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Abstract 

Oxytocin (OXT), produced and secreted in the paraventricular nucleus and supraoptic nucleus of magnocellular 
and parvocellular neurons. The diverse presence and activity of oxytocin suggests a potential for this neuropeptide 
in the pathogenesis and treatment of stress‑related neuropsychiatric disorders (anxiety, depression and post‑trau‑
matic stress disorder (PTSD)). For a more comprehensive understanding of the mechanism of OXT’s anti‑stress action, 
the signaling cascade of OXT binding to targeting stress were summarized. Then the advance of OXT treatment 
in depression, anxiety, PTSD and the major projection region of OXT neuron were discussed. Further, the efficacy 
of endogenous and exogenous OXT in stress responses were highlighted in this review. To augment the level of OXT 
in stress‑related neuropsychiatric disorders, current biological strategies were summarized to shed a light on the treat‑
ment of stress‑induced psychiatric disorders. We also conclude some of the major puzzles in the therapeutic uses 
of OXT in stress‑related neuropsychiatric disorders. Although some questions remain to be resolved, OXT has an 
enormous potential therapeutic use as a hormone that regulates stress responses.
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Introduction
“Amor est vitae essentia”, as a proverb states, “love” is con-
sistent with “pleasure” in neuroscience. Oxytocin (OXT), 
an ancient, conserved, “love” related neuropeptide, is an 
endogenous hormone consisted of 9 amino acids and is 
well-known for its effect on lactation and parturition in 
mammals. It’s now over one century since pharmacologist 

Sir Henrry Hallet Dale discovered that a pituitary extract 
can promote uterotonic activity and be named by “Oxy-
tocin” meaning “quick birth” [1]. OXT was synthesized 
by magnocellular and parvocellular neurons in the para-
ventricular nucleus (PVN) and supraoptic nucleus (SON) 
of the hypothalamus, and transported by the posterior 
pituitary into the circulation [2–4]. At whole brain level, 
the distribution of OXT receptor (OXTR) is mainly in 
different brain regions, especially in the projection of 
magnocellular and parvocellular neurons, including hip-
pocampus, amygdala, prefrontal cortex [5–7].

Stress is always a natural response of organism to envi-
ronmental disturbances, which is often associated with 
the experience of the emotional and physiological chal-
lenge. The chronic stress environment may impair indi-
vidual mental health and induce depression, anxiety, 
fatigue, PTSD [8]. The physiological and pathophysiologi-
cal mechanism of OXT have attracted sustained research 
interest given its role in complex behavioral traits and in 
the mental health conditions [3]. In our previous work, 
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we found that OXT may be a modulator of stress-related 
neuropsychiatric disorders [9].

Here, we reviewed recent advances in preclinical and 
clinical study regarding the potential use of OXT in 
stress-related neuropsychiatric disorders. For a more 
comprehensive understanding of the mechanism of oxy-
tocin’s anti-stress action, we summarized the signaling 
cascade of OXT binding to targeting stress. Then the 
advance of OXT treatment in depression, anxiety, PTSD 
and the major projection region of OXT neuron were 
discussed. The efficacy of endogenous and exogenous 
OXT in stress responses were highlighted in this review. 
Finally, current biological strategies to augment the level 
of OXT in stress-related neuropsychiatric disorders were 
summarized, shedding a light on the treatment of stress-
induced psychiatric disorders.

Oxytocin receptor coupled signaling cascade
Understanding how OXT mediated a signaling cas-
cade under stress is a biochemical basis for attenuating 
the neuropsychiatric disorders. OXTR, as a G protein-
coupled receptor (GPCR) consisting of 389 amino acids, 
plays a vital role in maternal behavior, social behavior, 
and parturition [10]. And OXTR is coupled to the het-
erotrimeric complex of G proteins, including the  Gα,  Gβ, 
 Gγ subunits [11]. In general, OXTR mediates  Ca2+ release 
and transport pathways. When Gβ and Gγ subunits bind 
to OXTR, activation of Gα enhance the activation of 
phospholipase C (PLC) and downstream inositol 3 phos-
phate (IP3) and 1,2-dicyaglycerol (DAG), inducing  Ca2+ 
release from the endoplasmic reticulum [12]. Elevated 
intracellular  Ca2+ ions concentration forms a complex 
with calmodulin protein and induces smooth muscle 
contraction, which may be involved in myometrial cells 
contraction during labor [13, 14].

OXT-mediated elevation of intracellular  Ca2+ con-
centration was associated with activation of IP3-sensi-
tive  Ca2+ storages of astrocytes in  vitro [15]. OXT also 
induces  Ca2+ influx by regulating transient receptor 
potential vanilloid type 2 (TRPV2) channels to induces 
anxiolytic activity in male rats [16]. The process of OXT-
induced intracellular  Ca2+ changes may also be involved 
in the regulation of neuronal excitability or synaptic plas-
ticity, but depends on the type of neuronal cell [16]. In the 
paraventricular OXT neurons, OXTR mediates increased 
neuropeptide S synthesis and induces anxiolysis [17]. In 
addition, it was found that OXTR interacts mitogen-acti-
vated protein kinase (MAPK) signaling pathway by acting 
with epidermal growth factor receptor (EGFR) [18]. And 
OXTR-EGFR signaling promotes the maintenance of LTP 
in the CA1 region synapses of the hippocampus of female 
and male rats [19].

