefficient = 0.2058).

Our data shows that the presence of A20 extranodal 
tumours induces the recruitment of immune cells to the 
liver, while the presence of Eµ-Myc nodal tumours leads 
to immune cell displacement from the lymph nodes. Fur-
thermore, as it has been previously suggested [56], our 
data suggest that A20 tumours rely on Tregs to induce 
immunosuppression and achieve immune evasion, while 
Eµ-Myc tumours are immune-depleted, and therefore 
do not require inhibitory immune cell interactions to 
achieve immunosuppression. Thus, these two models of 
B-NHL employ drastically different strategies to avoid 
immune destruction.
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Defining differences in the TME of primary and metastatic 
murine breast cancer
Breast cancer is a heterogeneous disease, comprised of 
different molecular subtypes. Patients with triple-neg-
ative breast cancer (TNBC) have the worst prognosis, 
largely due to aggressive tumour behaviour, increased 

risk of metastasis, and resistance to conventional anti-
cancer therapies [57]. Treatments which target the TME 
in TNBC have gained increased attention in recent years, 
spurred on by data demonstrating the strong immunoge-
nicity of this tumour type [58] and success of combined 
chemotherapy and immunotherapy in clinical trials 

Fig. 4 PhenoCycler imaging of the murine nodal and extra-nodal B-cell lymphoma tumour microenvironment. (A) Schematic of the A20 model of 
extranodal B-NHL, and representative images of Ki67 staining in healthy liver and A20 tumour-bearing liver. (B) Schematic of the Eµ-Myc model of 
nodal B-NHL, and representative images of Ki67 staining in healthy lymph node and an Eµ-Myc tumour-bearing lymph node. (C) Heatmap showing the 
normalized cellular mean intensity of markers within the PhenoCycler staining panel, in different phenotypes of cells in A20 and Eµ-Myc tumours. (D) 
Scatter plot comparing the proportions of different cell phenotypes as determined by PhenoCycler staining versus archival flow cytometry data, for A20 
tumours. Pearson r = 0.8551, p = 0.0142. (E) Proportions of different cell types in adjacent healthy liver and A20 tumour-bearing liver. (F) Heatmap showing 
neighborhood analysis of A20 tumours, as Pearson correlation coefficient between cells. Blue hue indicates cells are likely to be in further proximity, while 
red hue indicates that cells are likely to be in closer proximity. (G) Representative image of an A20 tumour core. (H) Proportions of different cell types in 
healthy lymph nodes and Eµ-Myc tumour-bearing lymph nodes. (I) Heatmap showing neighborhood analysis of Eµ-Myc tumours, as Pearson correlation 
coefficient between cells. (J) Representative image of an Eµ-Myc tumour core
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[59, 60]. Understanding the cellular landscape of TNBC 
tumours will undoubtedly be beneficial for the continued 
development of successful TME-targeting therapies.

Towards this goal, we used PhenoCycler to image pri-
mary tumours from the commonly used pre-clinical 
murine 66cl4 and 4T1 TNBC models, as well as 4T1 liver 
metastases (Fig.  5A-B). Using the protocols described 
above, we performed cell-segmentation and cell-clus-
tering to identify cell phenotypes. In these tumours, we 
could identify the same immune and stromal cell types as 
were found in lymphoma tumours. However, while lym-
phoma tumour cells were characterized by Ki67 positiv-
ity, we found that tumour cells in breast cancer models 
could be stratified based on Ki67 expression (Fig.  5D), 
and both Ki67 + and Ki67- tumour cells were numerous 
enough to merit individual classification. Interestingly, 
the percentage of Ki67 + tumour cells was higher in the 
more aggressive 4T1 samples compared to 66cl4 (Fig. 5E; 
percentage of Ki67 + tumour cells among total tumour 
cells: 66cl4: 41.13%; 4T1: 80.65%; 4T1-liver: 63.47%). 
The proportion of CD45 + immune cells was similar 
in all tumour sample types (Figs.  5E and 66cl4: 45.39%; 
4T1-primary: 52.52%; 4T1-liver: 49.84%), with macro-
phages representing the dominant immune cell type 
(Fig.  5E-F: 66cl4: 39.35%; 4T1-primary: 40%; 4T1-liver: 
38.59%) in line with previously published reports [61].

In addition to the composition of the immune cell land-
scape, cell neighbourhood analyses highlighted further 
differences between tumour types. Immune cells in 66cl4 
tumours were largely localized together in restricted 
regions, but were found to be intermingling with other 
cell types throughout 4T1 tumours (Fig.  5G-I). In par-
ticular, 4T1 tumours were observed to have strong spa-
tial interactions between CD8 + T cells and endothelial 
cells (correlation coefficient = 0.6198), and Ki67+ tumour 
cells and macrophages (correlation coefficient = 0.5448; 
Fig.  5H). In contrast, the interaction between endothe-
lial cells and CD8 + T cells is lost in 4T1 liver metas-
tases (correlation coefficient = -0.1667) compared to 
the primary tumour, with a concomitant increase in 
interactions between endothelial cells and neutrophils 
(correlation coefficient = 0.4064) and total neutrophil 
abundance (Fig. 5J-KT1: 0.19%; 4T1-liver: 0.88%). These 
data corroborate observations that formation of 4T1 liver 
metastases is heavily reliant on the infiltration of neutro-
phils into the TME [62], suggesting that proximity to the 
vascular endothelium may be indicative of immune cell 
influx patterns.

These data illustrate the utility of PhenoCycler technol-
ogy to profile the immune landscape of murine TNBC 
tumours, as we characterized immune cell composition 
of FFPE-processed murine tumour types while layering 
on top cellular distributions in space. We propose that 
future applications of PhenoCycler technology, using 

in-depth antibody panels which assess immune cell func-
tion or polarization, may aid in uncovering therapeutic 
options to augment anti-tumour immunity in TNBC 
patients.

Characterizing the TME of ICI-resistant and ICI-susceptible 
murine melanoma
Melanoma is one of the most immunogenic cancer types, 
due to its high mutational burden, which leads to the pro-
duction of neoantigens that are recognized by patrolling 
immune cells. To this end, ICI therapies have revolution-
ized the treatment of melanoma, but innate and acquired 
resistance remain as clinical challenges. Furthermore, 
clinical studies have shown that ICI resistance is associ-
ated with changes in TME composition [63, 64].

We used two immune competent murine mod-
els of melanoma for PhenoCycler staining: the 
BRAFV600E/PTEN−/− model and the YUMMER1.7 model 
(Fig.  6A). BRAFV600E/PTEN−/− melanomas exhibit high 
intratumoural heterogeneity and melanoma cell plas-
ticity, are known to be immune “cold”, and are insensi-
tive to ICI treatment. Conversely, YUMMER1.7-derived 
tumours are highly immunogenic and are susceptible 
to ICI-mediated tumour inhibition [48]. In our previ-
ous work, we have shown that αPD-1 immunother-
apy reduced the growth of YUMMER1.7 tumours and 
improved the overall survival of mice, but most tumours 
failed to go into complete remission [50], mimicking 
the human clinical scenario where more than half of 
patients experience disease progression following αPD-1 
treatment [65]. Thus, we aimed to determine if tumour 
regrowth following αPD-1 treatment is associated with 
TME remodeling by comparing isotype control (IgG)-
treated tumours with αPD-1-treated tumours (αPD-
1-relapsed), harvested when tumours were 2000 mm3. 
Additionally, samples from BRAFV600E/PTEN−/− tumours 
facilitated further comparison between an ICI-resistant 
and an ICI-sensitive murine model of melanoma.