The distribution characteristic of OXTR mediate the 
physiological effect in the stress response. In hypotha-
lamic corticotrophin-releasing hormone (CRH) neu-
rons, restraint stress induces the CRH expression and 
cAMP response element-binding (CREB) translocation 
into nuclear in rat [20]. As a co-activator of CREB phos-
phorylation, CREB-regulated transcriptional coactiva-
tors (CRTC) dephosphorylates and enters the nucleus 
to interact with the CRF promoter, activating CRF gene 
expression in the stress [21]. Moreover, Estrogen recep-
tor-mediated signaling also interacts with the OXTR 
signaling cascade. Immunohistochemistry and in  situ 
hybridization results revealed that estrogen receptor beta 
(ERβ) was highly expressed in hypothalamic OXT neu-
rons in rats and mice [22, 23]. Interaction between hypo-
thalamic ERβ and OXT can modulate anxiety behavior 
and HPA axis activity in restraint-stressed rats [24]. 
And treatment with ERβ ligand agonist, 5α-androstane, 
3β,17β-diol (3β-diol), upregulates the expression of OXT 
mRNA and promotes OXT transcription via CREB and 
steroid receptor coactivator-1 [25]. In particular, estro-
gen withdrawal induces hypothalamic oxytocin neuronal 
plasticity and increases anxiety behaviors via enhancing 
OXT transmission between the PVN and dorsal raphe 
nucleus [26]. In addition, androgen receptors have been 
found to co-localize with hypothalamic OXT by immu-
nocytochemistry in the postmortem brain of patients 
with mood disorders [27]. The application of techniques 
for the study of co-expression of OXT and other hormone 
receptors is still limited and remains at the level of in situ 
hybridization or immunohistochemistry only. The uti-
lization of single-cell transcriptomics, spatial transcrip-
tomics, and the development of other hormone receptor 
sensors may provide technical support to address this 
issue. Spatial transcriptomics (ST) is a technique to 
understand gene expression differences between tissues, 
organs and pathological states by describing the gene 
expression profiles of specific cell types through spatial 
dimensionality analysis, which is capable of resolving 
transcripts at different spatial locations in tissues [28]. 
This could help understand the mechanisms by which 
signaling pathways activated by oxytocin and other hor-
mone receptors produce different behavioral paradigms 
in different brain regions. In addition, the application of 
single-cell transcriptomics has enabled the observation of 
tissues at single-cell resolution. Computational tools have 
been developed to estimate cell–cell communication 
activity from RNA-seq data using signaling databases [29, 
30]. A recent study analyzed multiple error robust fluo-
rescence in situ hybridization (MERFISH) data from the 
mouse hypothalamic preoptic region, featuring 161 genes 
and 73,655 cells [31]. Self-regulation of excitatory neu-
rons and modulation of inhibitory neurons by excitatory 
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neurons through OXT signaling were found in all slices, 
a result consistent with the known primary function 
of OXT signaling [31]. Further analysis identified local-
ized regions of high activity and spatial orientation of 
OXT signaling, which is consistent with protein staining 
of OXT and its receptors [31]. A gradual change in the 
direction of predicted OXT signaling and in the region of 
high activity was observed through adjacent slices [31]. 
Notably, whole-brain quantitative expression of OXTR 
is important for understanding expression specificity in 
temporal and spatial patterns. Kyra et  al. constructed 
quantitative expression changes of OXTR during postna-
tal development and at the whole-brain level using OXTR 
fluorescent reporter mice (OXTRvenus/+) [32]. They 
also built an open OXTR web-based visualization data 
(https:// kimlab. io/ brain- map/ OTR/), which provides an 
anatomical basis for subsequent OXT/OXTR-mediated 
behavioral and neural circuits differences across age 
[32]. A clear pattern of OXTR gene expression in the 
developing brain was found in postmortem human brain 
samples, with OXTR expression increasing during the 
prenatal period, peaking in early childhood, and strong 
spatiotemporal coupling to psychiatric disorders [33]. 
Brandon et al. revealed spatial and temporal enrichment 

of OXTR expression in adult neurons of the mouse olfac-
tory bulb, with OXTR expression peaking during activity-
dependent integration [34]. Using viral labeling, confocal 
microscopy, and cell type-specific RNA-seq, they dem-
onstrated that OXTR signaling promotes morphogenesis 
and synapse maturation by regulating newly integrated 
adult neurons [34]. Therefore, analyzing OXT and its 
related receptors from a temporal and spatial perspec-
tive may provide a more precise strategy for application. 
Furthermore, the stress response is often accompanied 
by overactivation of the neuroimmune system. OXT (i.c.v 
injection) ameliorated the negative effects of maternal 
separation (MS) on the hippocampal neuroimmune sys-
tem and reduced inflammatory cytokine via suppressing 
the Toll like receptor 4 (TLR4) pathway (IL-1β, Myd88, 
TNF-α, NLRP3) [35]. Increased OXTR expression is 
regulated by NF-κB downstream of TLR4 and attenuates 
LPS-induced macrophage inflammatory response [36]. 
Collectively, these findings shed light on the role of the 
interaction of OXTR-mediated signaling cascades with 
other signals in PVN (Fig. 1).

Given the molecular structure of OXT, it’s usually 
harder to cross the blood–brain barrier. Therefore, 
OXT is administered by nasal spray and diffuses in the 

Fig. 1 Schematic description of the signaling cascade of Oxytocinergic neurons in PVN. OXT binding to OXTR stimulates the transcription 
of EGFR, which leads to subsequent MAPK pathway activation. The  Ca2+, influx into the cytoplasm via activated TRPV4 and release from PLC 
dependent pathway, interacts the ERK1/2 and MEK1/2 to regulate the subsequent transcription factor (CREB, CTRC, CD38). Furthermore, OXT 
binding also suppress the TLR4 mediated signaling cascade, which causes the inhibition of immune response genes (TNF‑α, IL‑1β, NLRP3). When 
ERβ is activated, intracellular cascades promote the transcription of OXT via CREB and coactivators. These signaling cascades ultimately buffer 
the molecular changes induced by stress. Image created with Biorender.com

https://kimlab.io/brain-map/OTR/
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cerebrospinal fluid through the olfactory bulb axonal 
projections rather than through the blood–brain barrier 
[37, 38]. It should be mentioned that the hypothalamus 
is the first region to respond to peripheral physiological 
changes, such as starvation and cold. Hypothalamus has 
permeable microvessels attached and nuclei with looser 
tight junction structures for transit of hormones (i.e., lep-
tin, ghrelin etc.), such as the medial basal hypothalamus 
and arcuate nucleus [39, 40]. It has been shown that the 
median eminence (ME), located in the medial basal hypo-
thalamus, near the arcuate nucleus, is the entry point for 
some neuropeptide hormones and circulating signals into 
the brain via the fenestrated capillaries [40, 41]. Leptin is 
a 16 kDa peptide hormone that maintains energy homeo-
stasis by activating leptin receptors (LepR) in the brain 
[42]. Previous studies have suggested that leptin is unable 
to enter the brain through the blood–brain barrier, but 
Manon et al. found that LepR are expressed in hypotha-
lamic ME tanycytes and respond to leptin [43]. Leptin 
can be transported by transcytotic route across tanycytes, 
and the LepR mediates the process of leptin internalized, 
which is necessary for transport into the cerebrospi-
nal fluid [43]. The above results suggest that leptin can 
enter the brain through routes outside the blood–brain 
barrier to participate in the control of feeding and the 
maintenance of energy homeostasis [43]. It is still unclear 
whether OXT also enters the brain from fenestrated cap-
illaries of the medial basal hypothalamus similarly to lep-
tin. However, it has been found that the nose-to-blood 
route is more critical for the pharmacological effects of 
nasal OXT than the nose-to-brain route, and that nasal 
OXT produces its effects by increasing peripheral blood 
concentrations rather than directly entering the brain in 
the human subject [44]. In addition, Chen et al. also con-
firmed that oral and nasal spray OXT increased periph-
eral circulating concentrations [45]. OXT selectively 
enhances C-touch fiber-targeted pleasurable responses 
to social touch processing via peripheral pathways rather 
than directly into the brain [45]. And OXT-deficient 
secreting mice (Oxt−/−, Cd38−/−, Oxtr−/−) exhibit deficits 
in maternal bonding behavior, whereas peripheral OXT 
delivery results in the restoration of maternal bonding 
behaviour, implying that circulating OXT may cross the 
blood–brain barrier [46]. Further, OXT is transported to 
the brain via the receptor for advanced glycosylation end 
products (RAGE) on brain capillary endothelial cells and 
validated in RAGE-deficient mice (Ager−/−) [46, 47]. In 
addition, the nanoparticle formulation also enables sus-
tained delivery of peripheral OXT to the brain [48]. The 
application of nano-delivery systems not only improves 
the infiltration of OT in the brain, but also prolongs the 
half-life of OXT by encapsulation and sustained release 
[49]. The above results imply that OXT’s role in entering 

the brain is important for pharmacological intervention 
in stress-related neuropsychiatric disorders, but more 
clinical studies are needed to verify this.