PhenoCycler images from these murine melanomas 
were cell-segmented and classified based on marker 
expression (Fig. 6B). Similarly to breast cancer, we found 
that two distinct populations of tumour cells were pres-
ent: Ki67 + and Ki67- (Fig.  6C). BRAFV600E/PTEN−/− 
tumours were composed of 79.98% Ki67- tumour cells, 
and 2.88% Ki67 + proliferating tumour cells (Fig.  6D). 
These data are consistent with our previous work dem-
onstrating that BRAFV600E/PTEN−/− melanoma cells 
typically undergo phenotype switching from a more 
proliferative to a more invasive state, that is character-
ized by slower proliferation. The remaining 17.12% of 
cells within BRAFV600E/PTEN−/− tumours were stromal 
cells (5.29%) and immune cells (11.83%). The majority of 
the immune cells were found to be macrophages, with 
minimal T cell infiltration. Consistent with the fact that 
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Fig. 5 PhenoCycler imaging of the murine breast cancer tumour microenvironment. (A) Schematic of the 66cl4 murine model of breast cancer. (B) 
Schematics of the 4T1 murine models of breast cancer and breast cancer liver metastasis. (C) Heatmap showing the normalized cellular mean intensity of 
markers within the PhenoCycler staining panel, in different phenotypes of cells in 66cl4 and 4T1 tumours. (D) Representative image showing Ki67 + and 
Ki67- tumour cells. (E) Proportions of different cell types in 66cl4 and 4T1 tumours. (F) Representative images of macrophages and T cells in 66cl4 and 4T1 
primary tumours. (G) Heatmap showing neighborhood analysis of 66cl4 tumours. as Pearson correlation coefficient between cells. (H) Heatmap showing 
neighborhood analysis of 4T1 primary tumours, as Pearson correlation coefficient between cells. (I) Representative images showing immune cell infiltra-
tion patterns in 66cl4 and 4T1 tumours. (J) Heatmap showing neighborhood analysis of 4T1 liver metastases, as Pearson correlation coefficient between 
cells. K. Representative images comparing immune and stromal cell types in 4T1 primary and 4T1 liver metastases
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Fig. 6 PhenoCycler imaging of the murine melanoma tumour microenvironment. (A) Schematics of the BRAFV600E/PTEN−/− and YUMMER1.7 murine mod-
els of melanoma. (B) Heatmap showing the normalized cellular mean intensity of markers within the PhenoCycler staining panel, in different phenotypes 
of cells in BRAFV600E/PTEN−/− and YUMMER1.7 tumours. (C) Normalized Ki67 mean fluorescence intensity in Ki67 + tumour cells and Ki67- tumour cells. (D) 
Proportions of different cell types in BRAFV600E/PTEN−/− tumours. (E) Heatmap showing neighborhood analysis of BRAFV600E/PTEN−/− tumours, as Pearson 
correlation coefficient between cells. (F) Representative image of BRAFV600E/PTEN−/− tumour core. (G) Proportions of different cell types in YUMMER1.7 
tumours, treated with IgG control or αPD-1. (H-I) Heatmap showing neighborhood analysis of YUMMER1.7 tumours treated with IgG control (H) or αPD-1 
(I), as Pearson correlation coefficient between cells. (J) Representative image of YUMMER1.7-IgG tumour core. (K) Representative image of YUMMER1.7-
αPD-1 tumour core
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BRAFV600E/PTEN−/− tumours are immune “cold”, spatial 
analysis demonstrated that cells within these tumours 
did not have preferential interactions with each other 
(Fig.  6E) and appeared randomly distributed within the 
tissues (Fig. 6F).

As compared to BRAFV600E/PTEN−/− tumours, YUM-
MER1.7 tumours had a significantly higher proportion 
of proliferative (Ki67+) tumour cells, which was slightly 
decreased upon resistance to αPD-1 treatment (Fig.  6G 
and 23.23% in IgG-treated samples versus 18.22% in 
αPD-1-relapsed samples). Furthermore, both IgG-treated 
and αPD-1-relapsed YUMMER1.7 tumours were more 
immunogenically “hot” with increased immune cell 
abundance as compared to BRAFV600E/PTEN−/− tumours 
(IgG-treated: 39.11% immune cells; αPD-1-relapsed: 
37.1% immune cells). Whie IgG-treated and αPD-1 
relapsed YUMMER1.7 tumours had similar immune 
cell invasion, there were distinct differences in cellu-
lar organization. Spatial analysis of YUMMER1.7-IgG 
tumours showed strong interactions between CD8 + T 
cells and macrophages (correlation coefficient = 0.6482), 
and CD8 + T cells and dendritic cells (correlation coeffi-
cient = 0.4957; Fig. 6H). YUMMER1.7-IgG Ki67 + tumour 
cells were in close proximity to these immune cells 
(CD8 + T cell/ Ki67 + tumour cell correlation coeffi-
cient = 0.3529; macrophage/ Ki67 + tumour cell correla-
tion coefficient = 0.3535; dendritic cell/ Ki67 + tumour 
cell correlation coefficient = 0.2486), as compared to 
Ki67- tumour cells (CD8 + T cell/ Ki67- tumour cell cor-
relation coefficient = -0.2316; macrophage/ Ki67- tumour 
cell correlation coefficient = -0.1342; dendritic cell/ Ki67- 
tumour cell correlation coefficient = -0.1013). However, 
Ki67- tumour cells were in closer contact with CD4 + T 
cells (Ki67 + tumour cell/ CD4 + T cell correlation coeffi-
cient = -0.0339, Ki67- tumour cell/ CD4 + T cell correla-
tion coefficient = 0.1932). In αPD-1-relapsed tumours, all 
of these cellular contacts were reduced (Fig. 6I-K), sup-
porting reduced tumour-immune cell interaction as a 
mechanism of acquired ICI resistance in melanoma.

All together, these results support that Ki67 + prolif-
erative melanoma cells have higher immunogenicity. In 
agreement with this, BRAFV600E/PTEN−/− tumours have a 
substantially increased proportion of Ki67- tumour cells, 
correlating with a decreased proportion of infiltrating 
immune cells. Moreover, in YUMMER1.7-IgG tumours, 
Ki67 + tumour cells maintain close contacts with immune 
cells. In αPD-1-replapsed YUMMER1.7 tumours, there 
is no preferential interaction of Ki67 + or Ki67- tumour 
cells with immune cells, indicating immune dysfunc-
tion upon the emergence of ICI-resistance. To this end, 
our data supports the notion that ICI-resistance is asso-
ciated with decreased interactions between immune 
cells and tumour cells [66], as αPD-1-relapsed YUM-
MER1.7 tumours have similar macrophage infiltration 

as compared to IgG controls, yet the tissue organization 
is altered such that there are limited cellular contacts 
between macrophages and tumour cells.

Discussion
PhenoCycler imaging of murine FFPE tumour tissues
The TME is a central player in many of the biological 
challenges associated with cancer treatment, such as 
immune escape, disease metastasis, and drug resistance. 
Thus, it is critically important to assess both the com-
position and the spatial dynamics of the TME in mouse 
models that are commonly used in pre-clinical cancer 
research. Previously, PhenoCycler imaging of murine 
tissues had been limited to fresh frozen tissues. Here, 
we detail imaging FFPE murine tissues and provide our 
protocols for the optimization and conjugation of anti-
bodies for this purpose. To illustrate the feasibility of this 
approach, we provide data showing successful staining of 
murine lymphoma, melanoma, and breast cancer tissues.

Immunofluorescence imaging of FFPE tissues is not 
without challenges. FFPE tissues tend to have high auto-
fluorescence, which can distort true positive staining. 
Additionally, formalin-fixation induces protein cross-
linking, leading to epitope masking and difficulties in 
primary antibody binding [38]. However, many research 
groups archive tissues from previous pre-clinical studies 
in FFPE format; thus, it is a worthwhile endeavor to opti-
mize antibodies for highly multiplexed imaging of murine 
FFPE tissues, to allow for the utilization of archival mate-
rials. To this end, the selection of antibody clones with 
an ideal SNR was a critical first step towards this goal. 
Following clone selection, antibodies were carefully opti-
mized, for parameters such as concentration, incubation 
time and temperature, and imaging exposure time.

In this dataset, we first showed that the tumour micro-
environment of murine B-NHL is altered between the 
A20 and Eµ-Myc models of B-NHL, suggesting two 
different mechanisms of immune evasion. Then, we 
demonstrated that the distribution of the immune micro-
environment differs between models of murine TNBC, 
and showed how measurement of interactions between 
endothelial and immune cells may relate to TME infil-
tration. Finally, using samples from murine melanoma, 
we examined how the TME is altered in the context of 
ICI-resistance, and found that ICI-susceptible tumours 
have increased spatial interactions between immune 
cells and tumour cells. Our data asserts that the careful 
selection of a mouse model is critical when designing 
experiments to study the TME. For instance, Eu-Myc or 
BRAFV600E/PTEN−/− models may be appropriate to study 
therapeutics that are predicted to increase immune cell 
trafficking or retention in the TME; while A20, 66cl4, 
4T1, or YUMMER1.7 models could be useful to study 
therapeutics that re-activate immune cells already 
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present in the TME. Furthermore, we demonstrate 
that PhenoCycler imaging of murine tumours can be 
employed both to test and to generate hypotheses. As an 
example of this, we hypothesized that the TME would be 
altered in different models of B-NHL, and our data found 
close cellular contacts between CD8 + T cells and Tregs 
in A20 B-NHL tumours, but not in Eµ-Myc tumours. 
Thus, one may hypothesize that Tregs in A20 function via 
direct inhibitory interactions with CD8 + T cells to sup-
press anti-tumour immunity [67], and to further inves-
tigate this, ex vivo functional assays could be employed. 
Throughout this study, there are numerous examples 
where our findings via PhenoCycler imaging have been 
hypothesis generating and could be further explored with 
in vitro or in vivo experimentation.