The major projection of intracerebral oxytocin in stress
Hippocampus
The hippocampus is usually considered to be a vital brain 
region that regulates emotion, cognition and particularly 
vulnerable to stress exposure. And OXTR is abundantly 
distributed in the hippocampus, suggesting that the OXT 
system may mediate the hippocampal regulation of stress 
responses [50]. Using double-labeled confocal immuno-
fluorescence images, Lin et al. found that OXTR is mainly 
expressed in pyramidal neurons in the CA2/3 and dor-
sal DG region in OXTR-Venus knock-in mice [51]. The 
expression and binding of OXTR is detectable in subre-
gions, such as CA1, CA2, CA3 and dentate gyrus (DG) 
of hippocampus in rodents [12]. In stressed brain, there 
are three potential mechanisms mediated the regulation 
of OXTR signaling in hippocampus, including regulation 
of neuronal excitability, neurogenesis, and regulation of 
glucocorticoid level.

Whole-cell recordings showed that activation of OXTR 
led to an increase in the frequency and amplitude of 
spontaneous inhibitory postsynaptic currents by evok-
ing GABAergic interneurons [52]. And Silvia et  al. also 
suggested that OXT exposure inhibit hippocampal glu-
tamatergic neurons and maintain the balance of physi-
ological excitation/inhibition in  vivo and vitro [53]. In 
hippocampal slices, OXT induced membrane depolariza-
tion and enhanced electrically triggered action potential 
discharges in CA3 pyramidal neurons, indicating neu-
ronal excitability occurred in CA3 pyramidal neurons in 
hippocampus [54]. Taken together, these studies identi-
fied that OXT mediated pathway can maintain the home-
ostasis of neuronal excitability.

Adult neurogenesis refers to the generation and prolif-
eration of new neurons, while stress often negatively reg-
ulates hippocampal neurogenesis [55]. To the best of our 
knowledge, there is currently no evidence for OXT on 
hippocampal neurogenesis in the human brain, thus we 
mainly focus on the mammalian brain to discuss the OXT 
mediated neurogenesis in hippocampus [56]. Peripheral 
OXT administration (1 ng/μl) significantly enhanced the 
BrdU-labeled cells in the ventral DG, indicating OXT 
injection increased adult-generated cells in neurons and 
glia when animal exposure to acute cold-water stress [57]. 
OXT treatment was also accompanied by a phenotype of 
hippocampal cell proliferation and dendritic maturation 
[58]. Further research discovered that PVN oxytociner-
gic signaling promotes neurogenesis in the sub-granular 
zone of DG by activating OXTR in pyramidal neurons in 
the CA3 region of the hippocampus [54].



Page 5 of 18Zhang et al. Cell & Bioscience          (2023) 13:216  

Furthermore, previous studies pointed out that sys-
temic administration of OXT reduces glucocorticoid 
receptor mRNA expression in hippocampal CA1, CA2 
and DG of rat [59]. The high concentrations of stress-
induced corticosteroids (CORT) level reduced hip-
pocampal synaptic plasticity by activating glucocorticoid 
receptors, which may be a hindrance to NMDA receptor-
dependent synaptic plasticity [60, 61]. These studies all 
showed that stress affects the hippocampus and behav-
iors through the regulation of glucocorticoid.

Prefrontal cortex
Prefrontal cortex is a key target region in stress-related 
neuropsychiatric disorders. In rodent, acute restraint 
stress triggered the reinstatement of methamphetamine 
conditioned place preference induced by methampheta-
mine, whereas microinjection of OXT can reverse it via 
the glutamatergic system of mPFC [62]. In the rodent 
model of PTSD, single prolonged stress (SPS) stimulated 
the expression of neuroinflammation factors (i.e., IL-1β, 
IFN-γ) in mPFC, hippocampus, and amygdala [63]. But 
intranasal OXT administration effectively ameliorated 
SPS-induced fear extinction recovery through anti-
inflammatory effects and reduced the higher CRHR1 
protein levels in mPFC and amygdala [63, 64]. Using c-fos 
immunofluorescence labeling and quantification, the 
hypo-activation of prefrontal cortex and amygdala neu-
rons were found in vulnerable rats with a robust PTSD 
syndrome including increased anxiety and decreased 
arousal. These phenomena can be rescued by intracer-
ebral infusion of OXT via emotional remodeling [65]. 
Nevertheless, there are still some studies revealing the 
mechanism of OXT’s intervention of stress by target-
ing the prefrontal cortex at different levels. Blood OXTR 
mRNA is not only thought as a potential biological bio-
marker in the prefrontal cortex of hyporesponsive HPA 
axis subtype of PTSD, but also likely regarded transla-
tional evidence that the HPA axis response specificity is 
dependent on the regulation of OXTR expression [66]. 
Likewise, OXTR-mediated ERK and MAPK phosphoryl-
ation in mPFC relieved the neonatal maternal separation-
induced social deficits behaviors [67]. Interestingly, in 
the early paternal deprivation (PD) experiences, optoge-
netic activation of OXT neurons in PVN projected to the 
prelimbic cortex can reverse PD-induced emotional and 
social preference behaviors [68].

Furthermore, OXT plays a specific regulatory role in 
the prelimbic subregion of mPFC and produces anxio-
lytic phenotype via interact with GABAergic neurons 
[69]. Meanwhile, OXT neuron-specific circuits in the 
cortex also have sex dependence in interventions for 
anxiety. Using optogenetic techniques and electrophysi-
ological recordings, OXTR interneurons (OXTRINS) of 

mPFC was found to modulate anxiety behavior in male 
mice, but not in female mice [70]. This process may be 
associated with corticotropin releasing hormone binding 
protein (CRHBP), an OXTRINS-specific expressed pro-
tein, blocking CRH-induced activation of pyramidal 2/3 
neurons of mPFC. Surprisingly, our previous work also 
demonstrated that mPFC has been activated in mater-
nal separation (MS) [9]. Among them, unpredictable MS 
impaired the structural and functional glutamatergic syn-
apses in pyramidal neurons of mPFC and increased stress 
susceptibility [9]. And RNA-sequencing revealed that 
the OXT gene played a crucial role in predictable MS-
induced stress resilience [9].

The obvious studies have proved the specific mecha-
nism of action of OXT and neurons in prefrontal cortex, 
but the OXT mediated biological mechanism and the 
change of subregion of prefrontal cortex in other stress 
model still need more evidences. In the clinical studies, 
the effect of intranasal OXT administration on different 
stress groups is usually related to the functional con-
nectivity between the prefrontal cortex and other brain 
regions. Early life stress alters amygdala-prefrontal func-
tional connectivity and sensitivity to the effects of OXT 
treatment [71]. In PTSD patients, OXT may reduce 
anxiety and fear expression in the amygdala in PTSD by 
increasing control of the ventromedial prefrontal cor-
tex (vlPFC) over CeM (males) or by reducing salience 
processing of dorsal anterior cingulate cortex over BLA 
(females) [72]. In trauma-exposed individuals, amygdala 
responses to fearful faces were significantly enhanced 
after a single dose of OXT, and amygdala-ventromedial 
and vlPFC connections were weakened [73]. Therefore, 
repeated intranasal injections OXT is a promising early 
preventive intervention for individuals with increased 
risk of PTSD due to severe acute symptoms [73]. In addi-
tion, the results also showed that PTSD patients with the 
treatment of OXT have increased connectivity between 
the dorsolateral prefrontal cortex and anterior cingulate 
gyrus in working memory and control system connectiv-
ity compared to placebo [74]. And OXT use was found to 
affect the functional connectivity of the BLA and vlPFC 
hindering the functioning of emotion regulation net-
works in response to trauma-exposed situation [75]. This 
suggests that in traumatized individuals, intranasal OXT 
administration needs to be administered more cautiously 
to intervene in PTSD.

Amygdala
Previous evidence supported that OXT can attenuate 
stress-induced fear responses by targeting the amyg-
dala. Excessive fear expression may be associated with 
the development of anxiety disorders such as PTSD, 
panic disorder, and phobias. It was found that amygdala 
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neurons participate in the emotional remodeling of OXT 
through morphological changes, but cannot be ruled out 
the non-specificity in other brain regions, such as pre-
frontal cortex [65]. Traumatic experiences can lead to 
abnormal fear extinction due to the biological imbalance 
between HPA and amygdala fear circuit. Therefore, intra-
nasal OXT administration restores the impaired proso-
cial behavior of male rats under SPS stimulation and the 
expression of amygdala OXTR by regulating CRHR sen-
sitivity [64]. Interestingly, the amygdala not only played a 
role in trauma-related stress, but also mediated the effi-
cacy of OXT in social stress-induced avoidance behavior 
in prairie female voles [76]. In autistic mice, OXT intra-
nasal administration improved microglia activation in the 
amygdala and reduced neuroinflammation and oxidative 
stress [77].

Additionally, centralof the amygdala  (CeA) has been 
shown to be involved in the stress regulation of OXT and 
OXTR or GABA receptor are enriched in this region [78]. 
In forced swimming stress, OXTergic neurons of CeA 
regulated stress-coping behavior, and the mechanism 
may be through the inhibition of excitatory amino acids 
[78]. OXT microinjection in CeA promoted social prefer-
ence and reduced the anxiety levels, whereas CeA infu-
sion with OXTR-antagonist dose-dependently reduced 
sociality and increased anxiety [79]. But administration of 
the GABAA receptor antagonist bicuculline in combina-
tion with OXT to the CeA blocked the effect of the anxio-
lytic property of OXT [79], suggesting that OXT interacts 
the GABAergic neurons of CeA in anxiolytic effect. In 
the long-term isolation stress, OXT ameliorated depres-
sive and anxious behaviors via increases miniature inhibi-
tory postsynaptic currents in CeA neurons, indicating 
that OXT rescues glutamatergic synaptic transmission 
in CeA of isolated mice [80]. In recent study, Francesconi 
et al. found that OXT also projects to CeA through type 
II bed nucleus of the stria terminalis (BNST) neurons by 
recording retrogradely labeled [81]. And they found that 
OXT increases the frequency of spontaneous inhibitory 
post-synaptic currents in type II BNST → CeA output 
neurons, suggesting that OXT inhibits BNST → CeA neu-
rons to promote cued fear stress [81]. Hence, these stud-
ies suggested that OXT mediate the neuronal excitability 
of CeA in the improvement of trauma and fear related 
stress, but still need more research to elucidate biological 
mechanism.

Oxytocin in regulation of stress responsivity
Oxytocin regulates the HPA axis in response to stress
The relationship of OXT activation and HPA axis hor-
mone interactions are critical to elucidate the regulation 
of OXT in stress. Among changes of stress-related hor-
mone levels, the feedback inhibition of corticosteroids 

is mediated by OXT signaling pathway and related to 
CRH, which is called the main driver of HPA axis [82, 
83]. Intracerebroventricular (i.c.v) injection of CRH may 
act directly or indirectly upon magnocellular neurons 
to facilitate OXT release in rat [84]. Then, using dou-
ble labelling in situ hybridization, Arima et al. observed 
the localization of CRH receptors type-1(CRHR1) and 
type-2(CRHR2) in the SON and PVN, suggested the 
colocalization of CRHR2 with OXT mRNA in the SON 
[85]. Consistent with the above findings, CRHR1 antago-
nist significantly attenuated the stress-induced altera-
tion of OXT, CORT and displays anxiolytic effects in 
rats [86]. Thus, antagonism of CRHR may be neces-
sary for the release of OXT in stress. Interestingly, OXT 
receptor interneurons are involved in regulate anxiety-
related behaviors via specifical expression of CRHBP, 
an antagonist of CRHR [70]. In a rat model of PTSD, it 
is in line with the above evidence that the CRHR regula-
tion of anxiety was sensitive to OXT signaling via OXT 
antagonist atosiban [64]. Among these, the expression of 
CRHR1 was more sensitive than CRHR2 and the higher 
protein level was found in the amygdala in SPS, while 
the OXT signaling pathway demonstrated a therapeutic 
specificity to the amygdala, indicating that the amygdala 
OXT signaling pathway may amended SPS induced PTSD 
by regulating CRHR1 [64]. Therefore, the CRHR plays a 
critical role in regulation of OXT in the stress response 
and cause a cascade reaction of HPA axis.

Previously, central OXT administration has been impli-
cated in downregulation of HPA responses to noise stress 
and inhibition of CRF and CORT release in rodents [87]. 
There is a study also showed that the i.c.v OXT injection 
after oophorectomy reduced plasma ACTH concentra-
tions and the expression of CRH mRNA in the rat’s hypo-
thalamus after stress stimulation [88]. Treating with an 
OXT antagonist, male marmosets expressed significantly 
higher HPA-axis activity across the stressor compared 
with saline, indicating that the OXT system reduces the 
stress-induced cortisol secretion [89]. Hence, the fluctua-
tions of both endogenous and exogenous OXT level are 
reflected the resilience of stress response and resistance 
to stress related hormone.