Analysis of highly multiplexed immunofluorescence 
staining data
While many labs may be eager to begin highly multi-
plexed imaging of their experimental tissues, data analy-
sis can appear to be a daunting task. Above, we provide 
our workflows for open-source analysis of PhenoCycler 
imaging data. In our analysis pipeline, we primarily use 
QuPath software for cell classification [68], and Cyto-
MAP for spatial analysis [55]. In QuPath, images are seg-
mented into single cells using a StarDist plugin [69, 70]. 
In some cases, cell segmentation failed to discriminate 
individual cells when close contacts resulted in fluores-
cence spillover. This was particularly true in the case of 
intact blood vessels, where αSMA + fibroblasts formed 
close contacts with CD31 + endothelial cells. In our data-
set, we referred to these as “EndoFib” cells, and con-
sidered them to be a distinct entity. We also note that 
alternate segmentation methods that incorporate a cell 
membrane marker to define cellular boundaries may 
need to be utilized when the primary cell type of study is 
irregularly shaped or multinucleated, such as a fibroblast 
or a neuron [71].

To classify cells into phenotypes, we manually anno-
tated a small number of cells based on their marker 
expression and used object-based classification meth-
ods in QuPath to extend this cell classification to the 
whole tissue. While this method of analysis proved to be 
highly successful in our hands, other analysis pipelines 
may allow more cursory or in-depth higher-plex image 
analysis. For instance, following cell segmentation, cel-
lular mean intensity of all markers can be exported to a 
comma-separated values (CSV) file, which can be ana-
lyzed with FlowJo or other programs (so-called “hand-
gating”). However, the success of hand-gating is limited 
by cell segmentation noise [72]. Another alternative is 
to perform unsupervised clustering analysis, using pipe-
lines such as Seurat, but we note that over-clustering has 
the potential to identify false phenotypes, and therefore 

must be used with caution. Overall, the analysis pipeline 
described above is an excellent starting point for novices 
in multiplexed immunofluorescence image analysis and 
can be built upon to allow for more sophisticated anal-
yses which answer increasingly complex experimental 
questions.

Limitations of the technology
While the PhenoCycler system for highly multiplexed 
fluorescent imaging has distinct advantages over other 
highly multiplexed imaging platforms, such as non-
destructive tissue imaging, limited spectral overlap in 
fluorescence due to iterative cycles of imaging, and the 
use of robotic automation to increase throughput, there 
are also limitations to this technology. For instance, it 
is expensive and time consuming to identify antibody 
clones that are suitable for PhenoCycler immunofluo-
rescence imaging. Additionally, the conjugation of an 
antibody to a DNA barcode can occasionally result in 
antibody dysfunction, and it is costly to research labs to 
correct problems of this nature. The process of identify-
ing antibody clones suitable for PhenoCycler imaging 
represents a significant bottleneck in the PhenoCycler 
workflow, especially when generating custom antibody 
panels.

Furthermore, while PhenoCycler has been proven to 
image up to 100 markers, there is limited opportunity 
for signal amplification to aid in the visualization of tar-
gets of low abundance. To this point, there have been 
attempts to integrate tyramide-based signal amplification 
into the PhenoCycler workflow [20], but the proposed 
strategy requires iterative staining and stripping cycles, 
thereby increasing the risk of tissue damage and decreas-
ing automation.

Concluding remarks
As new technologies in highly multiplexed imaging 
continue to emerge, we predict that many labs will 
require refined protocols for image acquisition and 
data analysis. Highly multiplexed imaging provides the 
opportunity to visualize many diverse cell types in their 
native environments, and the insights provided from 
these types of experiments are instrumental in advanc-
ing the field of cancer research. Thus, we predict that 
the number of publications which employ highly mul-
tiplexed imaging will explode over the next decade. 
To this end, data must be appropriately collected and 
analyzed, and we hope to empower research groups to 
begin working towards this goal with the protocols pro-
vided above.
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