It should be noted, OXT may act as a buffer in stress 
induced HPA axis response via prosocial behaviors. Pre-
vious findings supported those social behaviors act as a 
buffer for the imbalance between HPA axis and stress 
responses, and OXT is considered as mediator in the 
buffering of social [90, 91]. To further confirm mediation 
effect of OXT, Smith and colleagues first demonstrated 
that OXT release in PVN and OXT neurons modu-
late HPA axis responses and alleviate immobilization 
stress induced anxiety-like behavior in the prairie vole (a 
socially monogamous rodent for long term pair bonds) 
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[92]. Similarly, consolation behavior, a common empa-
thetic response and a prosocial behavior, can make prai-
rie vole to increase grooming in stress partner, suggesting 
that they provide a social buffering when partner experi-
ence an unobserved stressor [93]. Exposure to the stress, 
the level of CORT and the ACC activity were increased in 
the prairie vole [93]. And i.c.v injection of OXT receptor 
antagonist induced the previous molecular changes and 
abolish the benefit of consolation behavior [93]. There-
fore, OXT can improve the stress induced dysfunction 
of HPA axis via a social behavior dependent way. But 
there are growing evidences presented that OXT some-
times cannot attenuate the anxiety behavior and even led 
to an increase in social anxiety and aggressive behaviors 
[94, 95]. To explain this phenomenon, the social salience 
hypothesis of OXT argued that OXT regulates the sali-
ence of social cues, like competitive, cooperative or stress 
environment, which modulates individual’s responses 
though circuit-specific action [96]. This hypothesis pro-
poses that OXT increases the salience of safety signals 
in positive situations (e.g., empathy, trust, cooperation 
etc.), thereby improving stress responses [97]. Con-
versely, OXT induces a bias toward negative social cues 
in the unpredictable threatening situations (e.g., compe-
tition, scare, aggression) and increases stress responses 
[95]. These results show that OXT neurons play a critical 
role in regulating stress responses, especially in the social 
buffering. The level of OXT showed resilience in regulat-
ing stress response, and the difference may be caused by 
the salience of social cues.

The exogenous and endogenous oxytocin efficacy in stress 
responses
The OXT system was greatly activated by stressful or 
threatening condition, and either endogenous or syn-
thetic oxytocin produces stress resistance. In general, the 
discussion of oxytocin mainly focuses on the interven-
tion effect of exogenous synthetic OXT administration 
on stress state, and the expression level of endogenous 
OXT in anxiety and stress [12, 98]. There are several 
preclinical and clinical studies suggested that exogenous 
administration of recombinant OXT exerts strongly 
anxiolytic, stress resistant, social-buffering effect on 
humans and rodents (Table  1). Various animal studies 
aimed to uncover the role of synthetic OXT in anxio-
lytic effect and stress response, even though the mecha-
nism of action varies. However, in mice, the alterations 
in anxiety-behavior were described to be controver-
sial, with elevated stress response in mild stress model, 
which may dependent on the instability of behavior 
of rat or the dose of OXT (chronic i.c.v OXT injection) 
[99]. Similarly, chronic high-dose i.c.v OXT administra-
tion (over 14  days) produced an anxiety-like behavioral 

phenotype and reduced the expression of OXTR levels, 
whereas chronic low-dose OXT prevented hyper anxi-
ety and reduced ACTH sensitivity and adrenal hypertro-
phy [100]. These results suggest that the dose-dependent 
effect of OXT needs to be revisited in the application of 
stress-induced psychiatric disorders [100].

It is also worth noting that changes in endogenous OXT 
levels and neuronal activities during stress, which may 
lead to the identification of biomarkers for the diagno-
sis of stress-related neuropsychiatric disorders (Table 2). 
Generally, the oxytocin system of the hypothalamus is 
activated both in human and rodent, and even peripheral 
OXT levels are affected by stress. But the opposite results 
were found that the OXT system plays a buffering role 
in reducing the sensitivity of stress responses [101]. The 
above results indicate that endogenous changes in OXT 
expression may be safer and more efficient in stress regu-
lation than peripheral OXT administration, but these are 
based on the normal endocrine system of the oxytocin 
system.

Oxytocin and stress‑related neuropsychiatric disorders
Anxiolytic role of oxytocin
Anxiety disorder is characterized by excessive fear, anxi-
ety and avoidance of stress, including: separation anxi-
ety disorder, selective mutism, specific phobias, social 
anxiety disorder (SAD), panic disorder, agoraphobia, 
and generalized anxiety disorder [102]. In the previous 
studies, OXT has been demonstrated to have anxiolytic 
effects on different types of anxiety. Separation anxiety 
disorder is the presence of inappropriate and excessive 
fear or anxiety while leaving the familiar environment or 
being separated from the attachment object. In lactating 
rats, long-term MS altered maternal care, anxiety-like 
behavior, and paraventricular OXT and corticotropin-
releasing factor immunoreactivity expression in lactating 
rats [103]. At postnatal day 21, rat pups were experienced 
MS stress, resulting in anxiety behaviors with higher 
levels of blood CORT and impaired social and learning 
and memory functions [104]. Intranasal OXT adminis-
tration rescued anxious behavior by restoring impaired 
LTP differentiation in hippocampal CA1 region [104]. 
Acute injection of fibroblast growth factor 2 (FGF2) was 
associated with the acH3K14 of the OXTR promoter in 
short term MS rat pups, suggesting that FGF2 mediates 
the anxiolytic effects by increasing acetylation of OXTR 
promoters to overcome decreased OXT levels [105]. In 
contrast, repeated daily experiences of brief separation 
from pups resulted in increases the level of estrogens 
receptor (ER) and OXTR and a decrease in 5-HT1Ars 
in the brain of rat dams [106]. Neurochemical changes 
may be responsible for the observed increase in maternal 
behavior and decreased anxiety [106]. However, MS after 
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Table 1 The efficacy of exogenous administration of OXT in different stress

Species, 
gender

Stress type Dosage 
Regimen

Index change Outcome References

Rat, M Chronic stress Oral treatment, 
10 IU/400 μl, 
14 days

NAT, VMAT2↑
catecholamine↓

Attenuated adrenal gland atrophy [157]

Rat/mice, M&F Acute restraint 
stress

I.c.v injection 
in PVN, rats1 
nmol/2 μl; mice 
0.5 nmol/2 μl

OXTR↑
Crf mRNA, CRF, 
CREB, CRTC3↓

Regulating stress response [158]

Rat, M Early‑life stress
Restraint stress

I.c.v injec‑
tion in mPFC 
and PVN, 1 µg/
µL

Duration in cen‑
tral zone,
open arm 
ratio ↑

Anxiolytic effect [9]

Rat, M&F Mild stress I.c.v injection, 
10 ng/h, dura‑
tion 14 days

CRFR2α form 
in CSF ↑

Anxiety‑like behavior [99]

Rat, M Tail‑shock stress Intranasal
administration,
1 mg/ml, 200μL

fEPSP, LTP↑ Synaptic plasticity↑ [159]

Rat, M PTSD Intranasal
administration,
1 μg/μL, 
2 × 10 μL

CRHR1 
in mPFC↓

Prosocial contacts↑ [64]

Mice, M Early life stress Intranasal
administration,
2μL, 12 IU/kg

Serum CORT↓ Paw‑licking behaviour↑
Self‑grooming↑

[160]

Mice, M Chronic subor‑
dinate colony 
housing stress

I.c.v injection,
1 ng/h, 10 ng/h

OXTR(high 
dose) ↓
ACTH sensitiv‑
ity ↓

Anxiety (high dose)
Inhibit hyper‑anxiety
(low dose)

[100]

Mice, M&F Acute restraint 
stress

I.c.v injection,
1.25 
or 2.5 μg/0.5 μL

Adult hip‑
pocampal 
neurogenesis↑

METH addiction, stress response↓ [161]

Mice, M&F Acute & chronic
Social defeat

Intranasal
administration,
8 IU/kg

Social interac‑
tion (F)↓
social interac‑
tion (M)↑

Anxiolytic in male [162]

Mice, M&F Chronic neuro‑
pathic pain

I.c.v injection,
100 μM/0.5μL

Pre‑LTP in ACC↓
action poten‑
tial, resting 
membrane 
potential↑

Attenuates neuropathic pain and emotional anxiety [163]

Prairie voles, F Chronic social 
isolation

Subcutane‑
ous injection, 
20 μg/50 μl, 
14 days

/ Sucrose preference↑
Immobility in FST↓

[164]

Prairie voles, F Chronic social 
isolation

I.p injection, 
0.05 mg/kg, 
0.5 mg/ml

Serum CORT↓ Oxidative damage,
Telomere degradation↓
Sucrose preference↑

[165]

Prairie voles, F Mild stress I.c.v injection 
in PVN, 10 ng/nl

PVN GABA activ‑
ity↑
HPA axis activa‑
tion↓

Anxiolytic effect [166]

Marmoset, M&F Chronic social 
isolation

Intranasal 
administration, 
25 IU

Serum CORT 
in female↓

Modulate HPA‑axis response via prosocial behavior [89]

Human, M Acute psycho‑
social Stress

Intranasal 
administration,
24 IU

Amygdala–hip‑
pocampal 
functional con‑
nectivity ↑

Stress reactivity and sensitivity ↓ [167]
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exposure to stressful environment during pregnancy will 
reduce stress susceptibility and anxiety behavior of off-
spring, and the mechanism may be related to changes of 
the serum concentration of 17-beta-oestradiol, OXT and 
Erβ/Erα ratio [107]. Further, our previous study designed 
that rat pups were subjected to early stress, and then 
exposed to restraint stress in adulthood to observe the 
stress sensitivity and susceptibility of rats. We found that 
predictable MS increased stress resilience in adulthood, 
while unpredictable MS increased susceptibility in “two-
hit” stress model [9].

In clinical use, salivary OXT levels were inversely cor-
related with separation anxiety symptoms and be posi-
tively associated with the separation anxiety scores in 
children [108]. Thus, OXT has a potential implication for 
adolescent anxiety and treatment, especially those who 
have experienced childhood separation from their moth-
ers [109]. Interestingly, OXTR and G protein β3 subunit 
genes were specifically associated with the presence and 
severity of MS, but this specificity is not associated with 
anxiety and depression [110].

SAD is characterized by a marked and persistent fear 
of social situations or potentially embarrassing social 
behaviors and activities, and features of avoidance behav-
ior. Given its effects on social functioning and behavior, 
there are several studies about OXT use in SAD. An fMRI 

study of fearful face processing found decreased func-
tional connectivity between the amygdala and anterior 
cingulate gyrus in the SAD patient compared to healthy 
controls with elevated anxiety symptoms [111]. However, 
intranasal OXT normalized the decreased connectivity 
between the amygdala and anterior cingulate gyrus in 
the SAD patient [111]. Plasma OXT levels were higher in 
SAD patients with more severe social anxiety symptoms, 
possibly because the high levels of oxytocin secretion in 
SAD patients compensated for reduced social anxiety 
symptoms [112]. In another study of patients with SAD, 
intranasal administration of OXT enhanced other-ori-
ented reward motivation in patients with lower anxiety 
but higher anxiety, suggesting that OXT prosocial effects 
are related to the severity of symptoms [113]. Oxytocin 
may be a predictor of social anxiety disorder. Although 
the above-mentioned preclinical and clinical studies have 
provided the evidences of OXT in the intervention and 
biomarkers of different anxiety, the biological mechanism 
and neural activity of OXT have not been fully elucidated.

Oxytocin mediated improvement of depressive behavior
Depression is a stress-related neuropsychiatric disor-
ders characterized by lower mood, thought retardation, 
loss of interest, and reduction of action and language, 
accompanied by suicidal attempts [114]. A previous 

Table 1 (continued)

Species, 
gender

Stress type Dosage 
Regimen

Index change Outcome References

Human, M Acute psycho‑
social Stress

Intranasal 
administration,
24 IU

Limbic deactiva‑
tions↑

Stress reactivity↑ [168]

Human, F Experimentally 
induced pain

Intranasal 
administration,
24 IU

Heart rate vari‑
ability↓

The salience of social proximity↑ [169]

Table 2 The endogenous changes of OXT in stress

Species, gender Stress type Outcome References

Mice, M&F Chronic variable stress Basal CORT and PVN immunoreactivity↑
CRH and OXT mRNA in the PVN↑
Without anxiety behavior

[170]

Mice, M&F Chronic neuropathic pain OXT concentration in PVN and elevated expression of OXTR in ACC [163]

Rat, M Restraint stress Arterial pressure, heart rate, plasma OXT↑
Using OXT antagonist attenuates tachycardic responses

[101]

Rat, F Psycho‑social stress OXT release in PVN↑ [171]

Human, F
Mice, M

PTSD Blood OXTR mRNA concentrations in human↑
Prefrontal cortical OXT and OXTR mRNA in mice↑
HPA axis response relies on regulation of OXTR expression

[157]

Human, M&F PTSD Plasma OXT in men and women ↓ [134]

Human, F Acute stress (emotionally stress‑
ful video)

Negative emotion and salivary cortisol ↑
Baseline OXT predicts stress response

[172]
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study found that serum OXT was significantly nega-
tively correlated with Hamilton Depression Scale score 
[115]. Another study of postpartum depression used 
the Edinburgh postnatal depression scale (EPDS) to 
assess the risk of postpartum depression and showed 
that plasma OXT plasma OXT concentrations were 
lower in the high-risk group compared with subjects 
in the low-risk group for postpartum depression [116]. 
The relationship between OXT and depressive behavior 
in animals was first reported in 1980s via i.c.v injection 
of OXT [117]. Then, Arletti et al. found that intraperi-
toneal injection (i.p) of OXT (0.25–1.0  mg/kg) could 
significantly improve depressive behavior [117]. And 
OXT was shown to like the pharmacological effects of 
impramine (7.5–30 mg/kg i.p) in depressive mice [117]. 
In the desperate behavior of rats, i.c.v injection of OXT 
reduced the immobility time of the forced swimming 
test and tail suspension test of rats via a dose-depend-
ent effect [118]. The results shown that behavioral 
despair promote the synthesis and secretion of OXT 
in the brain and periphery [118]. But brain-derived 
OXT played a role in behavioral hopelessness depres-
sion, rather than the periphery-derived OXT [118]. In 
a socially isolated model of depression, OXT mediated 
the development of depressive-like behaviors following 
neuronal injury in mice [119]. The preventative phar-
macotherapy of OXT can also attenuated the depressive 
behavior and deterioration of mood in male and female 
rats after early life stress [120]. I.c.v injection of oxy-
tocin reversed depression-like behavior in a rat model 
of postpartum depression by regulating the HPA axis 
and TrkB in PVN signaling pathway [121, 122]. In clini-
cal studies, it was found that OXT concentrations in the 
plasma of depressed patients were higher than those 
in healthy controls [123]. Intranasal oxytocin had no 
effect on facial emotion recognition and was associated 
with a reduction in negative thoughts in mothers with 
postpartum depression [124]. Interestingly, serum OXT 
levels during pregnancy were associated with depres-
sive symptoms in early pregnancy or postpartum and 
may serve as a predictive target for postpartum depres-
sion [116, 125]. A allele of rs53576 in the oxytocin gene 
was also found to be associated with suicidal behavior 
in people with a history of suicide attempts, suggesting 
that OXT can also be used as a potential target for pre-
dicting suicide attempts [126]. However, there was no 
significant difference in the level of intravenous OXT in 
women with postpartum depression and healthy sub-
jects measured through the Beck Depression Inventory 
II scale [127]. A meta-analysis also found that plasma 
OXT levels in depressed patients were not different 
from healthy subjects, suggesting that the effect of OXT 

needs to consider the heterogeneity of subtypes and 
samples of depressed patients [128].

Despite so much preclinical and clinical evidences for 
the intervention effects of OXT in depression, its bio-
logical mechanisms have not been systematically eluci-
dated. The regulation of serotonergic function and HPA 
axis may mediate the antidepressant mechanism of OXT. 
Increased the expression of 5-hydroxytryptamine recep-
tors and serotonin transporter of hippocampus corre-
lated with oxytocin levels in a MS induced animal model 
of depression [129]. But OXT exerted a synergistic func-
tion of antidepressant efficacy, such as increasing SSRI 
sensitivity by regulating Integrin β3 (ITGB3) and Close 
homolog of L1 protein (CHL1) in BDNF expression [130]. 
Similarly, OXT can modulate stress behaviors and auto-
nomic nervous system responses by attenuating HPA axis 
activity, thereby reducing depressive behaviors [88]. Infu-
sion of oxytocin (100  ng/h, i.c.v) in ovariectomized rats 
reduced plasma ACTH concentrations and CRF mRNA 
in the hypothalamus after 30 min stress stimulation [88]. 
Also, MS-induced depression-like behaviors were attenu-
ated by OXT mediated improvement of mitochondrial 
function and immune-inflammatory response in the hip-
pocampus [35]. In terms of gene polymorphisms, some 
studies have found that the polymorphism of oxytocin-
related genes (rs2254298) has a predictive effect on anxi-
ety and depression symptoms in adolescent girls [131]. 
Catherine et al. found that the reduction of OXTR gene 
DNA methylation is related to perinatal stress and post-
natal depression, while the increase of DNA methylation 
is related to social cognition and emotional recognition 
disorders [132]. Generally, there are differences in the 
evidence that OXT improves depression, but this may 
be related to the heterogeneity of the pathogenesis of 
depression per se. The mechanism of oxytocin improv-
ing depressive behavior also requires further exploration 
at the neuronal and molecular levels. Achieving the best 
therapeutic effect, as well as the intervention of differ-
ent depression subtypes, needs more attention in future 
work.

The potential of oxytocin treatment in PTSD
After experiencing traumatic events, individuals are 
prone to the PTSD symptoms of social avoidance, cog-
nitive and emotional changes, and hyperarousal. And it 
have been shown that the potential of OXT for the treat-
ment of PTSD. In a meta-analysis, OXT was found to 
be effective in PTSD interventions [133]. Plasma OXT 
Levels of PTSD patient was lower than healthy subjects 
[134]. Intranasal OXT has been shown to improve social 
cognitive abilities such as emotion recognition, inter-
personal trust, and prosocial behaviors, which are often 
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impaired in patients with PTSD [135]. In the brain, OXT 
enhances functional connectivity between the amygdala 
and prefrontal regions and suppresses fear responses in 
the amygdala, which in turn is involved in the regulation 
of salience processing [136]. In male patients, OXT may 
reduce the control of CeM via enhancing mPFC regula-
tion [72]. And in female patients, it reduces the control 
of amygdala in PTSD by reducing the projection of baso-
lateral amygdala (BLA), which can attenuate anxiety and 
decreased fear expression [72]. The results implied that 
sex differences underly PTSD-related neurobiological 
mechanisms[72]. The patient with PTSD always exhib-
ited social impairment and with the symptoms of emo-
tional and cognitive empathy deficits [137]. Although 
intranasal OXT (24 IU) administration does not improve 
emotional cognitive empathy, it can selectively enhance 
the perception of angry body movements in man PTSD 
patients [137]. In Chinese earthquake survivors, serum 
OXT levels were not associated with overall PTSD symp-
toms and were associated with PTSD anxiety arousal 
symptoms [138]. But in the women patient with PTSD, 
the results indicated that a single intranasal dose of OXT 
enhances empathy for women [139]. OXT appears to 
affect males and females with PTSD differently, implying 
a need for gender-specific treatment in this population. 
In a study of OXT and Prolonged Exposure co-interven-
tion in PTSD, it was found that intranasal OXT (40  IU) 
administration reduced PTSD and depressive symptoms 
in PE treatment, but there was no statistical difference 
[140]. A recent study also found that OXT is a potential 
biomarker for PTSD subtypes with high HPA response 
[66]. In the HPA axis subgroup, blood OXTR mRNA was 
associated with PTSD symptoms, and can predicted the 
activation levels in the prefrontal cortex of mice with 
PTSD-like symptoms [66].

In the rodent, moderate restraint stress increased 
social support-seeking behavior and decreasing the 
aggression by the activation of hypothalamic OXT sign-
aling [141]. Conversely, after experiencing the stress 
contents of predator odor, the results have shown that 
social affiliation was disrupted (a PTSD-like symptom) 
with reduced OXT signaling in rat[141]. OXT admin-
istered immediately after trauma produced a short-
term increase in recall of traumatic memories, whereas 
chronic administration of low-dose OXT had cumulative 
anxiolytic effects in social co-housing in a rodent model 
of PTSD [142]. In SPS, an animal model that effectively 
mimics PTSD, intranasal OXT administration reversed 
SPS-induced fear extinction repair and downregulated 
the levels of inflammatory factors (IL-1β, TNF-α) in the 
hippocampus and serum [63]. Meanwhile, OXT also 
promoted the recovery of SPS-induced social behavior 
abnormalities through the OXTR binding in mPFC and 

amygdala [64]. Interestingly, in the SPS model, OXT sign-
aling also attenuated fear acquisition in the social-sexual 
partner pairing of prairie vole, providing a buffer for 
partner absence [143]. As mentioned above, OXT plays 
a potential role in social behavior via regulating stress 
response of PTSD. But given the heterogeneity of PSTD, 
the construction of animal models provides obstacles to 
the exploration of the biological mechanism in therapeu-
tic uses of OXT.

The augmentation of oxytocin expression
The secretion of endogenous OXT may serve as a pre-
dictive target for stress-related neuropsychiatric dis-
orders and may also provide buffers for stress-induced 
neuropsychiatric disorders. Inducing the release of OXT 
in the brain may produce a safe and effective anti-stress 
effect via stress response, maternal behavior, sexual 
behavior, social behavior and physical activity (Fig. 2).

Firstly, OXT levels are regulated by stress response. The 
obvious part shown that both chronic stress and acute 
stress can increase OXT expression in humans and ani-
mals, although this result is different in human studies, 
indicating that changes in OXT levels may be heteroge-
neous with disease. And OXT may be affected at different 
stages of the disease pathological process. Therefore, the 
expression of OXT should take into account these factors, 
such as the type of stress, the subtype of stress related 
neuropsychiatric disease, and the population differences. 
For instance, we found elevated levels and expression of 
OXT in the blood and mPFC of rats in a model of pre-
dictable MS, whereas the opposite effect was exhibited 
in unpredictable MS [9]. Stress-induced increase in OXT 
secretion was involved in increased cortisol responsive-
ness and recovery of vagus [144].

Secondly, pregnancy, lactation, and sexual behavior can 
increase OXT secretion in central and peripheral. OXT 
neurons were involved in the process of milk secretion in 
rats [145]. Inhibition of OXT neurons also reduced pro-
lactin levels, suggesting that oxytocin neuron activation 
promotes prolactin activation during pregnancy and lac-
tation [145, 146]. Interestingly, virgin mice, mother mice 
and pups were co-housed and the maternal behavior of 
the mother mice would be perceived by the virgin mice 
through visual learning [147]. Then maternal behavior 
promotes the virgin mice to react with their companion 
pups [147]. Through recordings of PVN neural activity, 
it was found that OXT neuron activation in PVN modu-
lates increased plasticity in left auditory cortex and pro-
motes alloparenting in virgin mice [147]. During sexual 
behavior, sexual experience increased the expression of 
oxytocin gene and protein in the medial preoptic area of 
male rats [148]. Conversely, intracerebral OXT injection 
also promoted sexual behavior in male rats, regardless of 
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previous sexual experience [148]. And sexual self-stimu-
lation also increases salivary OXT levels in healthy adult 
men and women [149]. Sexual behavior of male rats OXT 
release mode is not only synaptic axonal release but also 

occurs exocrine vesicle transmission and diffusion locally 
acts on OXTR neurons and promotes male sexual func-
tion [150].

Fig. 2 The augmentation of Oxytocin expression. a a illustration of early life stress. b and c, both oxytocin mRNA level and protein level were 
significantly increased in predictable maternal separation (mild early life stress), while were decreased in unpredictable maternal separation. a‑c 
adapted from [9]. d copulation (i.e., acute effects of sexual activity) increases OXTR mRNA levels in the medial preoptic area (MPOA). e Previous 
sexual experience increases OXTR protein levels in the MPOA, ventromedial hypothalamus. d and e adapted from [148]. f Setup for recordings 
of behavior, ultrasonic vocalizations and neural activity. g Average firing rate of 15 OXT neurons from 5 rats. Free social interactions (FSI) led 
to the greatest change in firing rate and synchronous activity in simultaneously recorded OXT neurons. h Frames of recorded videos (top) 
of experimental rats that were placed either alone (Open field exploration), or with a mesh between rats (Chambered social interaction) or for FSI 
with a stimulus rat; representative spike raster plots of an OXT cell in each condition (bottom). experimental and stimulus rats were separated 
by a transparent wall with small holes (7.5 mm), allowing rats to see, sniff and hear, but not touch, each other. i Representative spike raster plots, 
averaged response and peristimulus time histograms of OXT cell activity during ‘crawling on top’. f–i adapted from [151]
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Thirdly, Social touch induces activation of parvocel-
lular OXT neurons in a small population of the hypo-
thalamus and transmission to magnocellular neurons 
in rats [151]. Feedback regulation of social behavior by 
OXT neurons has also been validated in a mice model of 
autism [152, 153]. Lastly, some evidence suggested that 
exercise also modulates changes in OXT levels and OXT 
expression. In rats with gastric injury, regular, moderate-
intensity exercise upregulates oxytocin activity and alle-
viates gastric injury [154]. Similar results were obtained 
in a mouse model of breast cancer [155]. Interval exer-
cise training reduced the activity of PI3K/Akt and ERK 
through OXT secretion, thereby reducing tumor volume 
and weight [155]. Serum OXT levels in well-trained male 
and female runners rose from 1.5 pg/ml at rest to 3.5 pg/
ml after prolonged, high-intensity endurance running 
[156]. In conclusion, OXT expression is affected by mul-
tiple factors, and increasing OXT levels and expression in 
a healthy, endogenous manner may improve resistance to 
stress-induced neuropsychiatric diseases.

Concluding remarks
Growing evidence has shown that OXT has an impor-
tant role in stress-related neuropsychiatric diseases. To 
understand the effects of OXT in psychiatric disorders, 

this article reviews the OXT system and the main brain 
regions where OXT neurons project in stress. Based on 
recent evidence, we have also shown that targets and pre-
dictive roles of OXT signaling and neuronal interventions 
in stress-related neuropsychiatric disorders. Finally, we 
propose several methods to increase the expression of 
OXT to provide ideas for follow-up research (Fig. 3).

Although there are many evidences for OXT and 
stress-related neuropsychiatric disorders, there are still 
many puzzles waiting for us to solve. As a potential target 
of neuropsychiatric diseases, how OXT signaling plays 
its role in improving neuropsychiatric diseases needs to 
be further explored and fully grasped in future research. 
Given the complexity and heterogeneity of stress-induced 
neuropsychiatric disease processes, the following ques-
tions need to be addressed. Firstly, whether the molecular 
pathways mediated by peripheral OXT levels differ from 
those in central oxytocinergic neurons. Secondly, the 
dose-dependent effect of OXT needs to be further clari-
fied in different diseases, populations, and animal mod-
els. Thirdly, how OXT neuronal activity and molecular 
changes are linked to stress-induced neuropsychiatric 
disorders. The elaboration of the above questions can 
make better use of OXT as a target to further improve 

Fig. 3 The regulation of endogenous and exogenous OXT in stress‑related neuropsychiatric diseases and the bidirectional influencing factors 
of oxytocin expression in the brain. In humans and animals, intranasal OXT administration and other stimuli, such as stress, maternal behavior, 
and sexual behavior et al., induce elevated OXT levels that project primarily to the prefrontal cortex, hippocampus, and amygdala. The interaction 
of OXT with OXTR increases stress resistance and improves stress‑related neuropsychiatric diseases by regulating stress response, signaling 
pathways, neuronal excitability. Image created with Biorender.com
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neuropsychiatric diseases and provide stronger evidence 
for the mechanism.
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